International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 9, No. 3, July – September 2018, pp. 86 - 93

Soft g*-Closed Sets in Soft Minimal Spaces

*R. Gowri and S. Vembu

Department of Mathematics, Government College for Women (A), Kumbakonam, India Email: *gowrigck@rediffmail.com, vembuchandrasekaran@gmail.com

Abstract: In this paper, we define soft g*-closed and soft g*-open sets in soft minimal spaces which are defined over an initial universe with a fixed set of parameters. Further, we discuss basic properties of their sets.

Keywords: soft sets, soft minimal space, sg*m-closed sets, sg*m-open sets.

AMS Subject Classification: 54A10, 54C08

1. Introduction:

The concept of soft set theory as a new mathematical tool was initiated by Molodtsov [9]. M. Shabir and M. Naz [13] introduced soft topological spaces and the notions of soft closed sets, soft open sets, soft closure, soft interior and soft neighborhood of a point. Levine [8] initiated the study of generalized closed and open sets in topological spaces. Noiri [11] introduced the notion of generalized m-closed (briefly gm-closed) sets and tried to unify certain types of modifications of g-closed sets. Boonpok [1] introduced biminimal structure spaces and studied $m_X^1m_X^2$ -closed and $m_X^1m_X^2$ -open sets in biminimal structure spaces. Recently, in 2015, Gowri and Vembu [4] introduced and studied soft minimal and soft biminimal spaces.

In this present study, we discuss soft g^* -closed and soft g^* -open sets in soft minimal spaces and obtain the basic results and properties.

2. Preliminaries:

Definition 2.1 [9]: Let U be an initial universe and E is a set of parameters. Let P (U) denotes the power set of U and A is a nonempty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P$ (U).

In other words, a soft set over U is a parameterized family of subsets of the universe U. For $\mathcal{E} \in A$. F (\mathcal{E}) may be considered as the set of \mathcal{E} - approximate elements of the soft set (F, A).

Definition 2.2 [4]: Let X be an initial universe set, E be the set of parameters and A be the soft subset of E (A \subseteq E).Let F_A be a nonempty soft set over X and \tilde{p} (F_A) is the soft

International Journal of Engineering Science, Advanced Computing and Bio-Technology

power set of F_A . A subfamily \widetilde{m} of \widetilde{p} (F_A) is called a soft minimal over X if $F\Phi \in \widetilde{m}$ and $F_A \in \widetilde{m}$.

 (F_A, \widetilde{m}) or (X, \widetilde{m}, E) is called a soft minimal space over X. Each member of \widetilde{m} is said to be \widetilde{m} - soft open set and the complement of a \widetilde{m} - soft open set is said to be \widetilde{m} - soft closed set over X.

Example 2.3:

Let U = {u₁, u₂}, E = {x₁, x₂, x₃}, A = {x₁, x₂} \subseteq E and F_A = {(x₁{u₁, u₂}), (x₂{u₁, u₂})}. Then F_{A1} = {(x₁{u₁})}, F_{A2} = {(x₁{u₂})}, F_{A3} = {(x₁{u₁, u₂})}, F_{A4} = {(x₂{u₁})}, F_{A5} = {(x₂{u₂})}, F_{A6} = {(x₂{u₁, u₂})}, F_{A7} = {(x₁{u₁}), (x₂{u₁})}, F_{A8} = {(x₁{u₁}), (x₂{u₂})} F_{A9} = {(x₁{u₁}), (x₂{u₁, u₂)}, F_{A10} = {(x₁{u₂}), (x₂{u₁})} F_{A11} = {(x₁{u₂}), (x₂{u₂})}, F_{A12} = {(x₁{u₂}), (x₂{u₁, u₂)}} F_{A13} = {(x₁{u₁, u₂), (x₂{u₁})}, F_{A14} = {(x₁{u₁, u₂), (x₂{u₂})} F_{A15} = F_A, F_{A16} = FΦ are all soft subset of F_A, Soft minimal (\widetilde{m}) = {FΦ F_{A1}, F_{A32}, F_{A72}, F_{A112}, F_{A13}, F_A}.

