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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(G, L(G), NINC) of G is a graph with vertex set V(G)  E(G) and two 
vertices in B(G, L(G), NINC) are adjacent if and only if they correspond to two adjacent vertices of G, 
two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is 
denoted by B1(G). In this paper, Split edge domination numbers of Boolean Function Graphs of some 
standard graphs are obtained. 
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1. Introduction 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 
V(G) and E(G) denote its vertex set and edge set respectively. A subset D of V is called a 
dominating set of G if every vertex not in D is adjacent to some vertex in S. The 

domination number (G) of G is the minimum cardinality taken over all dominating sets 
of G. The open neighborhood N(v) of v in V is the set of vertices adjacent to v, and the set 

N[v] = N(v){v} is the closed neighborhood of  v. An edge e of a graph is said to be 
incident with the vertex v if v is an end vertex of e. In this case, we also say that v is 
incident with e.  

 A subset F  E is called an edge dominating set of G if every edge not in F is adjacent 

to some edge in F. The edge domination number (G) of G is the minimum cardinality 

taken over all edge dominating sets of G. An edge dominating set  F  E of a connected 
graph G is a split edge dominating set, if the induced subgraph < E(G) – F > is 

disconnected. The split edge domination number s(G) of G is the minimum cardinality 
of a split edge dominating set. The maximum order of a partition of E into edge 

dominating sets of G is called the edge domatic number of G and is denoted by d(G). The 
concept of edge domination was introduced by Mitchell and Hedetniemi [8].  Jayaram [6] 
studied line (edge) dominating sets and obtained bounds for the line (edge) domination 
number and obtained Nordhaus-Gaddum results for the line domination number. 
Arumugam and Velammal [1] have discussed edge domination number and edge domatic 
number. The complementary edge domination in graphs is studied by Kulli and Soner [7]. 
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For graph theoretic notations and terminology, we follow Harary [2]. Janakiraman et al., 

introduced the concept of Boolean function graphs [3 - 5]. For a real x, x denotes the 
greatest integer less than or equal to x. 
 

Theorem 1.1: [6]. For any (p, q) graph G,    p/2 
 

Theorem 1.2: [6]. For any (p, q) graph G,   q - 1 + q0, where 1 is the edge 
independence number and q0 is the number of isolated edges in G. 
 

Theorem 1.3: [6].For any (p, q) graph G,   q – , where   denotes the maximum 
degree of an edge in G. 
 
Observation. [3]. 
1.4. G and L(G) are induced subgraphs of B1(G). 

1.5. Number of vertices in B1(G) is p + q and if di = degG(vi), viV(G), then the  number 

of edges in B1(G)  is  q(p - 2) + ½1 i  p di
2. 

1.6. The degree of a vertex of G in B1(G) is q and the degree of a vertex of L(G) e in 

B1(G) is degL(G)(e) + p - 2. Also if d*(e) is the degree of a vertex e of L(G) in B1(G), then                 

0  d*(e)  p + q - 3. The lower bound is attained, if G  K2 and the upper bound is 

attained, if G  K1,n, for n  2.  
 
Theorem 1.7:  [3] B1(G) is  disconnected  if  and  only if G  is  one of  the following 

graphs: nK1, K2, 2K2 and K2nK1, for n  1. 
In this paper, Split edge domination number of Boolean Function Graph B(G, L(G), 

NINC) of some standard graphs and its bounds are obtained. 
 

2. Main Results 
 In the following edge domination number of B1(Pn),  B1(Cn),  B1(K1,n) are found. 
Theorem 2.1:   

 For the path Pn on n (n  6) vertices, s(B1(Pn))   2(2n -7) 
 Proof:   Let v1, v2, ... , vn be the vertices and e12, e23, …, en-1,n be the edges of Pn, where         

ei, i + 1 = (vi, vi + 1) i = 1, 2, …, n-1. Then v1, v2, ..., vn e12, e23, …, en-1,n V(B1(Pn)). 
 B1(Pn) has 2n - 1vertices and n2 - n - 1 edges. 
Let F1= {(v1, en-1,n), (v1, e23), (v3, e12), (vn-2, vn-1), (e23, e34)} 
F2 = ⋃ ሼሺv୧,	eଵଶ

୬ିଶ
୧ୀସ ሻ	ሺv୧,	eଶଷ	 )},  

F3 = 	⋃ ሼሺv	୬ିଵ,			e୧,୧ାଵ
୬ିଷ
୧ୀଷ ሻሽ  and F4 = ⋃ ሼሺv	୬,			e୧,୧ାଵ

୬ିଶ
୧ୀଷ ሻሽ 
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and let D = F1  F2   F3   F4  E(B1(Pn)).│D│= 5 + 2(n - 5) + n - 5 + n - 4 =      

2(2n - 7). D is an edge dominating set of B1(G) and V((B1(Pn)) – D> is disconnected 
with two components, one of the components being K4 induced by the edges  (vn-1, e12), (vn, 

e12),         (vn-1, e23), (vn, e23). Therefore D is a split edge dominating set of B1(Pn) and hence             

s(B1(Pn)) │D│= 2(2n - 7). 
 

