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Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) — D is adjacent to
some vertex in D. The domination number Y (G) of G is the minimum cardinality of a dominating

set. A dominating ser D is called a complementary tree nil dominating set, if the induced subgraph
< V(G) = D > is a tree and also the set V(G) — D is not a dominating set. The minimum cardinality of
a complementary tree nil dominating set is called the complementary tree nil domination number of G

and is denoted byY .. (Q). In this paper, complementary tree domination numbers of Cartesian
product of some standard graphs are found.
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1. Introduction

Graphs discussed in this paper are finite, undirected and simple connected
graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A
graph G with p vertices and q edges is denoted by G(p, q). The concept of domination in
graphs was introduced by Ore[5]. A set D & V(G) is said to be a dominating set of G, if
every vertex in V(G) - Dis adjacent to some vertex in D. The cardinality of a minimum
dominating set in G is called the domination number of G and is denoted by y (G).
Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree
dominating set. A dominating set D C V(G) is said to be a complementary tree
dominating set (ctd-set), if the induced subgraph < V(G) - D >is a tree. The minimum
cardinality of a ctd-set is called the complementary tree domination number of G and is
denoted by Y, (G). Any undefined terms in this paper may be found in Harary[2].
The cartesian product of two graphs G, and G, is the graph, denoted by G, x G, with V(G,
* G,) =V (G,) AV (G,) (where x denotes the cartesian product of sets) and two vertices u

= (u;, uy) and v = (v, v,) in V (G, % G,) are adjacent in G, * G, whenever [u, = v, and (u,,
v,) € E(G,)] or [u, = v, and (u, v;) € E(G,)].The corona GIGGzof two graphs G,and
G,are defined as the graph G obtained by taking one copy of G,of order p,and p,copies of
G,and then joining the i"vertex of G,to every vertex in the i"copy of G,. The Corona
G,{Z)G,has p,(1 + p,) vertices and q,+ p,q,+ p,p.edges. The concept of complementary
tree nil dominating set is introduced in [4]. A dominating set D & V(G) is said to be a
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complementary tree nil dominating set (ctnd-set), if the induced subgraph <V(G)—D> is a
tree and the set V(G) - D is not a dominating set. The minimum cardinality of a ctnd-set

is called the complementary tree nil domination number of G and is denoted by v ,(Q)

In this paper, we find an upper bound for complementary tree nil domination

number of Cartesian product of P, * P and this number found for Kn x K, K, x P,
K,xC,and C, x P,

2. Main Results

Theorem 2.1:
m(n—2)+ 3,ifm=n

= = = =
IfG =K, xK,(mn= 3 andm = n), then Yctnq(G) {m(n —2)+ 2ifm<n

Proof:

Let G=K,_ xK,

Let V(G) =UM,{Vi1, Viz, .o, Vin} such that < {Vj1,Vip, ..., Vin} >= K&,
i=12, .., mand < {Vlj’sz: ...,Vm]-} >= K j=1,2, ..., n, where K1 is the i* copy
of K, and ij is the j" copy of K,, in K, x K,.. |[V(G)| = mn.

Case 1: m = n.

Let D' = (U{‘;gl{vii,vi,iﬂ}) U {Vm’m} and D =V(G) -D'. Then V(G) - D =
D’and |D’| = 2(m - 2) +1= 2m - 3. The verticesVjj, Vij,i+1in V(G) - D are adjacent to
vyinD, i = 2,3, ..., m-1 and the vertex v,,, is adjacent to v,;; in D. Therefore D is a
dominating set of G. Also <V (G) -D >=P,,., .1 = P, _5 Therefore D is a ctd-set of G
and since N(v,;) € D, D is a ctnd-set of G. ThereforeY tnq(G) <|D| =|[V(G)| - |D’| =
mn - (2m - 3) = m(n - 2) + 3.

It is to be noted that, any tree in G is a path and 0(G)=m. Let D' be a Yctnd-
set of G. Then there exists a vertex u € D’ such that N(u) € D’. The longest path that
can be obtained from the subgraph of G induced by the vertices of V(G) - N(u) is
P, _,Therefore <V (G) -D'>Zp, .

Therefore D’ contains atleast mn - 2m - 3) = m(n - 2) + 3 vertices.
ThereforeYcinq(G) = |D'| = m(n - 2) + 3.

Hence Y¢tng(G) = m(n - 2) + 3.

Case 2: m < n.

Let D' = Uinéz{viirvi,Hl} and D = V(G) - D'. Then V(G) - D = D'and
|D'| =2(m - 1) . The vertices Vjj, Vi,i+1(i =2,3, ..., m) are adjacent to v;;, (1=2, 3, ...,
m) in D. Therefore D is a dominating set of G. Also <V (G) - D >=P,, ., =P, _,
Therefore D is a ctd-set of G and since N(v,,) = D, D is a ctnd-set of G.