Definition 2.4 [4]: Let (F_A, \tilde{m}) be a soft minimal space with nonempty soft set F_A is said to have property B if the union of any family of soft subsets belonging to \tilde{m} belongs to \tilde{m}

Definition 2.5 [4]: Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B of F_A the \tilde{m} -soft closure of F_B and \tilde{m} -soft interior of F_B are defined as follows:

(1) \widetilde{m} Cl (F_B) = $\bigcap \{F_{\alpha} : F_{B} \subseteq F_{\alpha}, F_{A^{-}} F_{\alpha} \in \widetilde{m}\},\$

(2) \widetilde{m} Int (F_B) = $\bigcup \{F_{\beta} : F_{\beta} \subset F_{B}, F_{\beta} \in \widetilde{m}\}.$

Lemma 2.6 [4]:

Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B and F_C of F_A , the following properties hold:

(1) \widetilde{m} Cl (F_A - F_B) = F_A - \widetilde{m} Int (F_B) and \widetilde{m} Int (F_A - F_B) = F_A - \widetilde{m} Cl (F_B),

(2) If $(F_A - F_B) \in \widetilde{m}$, then $\widetilde{m}Cl(F_B) = F_B$ and if $F_B \in \widetilde{m}$, then $\widetilde{m}Int(F_B) = F_B$.

(3) \widetilde{m} Cl (F $_{\Phi}$) = F $_{\Phi}$, \widetilde{m} Cl (F $_{A}$) = F $_{A}$, \widetilde{m} Int (F $_{\Phi}$) = F $_{\Phi}$ and \widetilde{m} Int (F $_{A}$) = F $_{A}$,

(4) If $F_B \simeq F_C$ then $\widetilde{m}Cl(F_B) \simeq \widetilde{m}Cl(F_C)$ and $\widetilde{m}Int(F_B) \simeq \widetilde{m}Cl(F_C)$,

(5) $F_{B} \simeq \widetilde{m}Cl(F_{B})$ and $\widetilde{m}Int(F_{B}) \simeq F_{B}$,

(6) \widetilde{m} Cl (\widetilde{m} Cl (F_{B})) = \widetilde{m} Cl (F_{B}) and \widetilde{m} Int (\widetilde{m} Int (F_{B})) = \widetilde{m} Int (F_{B}).

87

Lemma 2.7 [4]: Let F_A be a nonempty soft set with a soft minimal \widetilde{m} on F_A satisfying property B. For a soft subset F_B of F_A the following properties hold:

- (1) $F_B \in \widetilde{m}$ if and only if \widetilde{m} Int (F_B) = F_B
- (2) If F_B is soft \widetilde{m} -closed if and only if \widetilde{m} Cl (F_B) = F_B
- (3) \widetilde{m} Int (F_B) $\in \widetilde{m}$ and \widetilde{m} Cl (F_B) is soft \widetilde{m} -closed.

Definition 2.8 [5]: A soft subset F_B of a soft minimal space (F_A, \tilde{m}) is said to be soft generalized \tilde{m} -closed (briefly sg \tilde{m} -closed) if \tilde{m} Cl $(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is soft \tilde{m} -open. The complement of soft generalized \tilde{m} -closed set is said to be soft generalized \tilde{m} open (briefly sg \tilde{m} -open)

3. Soft g*-closed sets in soft minimal space

Definition 3.1: A soft subset F_B of a soft minimal space (F_A, \widetilde{m}) is said to be soft $g^*\widetilde{m}$ closed set (briefly sg^{*} \widetilde{m} -closed set) if $\widetilde{m}Cl(F_B) \cong U_B$ whenever $F_B \cong U_B$ and U_B is sg \widetilde{m} open.

Example 3.2: Let us consider the soft subsets of F_A that are given in Example 2.3. Let $(F_A, \widetilde{\mathcal{M}})$ be a soft minimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subset E$ and $F_A = \{(x_1\{u_1, u_2\}), (x_2\{u_1, u_2\})\}$. Then $\widetilde{\mathcal{M}} = \{F_{\Phi}, F_{A6}, F_{A8}, F_{A11}, F_A\}$, $\widetilde{\mathcal{M}}^C = \{F_{\Phi}, F_{A3}, F_{A10}, F_{A7}, F_A\}$,

sg \tilde{m} - closed sets are F $_{\Phi}$, F_{A1}, F_{A2}, F_{A3}, F_{A4}, F_{A7}, F_{A9}, F_{A10}, F_{A12}, F_{A13}, F_{A14}, F_A and sg $^*\tilde{m}$ -closed sets are F $_{\Phi}$, F_{A1}, F_{A2}, F_{A3}, F_{A4}, F_{A7}, F_{A10}, F_{A13}, F_A.