Remark 2.1: s(B1(P3))  = 2 

 Let v1, v2, v3, be the vertices and e12, e23, be the edges of P3. Then v1, v2, v3, e12, e23 
V(B1(P3)). D = {(v1, e23), (v3, e12)} is a minimum split edge dominating set of B1(P3). 

Therefore, s(B1(P3))  =  4. 
 

Remark 2.2: s(B1(P4)) = 4 
 Let v1, v2, v3, v4  be the vertices and e12, e23, e34  be the edges of P4. Then v1, v2, v3, v4, 

e12, e23, e34  V(B1(P4)).  D = {( v2, v3), (v4, e23), (v1,e34), (e12, e23)}is a minimum split edge 

dominating set of B1(P4). Therefore, s(B1(P4)) =  4.  
 

Remark 2.3: s(B1(P5)) = 6 
 Let v1, v2, v3,  v4 , v5  be the vertices and where ei , i + 1 = (vi, vi + 1)  i = 1, 2,3,4,5 be the 

edges of P5. Then v1, v2, v3, v4, v5, e12, e23, e34, e45  V(B1(P5)). The set D = {( v3, v4), (v1, e23), 
(v1,e45), (v3, e12), (v5, e34), (e23, e34)} is a minimum split edge dominating set of B1(P5). 

Therefore, s(B1(P5)) = 6. 
 
Theorem 2.2: 

  For the cycle Cn (n  6) on n vertices, s(B1(Cn))  2(2n -6) = 4(n-3). 
Proof: Let v1, v2, ... , vn be the vertices and e12, e23, …, en-1,n be the edges of Cn, where ei, i + 1 = 

(vi, vi + 1) i = 1, 2, …, n - 1 and en1 = (vn ,v1). Then v1, v2, ... , vn e12, e23, …, en-1,n, en1 
V(B1(Cn)). B1(Cn) has 2n vertices and n2 edges. 
Let F1 = {(v1, en-1,n),(v1, e23),(v3, e12), (vn-2, vn-1), (e23, e34),(vn-1, en1),(e12, en1)} 
F2 =		⋃ ሼሺv୧,eଵଶ

୬ିଶ
୧ୀସ ሻ	ሺv୧,	eଶଷ	)}, 

F3 =		⋃ ሼሺv	୬ିଵ,			e୧,୧ାଵ
୬ିଷ
୧ୀଷ ሻሽ and F4 =  ⋃ ሼሺv	୬,			e୧,୧ାଵ

୬ିଶ
୧ୀଷ ሻሽ 

	and let D = F1  F2   F3   F4  E(B1(Cn).│D│= 7 + 2(n - 5) + n – 5 + n - 4 = 4n - 

12 =   4(n - 3).  D is an edge dominating set of B1(Cn) and  V(B1(Cn)) – D > is 
disconnected with two components, one of the components being K4. Therefore D is a 

split edge dominating set of B1(Cn) and hence s(B1(Cn)) │D│= 4(n - 3). 
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Remark 2.4:  s(B1(C3))  =  4 
 Let v1, v2, v3 be the vertices and e12, e13, e23 be the edges of C3. Then v1, v2, v3, e12, e13, 

e23 V(B1(C3)).  D = {(v2, v3 ),(v1, e23), (v2, e13), (e12, e23)} is a minimum split edge 

dominating set of B1(C3).Therefore,s(B1(C3)  =  4. 
 

Remark 2.5:   s(B1(C4))  = 6 
 Let v1, v2, v3, v4 be the vertices and e12, e14, e23, e34 be the edges of C4. Then v1, v2, v3, 

v4, e12, e14, e23, e34  V(B1(C4)). D = {(v1, v4), (v2, v3), (v3, e14), (v4, e23), (e12, e14), (e23, e34)}is a 

minimum split edge dominating set of B1(C4). Therefore, s(B1(C4)) =  6. 
 