Theorem 3.3: Every soft \widetilde{m} -closed set is sg* \widetilde{m} -closed set.

Proof: Let F_B be soft \widetilde{m} -closed set in (F_A, \widetilde{m}) and U_B is $sg\widetilde{m}$ -open such that $F_B \subseteq U_B$. Then $\widetilde{m}Cl(F_B) = F_B$ and so $\widetilde{m}Cl(F_B) \subseteq U_B$. Hence F_B be $sg^*\widetilde{m}$ -closed set.

Theorem 3.4: Every $sg^*\widetilde{m}$ -closed set is $sg\widetilde{m}$ -closed set.

Proof: Let F_B be sg^{*}-closed set in (F_A, \tilde{m}) . Let $F_B \cong U_B$ where U_B is soft \tilde{m} -open. Since every soft \tilde{m} -open set is sg \tilde{m} -open set. Since F_B is sg^{*} \tilde{m} -closed set then we have \tilde{m} -Cl $(F_B) \cong U_B$. Hence F_B is sg \tilde{m} -closed.

Remark 3.5: From the above observation we get the following implication Soft \tilde{m} -closed set \rightarrow sg^{*} \tilde{m} -closed set \rightarrow sg \tilde{m} -closed set

The reverse implications are not true from the following example

Example 3.6: Let us consider the soft subsets of F_A that are given in Example 2.3. Let (F_A, \widetilde{m}) be a soft minimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subset E$ and $F_A = \{(x_1\{u_1, u_2\}), (x_2\{u_1, u_2\})\}$. Then $\widetilde{m} = \{F_{\Phi}, F_{A6}, F_{A8}, F_{A11}, F_A\}$. See Example 3.2. F_{A2} is $sg^*\widetilde{m}$ -closed but not soft \widetilde{m} -closed and F_{A12} is $sg\widetilde{m}$ -closed but not $sg^*\widetilde{m}$ -closed.

Theorem 3.7: If F_B and G_B are sg^{*} \tilde{m} -closed sets in (F_A, \tilde{m}) then their union $F_B \cup G_B$ is also sg^{*} \tilde{m} -closed sets in (F_A, \tilde{m})

Proof: Suppose F_B and G_B are $sg^* \widetilde{\mathcal{M}}$ -closed sets in $(F_A, \widetilde{\mathcal{M}})$. Let $U_B sg \widetilde{\mathcal{M}}$ -open of $(F_A, \widetilde{\mathcal{M}})$ such that $F_B \cup G_B \subseteq U_B$. Since $F_B \cup G_B \subseteq U_B$, we have $F_B \subseteq U_B$ and $G_B \subseteq U_B$. Since F_B and G_B are $sg^* \widetilde{\mathcal{M}}$ -closed, we have $\widetilde{\mathcal{M}}Cl(F_B) \subseteq U_B$ and $\widetilde{\mathcal{M}}Cl(G_B) \cong U_B$. Therefore $\widetilde{\mathcal{M}}Cl(F_B \cup G_B) \cong \widetilde{\mathcal{M}}Cl(F_B) \cup \widetilde{\mathcal{M}}Cl(G_B) \cong U_B$. Hence $F_B \cup G_B$ is also $sg^* \widetilde{\mathcal{M}}$ -closed set.

Remark 3.8: The intersection of two sg^{*} \tilde{m} -closed sets are need not be sg^{*} \tilde{m} -closed as seen from the following example.

Example 3.9: Let us consider the soft subsets of F_A that are given in Example 2.3. Let (F_A, \widetilde{m}) be a soft minimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subset E$ and $F_A = \{(x_1\{u_1, u_2\}), (x_2\{u_1, u_2\})\}$. Then $\widetilde{m} = \{F_{\Phi}, F_{A1}, F_{A2}, F_{A3}, F_{A7}, F_{A6}, F_{A12}, F_A\}$. Then $F_B = F_{A6}$ and $G_B = F_{A8}$ are sg* \widetilde{m} -closed but $F_B \cap G_B = F_{A5}$ is not sg* \widetilde{m} -closed set.

Theorem 3.10: For each element $(x,u) \in (F_A, \widetilde{m})$ then singleton $\{(x,u)\}$ is sgm-closed or $\{(x,u)\}^C$ is sg^{*} \widetilde{m} -closed set.

Proof: Let $(x,u) \in (F_A, \widetilde{m})$ and the singleton $\{(x,u)\}$ is not sg \widetilde{m} -closed. Then $\{(x,u)\}^C$ is not sg \widetilde{m} -open set and F_A is the only sg \widetilde{m} -open set which contains $\{(x,u)\}^C$ and $\{(x,u)\}^C$ is sg $^*\widetilde{m}$ -closed set.

Theorem 3.11: Let (F_A, \widetilde{m}) be soft minimal space. If F_B is sg^{*} \widetilde{m} -closed, then \widetilde{m} Cl (F_B) - F_B contains no nonempty sg \widetilde{m} -closed.

Proof: Let F_B is $sg^*\widetilde{m}$ -closed set. Let H_B is a $sg\widetilde{m}$ -closed subset of $\widetilde{m}Cl(F_B) - F_B$. That is $H_B \cong \widetilde{m}Cl(F_B) - F_B$. Then $F_B \cong H_B^C$, H_B^C is $sg\widetilde{m}$ open and hence, $\widetilde{m}Cl(F_B) \cong H_B^C$. Therefore, we have $H_B \cong [\widetilde{m}Cl(F_B)]^C$ and hence $H_B \cong \widetilde{m}Cl(F_B) \cap [\widetilde{m}Cl(F_B)]^C = F_{\Phi}$. Hence $H_B = F_{\Phi}$. Therefore $\widetilde{m}Cl(F_B) - F_B$ contains no nonempty $sg\widetilde{m}$ -closed.

89

Corollary 3.12: A soft minimal \tilde{m} on a nonempty soft set F_A satisfying property B. If F_B is sg^{*} \tilde{m} -closed in (F_A, \tilde{m}) , then F_B is soft \tilde{m} – closed if and only if \tilde{m} Cl (F_B) - F_B is sg \tilde{m} -closed. **Proof:** If F_B is soft \tilde{m} -closed, then \tilde{m} Cl $(F_B) = F_B$. That is \tilde{m} Cl $(F_B) - F_B = F_{\Phi}$ and hence \tilde{m} Cl (F_B) - F_B is sg \tilde{m} -closed.

Conversely, if \widetilde{m} Cl (F_B) – F_B is sg \widetilde{m} -closed, then by Theorem 3.11, \widetilde{m} Cl (F_B) – F_B = F Φ_{-} Since F_B is sg^{*} \widetilde{m} -closed. Therefore, F_B is soft \widetilde{m} – closed.

Theorem 3.13: If F_B is sg^{*} \widetilde{m} -closed in (F_A, \widetilde{m}) and $F_B \underbrace{\widetilde{\subseteq}} G_B \underbrace{\widetilde{\subseteq}} \widetilde{m}Cl$ (F_B) , then G_B is sg^{*} \widetilde{m} -closed.

Proof: Suppose that F_B is $sg^*\widetilde{m}$ -closed set in (F_A, \widetilde{m}) and $F_B \subseteq G_B \subseteq \widetilde{m}Cl$ (F_B) . Let $G_B \subseteq U_B$ and U_B is $sg\widetilde{m}$ -open in (F_A, \widetilde{m}) . Since $F_B \subseteq G_B$ and $G_B \subseteq U_B$, we have $F_B \subseteq U_B$. Since F_B is $sg^*\widetilde{m}$ -closed, we have $\widetilde{m}Cl$ $(F_B) \subseteq U_B$. Since $G_B \subseteq \widetilde{m}Cl$ (F_B) , we have $\widetilde{m}Cl$ $(G_B) \subseteq \widetilde{m}Cl$ $(F_B) \subseteq U_B$. Therefore G_B is $sg^*\widetilde{m}$ -closed set.