Remark 2.6:   s(B1(C5))  =  8 
 Let v1, v2, v3, v4 , v5  be the vertices and e12,  e23,  e34,  e45 , e15  be the edges of C5. Then 

v1, v2, v3, v4, v5, e12, e23, e34, e45, e15  V(B1(P5)).  The set D = {(v1, e23), (v2, v3), (v4, v5), (v2, e34), 
(v4, e15), (v5, e12), (e12, e23), (e34, e45)}   is a minimum split edge dominating set of B1(C5). 

Therefore, s(B1(C5)) = 8. 
 
Theorem 2.3:   

 For the star K1,n on (n + 1) vertices, s(B1(K1,n))  n (n - 1) ,    n  2. 
Proof: Let v1, v2, ... , vn+1 be the vertices of K1,n with v1 as the central vertex, where               
ei = (v1,vj ),  i = 2, 3, …, n + 1. B1(K1,n) has (2n+1) vertices and n (3n -1) / 2 edges. Then     

v1, v2, ... , vn e1, e2, …, en V(B1(K1,n)).  

E( B1(K1,n) = E( K1,n )  E(Kn)  {(vi, ej)  1   I  n, 1   j  n, i  j}. 

Let D = {(vi, ej)  1 i  n, 1 j  n,  i  j} and │D│ = n(n - 1). Then D is an edge 
dominating set of B1(K1,n). V(B1(K1,n)) – D is disconnected with the components K1,n and 

Kn. Therefore, D is a split edge dominating set of B1( K1,n). Hence, s(B1(K1,n)) │D│ = 
n (n - 1) 
 
Theorem 2.4:  

 For any connected graph G, s(B1(G))  (p + q) – (1(G) + 1
(G) +  1), where 

1(G) and 1
(G) is the independence numbers of G and L(G) respectively. 

Proof: Let D and D be edge independent sets of G and L(G) respectively, such that 

│D│= 1(G) and │D│= 1
(G). Let e = (u, v) D and let wV(G) be adjacent to 

v. Then (w, e)  E(B1(G)). Let D = {(w, e)} and D = (B1(G)) – (D D  D ). 
Then D is an edge dominating set of B1(G) and <D> is disconnected, one of the 
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components being K2. Therefore, D is a split edge dominating set of B1(G) and hence 

s(B1(G))  │D│=(p + q) – (1(G) + 1
(G) +1).  

 Equality holds G  P3.  1(P3) = 1, 1
( P3) = 1 implies that   

s(B1(P3)) = (p + q) - 3 = 3 + 2 - 3 = 2. 
 
Theorem 2.5: 

 For any connected graph G,   s(B1(G))  q. 

Proof: Let v1, v2, ... , vp be the vertices of G and let eiE(G) be not incident with vi, i = 1, 

2, …, p. Let D = {(vi, ei), i = 1,2,… p}. Then D = V(B1(G)) – D is an edge dominating set 

of B1(G) and <D>  pK2. Therefore, D is a split edge dominating set of B1(G) and               

s(B1(G)) │D│= p + q -│D│= p + q – p = q.   

 Equality holds if G  K1,2,  P4. 
 
Theorem 2.6:  

 Let G be a connected (p, q) graph. Then s(B1(G))  2( q - (G) - 1) + p 

Proof: Let e  V(L(G)) be a vertex of maximum degree in L(G). Then e  E(G).  

Let e = (u, v)  E(G) and let degG(u) = m and degG(v) = n. Then deg L(G) e = m+ n – 2.         

Let D and D be the sets of edges not incident with u and v respectively. Then │D│ = 

q – m and │D│ = q - n. Let D be the set of edges of G adjacent to e. Therefore 

│D│ = degL(G)e. Let S be the set of vertices in G adjacent to none of u and v.  

Let S = {(w, e)/wS }. │S│= p – (degGu + degGv)  p – 2(G). If D = D D 

D S, then D  E(B1(G)) is an edge dominating set of B1(G) and e is an isolated edge 
in < V(B1(G)) – D > and hence D is a split edge dominating set of B1(G) and  

s(B1(G)) │D│ q – m + q – n +deg L(G) e + p - 2(G)   

       = 2q – (deg L(G) e + 2 ) + deg L(G) e + p - 2(G) = 2q + p - 2(G) -2. 

Equality holds if G  Cn. 
 

3. Conclusion 
 
         In this paper, split edge domination numbers of Boolean Function Graph B(G, L(G), 
NINC ) of path, cycle, stars and bounds are obtained. 
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