Definition 3.14: A soft subset F_B of a soft minimal space $(F_A, \tilde{m}$ is said to be soft $g^*\tilde{m}$ -open (briefly $sg^*\tilde{m}$ -open) if its complement is $sg^*\tilde{m}$ -closed.

Theorem 3.15: A soft subset F_B of a soft minimal space (F_A, \tilde{m}) is sg* \tilde{m} -open if and only if $H_B \cong \tilde{m}$ Int (F_B) whenever $H_B \cong F_B$ and H_B is sg \tilde{m} -closed.

Proof: Suppose that F_B is $sg^*\widetilde{m}$ -open. Let H_B be a $sg\widetilde{m}$ -closed set such that $H_B \cong F_B$. Then $F_B^{\ C} \cong H_B^{\ C}$ and $H_B^{\ C}$ is $sg\widetilde{m}$ -open, we have $F_B^{\ C}$ is $sg^*\widetilde{m}$ -closed. Hence, $\widetilde{m}Cl(F_B)^{\ C} \cong H_B^{\ C}$. Consequently, $[\widetilde{m}Int (F_B)]^{\ C} \cong H_B^{\ C}$. Therefore, $H_B \cong \widetilde{m}Int (F_B)$.

Conversely, assume that $H_B \cong \widetilde{m}$ Int (F_B) whenever $H_B \cong F_B$ and H_B is sg \widetilde{m} -closed. Let $F_B^{\ C} \cong U_B$ and U_B is sg \widetilde{m} -open. Then $U_B^{\ C} \cong F_B$ and $U_B^{\ C}$ is sg \widetilde{m} -closed. By our assumption, we have $U_B^{\ C} \cong \widetilde{m}$ Int (F_B) . Hence, $[\widetilde{m}$ Int $(F_B)]^{\ C} \cong U_B$. Therefore, \widetilde{m} Cl $(F_B)^{\ C} \cong U_B$ Consequently, $F_B^{\ C}$ is sg $^*\widetilde{m}$ closed. Hence, F_B is sg $^*\widetilde{m}$ -open.

Theorem 3.16: If F_B and G_B are sg^{*} \widetilde{m} -open sets then $F_B \cap G_B$ is also sg^{*} \widetilde{m} open set.

Proof: Suppose that F_B and G_B are $sg^*\widetilde{m}$ open sets. Let H_B is $sg\widetilde{m}$ closed set and $H_B \cong F_B \cap G_B$. G_B . Since $H_B \cong F_B \cap G_B$, we have $H_B \cong F_B$ and $H_B \cong G_B$. Since F_B and G_B are $sg^*\widetilde{m}$ open sets, we have $H_B \cong \widetilde{m}$ -Int (F_B) and $H_B \cong \widetilde{m}$ Int (G_B) . Therefore $H_B \cong \widetilde{m}$ Int $(F_B) \cap \widetilde{m}$ Int $(G_B) \cong \widetilde{m}$ Int $(F_B \cap G_B)$. Hence $F_B \cap G_B$ is $sg^*\widetilde{m}$ -open set.

Remark 3.17: The union of two sg^{*} \tilde{m} -open sets need not be sg^{*} \tilde{m} -open set as can seen from the following example.

Example 3.18: Let us consider the soft subsets of F_A that are given in Example 2.3. Let (F_A, \widetilde{m}) be a soft minimal space where $U = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subset E$ and $F_A = \{(x_1\{u_1, u_2\}), (x_2\{u_1, u_2\})\}$. Then $\widetilde{m} = \{F_{\Phi}, F_{A2}, F_{A3}, F_{A8}, F_{A12}, F_A\}$. Then $sg\widetilde{m}$ -closed sets are $F_{\Phi}, F_{A1}, F_{A4}, F_{A6}, F_{A7}, F_{A7}, F_{A9}, F_{A10}, F_{A13}, F_{A14}, F_A$ and $sg^*\widetilde{m}$ -closed sets are $F_{\Phi}, F_{A1}, F_{A6}, F_{A7}, F_{A9}, F_{A10}, F_{A13}, F_{A14}, F_A$ and $sg^*\widetilde{m}$ -open sets are $F_{\Phi}, F_{A12}, F_{A3}, F_{A11}, F_{A2}, F_{A8}, F_{A5}, F_A$. Here, F_{A2} and F_{A8} are $sg^*\widetilde{m}$ -open sets but $F_{A2} \cup F_{A8} = F_{A14}$ is not $sg^*\widetilde{m}$ -open.

Theorem 3.19: Let F_B and G_B be soft subsets of a soft minimal space (F_A, \widetilde{m}) such that \widetilde{m} Int $(F_B) \subseteq G_B \subseteq F_B$. If F_B is sg^{*} \widetilde{m} -open, then G_B is sg^{*} \widetilde{m} open in (F_A, \widetilde{m}) .

Proof: Suppose that F_B and G_B be soft subsets of (F_A, \tilde{m}) . Let F_B is $sg^*\tilde{m}$ -open set in (F_A, \tilde{m}) such that \tilde{m} Int $(F_B) \subseteq G_B \subseteq F_B$. Let H_B be a $sg\tilde{m}$ -closed such that $H_B \subseteq G_B$. Since $H_B \subseteq G_B$, and $G_B \subseteq F_B$, we have $H_B \subseteq F_B$. Since F_B is $sg^*\tilde{m}$ -open set, we have $H_B \subseteq \tilde{m}$ Int (F_B) . Since, \tilde{m} Int $(F_B) \subseteq G_B$, we have \tilde{m} Int $(\tilde{m}$ Int $(F_B)) \subseteq \tilde{m}$ Int (G_B) . Therefore, \tilde{m} Int $(F_B) \subseteq \tilde{m}$ Int (G_B) . Consequently, $H_B \subseteq \tilde{m}$ Int (F_B) . Hence G_B is $sg^*\tilde{m}$ -open.

Theorem 3.20: If a soft subset F_B of a soft minimal space (F_A, \widetilde{m}) is sg^{*} \widetilde{m} -closed, then \widetilde{m} Cl (F_B) - F_B is sg^{*} \widetilde{m} -open.

Proof: Suppose that F_B is $sg^*\widetilde{m}$ -closed in (F_A, \widetilde{m}) . Let $H_B \subseteq \widetilde{m}Cl(F_B) - F_B$ and H_B is $sg\widetilde{m}$ closed. Since F_B is $sg^*\widetilde{m}$ -closed, we have $\widetilde{m}Cl(F_B) - F_B$ does not contain nonempty $sg\widetilde{m}closed$ by Theorem 3.11. Consequently, $H_B = F_{\Phi}$. Therefore $F_{\Phi} \subseteq \widetilde{m}Cl(F_B) - F_B$, $F_{\Phi} \subseteq \widetilde{m}Int(mCl(F_B) - F_B)$, we obtain $H_B \subseteq \widetilde{m}Int\{\widetilde{m}Cl(F_B) - F_B\}$. Hence $\widetilde{m}Cl(F_B) - F_B$ is $sg^*\widetilde{m}$ open.

Theorem 3.21: If a soft subset F_B is $sg^*\widetilde{m}$ -open in a soft minimal space (F_A, \widetilde{m}) , then $G_B = F_A$ whenever G_B is $sg\widetilde{m}$ -open and \widetilde{m} Int $(F_B) \cup F_B \subseteq G_B$.

Proof: Suppose that F_B is $sg^*\widetilde{m}$ open in a soft minimal space (F_A, \widetilde{m}) and G_B is $sg\widetilde{m}$ -open and \widetilde{m} Int $(F_B) \cup F_B \cong G_B$ implies $G_B^{\ C} \cong \widetilde{m}$ Cl $(F_B^{\ C}) - F_B^{\ C}$. Since $F_B^{\ C}$ is $sg^*\widetilde{m}$ -closed and $G_B^{\ C}$ is $sg\widetilde{m}$ -closed. Therefore, \widetilde{m} Cl $(F_B^{\ C}) - F_B^{\ C}$ contains no nonempty $sg\widetilde{m}$ -closed set (By Theorem 3.11). Consequently, $G_B^{\ C} = F\Phi$ and hence $G_B = F_A$.

Remark 3.22: The converse of the above theorem 3.23 is not true in general as can seen from the following example.

Example 3.23: In Example 3.20, if we take $F_B = F_{A9}$, then \widetilde{m} Int $(F_B) \cup F_B \subseteq F_A$, F_A is sg \widetilde{m} -open, but $F_B = F_{A9}$ is not sg* \widetilde{m} -open.

9

4. Conclusion:

In the present work, we have introduced soft g^* -closed and open sets in soft minimal spaces which are defined over an initial universe with a fixed set of parameters. We have explored some basic properties of these concepts. Also, we have established several interesting results and presented its fundamental properties with the help of some examples. In future, these findings may be extended to new types of soft generalized closed and open sets in soft minimal spaces.

Reference:

- [1] Boonpok, Biminimal Structure Spaces, International Mathematical Forum, 15 (5) (2010) 703-707.
- [2] Cammaroto and Noiri, on ∧- sets and related topological spaces, Acta Math. Hungar, 109 (3) (2005) 261-279.
- Fukutake, on generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1986) 19-28.
- [4] Gowri and Vembu, Soft minimal and soft biminimal spaces, Int. Jr. of Mathematical Science and Appl., Vol. 5, No.2, (2015) 447-455.
- [5] Gowri and Vembu, soft g-closed sets in soft minimal spaces, Int. Jr. of Mathematics and Computer Research, Vol. 4, (2016) 1563-1571.
- [6] Ittanagi, Soft Bitopological Spaces, International Journal of Computer Applications, Vol. 107, No.7, (2014)
- [7] Kelly, Bitopological Spaces, Proc. London Math. Soc., 13 (1963) 71-81.
- [8] Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970) 89-96.
- [9] Molodtsov, Soft Set Theory First Results. Computer and Mathematics with Applications, Vol.37 (1999) 19-31.
- [10] Noiri and Popa, A generalized of some forms of g-irresolute functions, European Jr. of Pure and Appl. Math., 2(4) (2009) 473-493.
- [11] Noiri, A unified theory for certain modification of generalized form of continuity under minimal condition, Mem. Fac. Sci. Kochi. Univ. ser. A. Math., 22 (2001) 9-18.
- [12] Popa and Noiri, On M-continuous functions, Anal. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, No. 23 (2000) 31-41.
- Shabir and Naz, On Soft Topological Spaces, Computers and Mathematics with Applications, 61 (2011) 1786-1799.
- [14] Viriyapong et al, Generalized m-Closed Sets in Biminimal Structure Spaces, Int. Jr. of Math. Analysis, Vol.5, No.7, (2011) 333-346.

Authors' Profile:

Dr. R. Gowri was born in Kumbakonam, Thanjavur, Tamil Nadu, India in 1978. She received her B.Sc., M.Sc., and M.Phil degree in Mathematics from Bharathidasan University, Tiruchirappalli, India. She worked as a lecturer in Idhaya College for Women, Kumbakonam in the period of 2002-2003. In 2003, she joined as a lecturer in the Srinivasa Ramanujan Research Centre, SASTRA University and later got promoted as a Assistant Professor. She did her research work in SASTRA University and received her Ph.D in

2009. Then she joined as an Assistant Professor in Department of Mathematics, Government College for Women(A), Kumbakonam, Thanjavur, India in 2011. Her areas of Interest are Topology and Graph Theory. She published more than 47 research papers in various International/National Journals. Currently Eight Research Scholars are doing Ph.D under her guidance out of three them have submitted their Ph.D Thesis.

Mrs. S. Vembu was born in Thanjavur, Tamil Nadu, India in 1987. She received her B.sc., M.Sc. and M.Phil. degree in Mathematics from the Bharathidasan University, Trichirappalli in 2007, 2011 and 2012 respectively, B.Ed degree in Mathematics from the Tamilnadu Teacher Education University, Chennai in 2009. She is doing her Ph.D under the guidance of Dr. R. Gowri , Assistant Professor , Department of Mathematics , Government College for Women(A), Kumbakonam. Her main area of research interest is Topology.