Therefore Ycing(G) = |V(G)| - |ID'| = mn - 2m - 2) = m(n - 2) + 2.
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As in case 1, any tree in G is a path and 0(G) = m. Let D’ be Yctnd-set of G.
Then there exists a vertex u € D’ such that N(u) € D’. The longest path that can be
obtained from the subgraph of G induced by the vertices of V(G) - N(u) is P,, _,
Therefore <V (G) -D'>2 P, ,Therefore D’ contains atleast mn - (2m - 2) =
m(n - 2) + 2 vertices. ThereforeY tnq(G) = ID'| Zm(n - 2) + 2.
Thereforey inq(G) = m(n - 2) + 2.
m(n—2)+ 3,ifm=n

Hence Y¢tnd(G) = {m(n —2)+ 2,ifm<n

Example 2.1:
For the graph G given in Figure l.a and Figure 1.b, the set of vertices within the@)
is a minimum ctnd-set of K, x Kjand Y nq(K, x K,) = 11 and Yeng (K, x Ks) = 14

GEKaXK4 G§K4XK5

Figure 1.a Figure 1.b

Theorem 2.2:
IfG 2K, xP,(4<m <n), then Y¢tnq(G) =n (m - 2) + 2.
Proof:
Let G2 K, x P,
Let V(G) = UM {Vi1,Vig, ., Vin} such that < {Vi1, Vi, ..., Vin} >= Ki,
i=1,2,...,mand < {Vlj,sz, ...,ij} >= Prlimj =1,2, ..., n, where KL is the i copy

of K, and K]m is the j ™ copy of P,,in K, x P,..

n-1

[Uita{vai } U [UE{V3,21,V1,21+1,}]' ifnis odd

n
[Uiza{v2i J1 U [Uiz=1{V1,21—1,V3,21 },ifnis even
Then |D’| = 2(n - 1). If D = V(G) - D, then D is a dominating set of G and
N(v,,) € D. Also <V(G) - D > = < D'>= P,_ %K, Therefore D is a ctnd-set of G.
Yctnd(G) =|D| =mn - 2(n -1) = mn - 2n + 2 = n(m - 2)+2.

Let D' =

Hence Vcind(G) Sn(m - 2)+2.
Let D’ be a Ycng-set of G. Since D’ is a ctd-set of G, D’ contains atleast (m - 2)

vertices in each of (n - 1)K,’s and since, V(G) - D' is not a dominating set, D contains
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all the vertices of the remaining K, Hence D’ contains atleast (m - 2)(n -1) + m = mn -
m -2n +2 + m = n(m - 2) + 2 vertices. Therefore chd(G) = |D’| =n(m - 2) + 3.

Hence Y¢ind(Kn x P,) =n (m - 2) + 2.
Example 2.2:

For the graph G given in Figure 2, the set of vertices within the @ is a minimum

ctnd-set of K, x K, and Y¢nd(K, x Ky) = 20.

G K4X Pg

00000

Figure 2
Remark 2.1:

In view of Theorem 2.2,
Yctnd(Knx C,) =n(m - 2) + 3.
Theorem 2.3:

IfG Z P, xP, (m,n = 2), then Y¢ing(G) < Verq(G) + 2.
Proof:

Let G P, x P,. Then §(G) = 2.

Let D be a Y¢tq - set of G. Let u & D be a vertex of minimum degree in G and
deg(u) = O0(G). Then D' = DUN(u) is a ctnd —set of G, since N(u)S D’. Therefore
Yctnd(G) SlDll = |D| + [N(u)| = YCtd(G)+6(G) =Ycta(G) + 2.

Hence Yctnd(G) < Yctq(G)+2.

Equality holds, if G £ P, x P, n = 3.

Theorem 2.4:
If G 2 C,x P, then Y¢inq(G) = n + 2, n= 3.
Proof:
LetG=C,;x P,
Let V(G) = UL 1 {V1i, Vi, V3i} such that < {Viy, Vig, ..., Vin} >= Pl i=1,2,3
and < {Vljr Vi, V3j} >= (), j=1,2, ..., n,where Pl is the i copy of P, and C% is the j ™
copy of C;in C; x P,..



Complementary tree nil domination number of Cartesian Product of Graphs

n

{v11,v21} U [UL {v22i V32i-13}], if nis even
Let D = n—1

{v11,V21,v31} U [U;2,{v22i V32i+1}], ifnis odd.
Then D is a dominating set of G and N(v,;) &= D. Also <V (G) - D >=P,° K,
Therefore D is a ctnd-set of G.

2(§)+ 2=n+ 2, ifniseven
Yctnd(G) = D] = n—1
2(

T)+3 =n+ 2,ifnis odd.

Let D’ be a Yctng-set of G. Then D' contains atleast one vertex from each cycle.
Since C, x P, contains n copies of C; D' contains atleast n vertices. Also, since V(G) - D' is
not a dominating set, the remaining vertices of first cycle C; in C, x P, must be included
inD'".
Therefore D'contains atleast n + 2 vertices andY ¢tnq(G) = |D'| =n + 2.

Hence Y¢tnd(Cs; xP,) =n + 2, n= 3.

Theorem 2.5:

3n+4
IfG =C,x P, then Yctnq(G) = ,n= 2.

Proof:
Let G Z C, x P, and V(G) = UL;{Vii, V2i,V3i, V4i} such that

< {Vi1, Vig, o, Vin} >= Pli =123,4 and < {vqj, vy, V3, Vgi} >= C), j=12, .. n,
where Pl is the i™ copy of P, and CL is the j ™ copy of C,in C, x P,and |V(G)| = 4n.

Case 1: n is even.
n-2

Let D' = { v31,v3p)U [U;2,{V12i41, Va2is1, V3,2i U [Uit2{v2i }] and
5n—-4

n-2
D = V(G) -D’. Then |D'| = 2 + 3(7) +n-1= . Then D is a dominating set of

G and N(v,,) € D. Also <V (G) - D > = <D’> is a tree obtained from a path P, =
< {Vz'i,i = 2,3, ...,n} >,(n= 2) by attaching P, at each of the vertices
V22,V23,V25, -, Van—1 and attaching a pendant edge at each of the vertices

V24, V26 -+, Vo n- Therefore D is a ctnd-set of G.
5n—4) 3n+4
2 2

Yetnd(G) = D] = [V(G) - D’| = 4n - (

3n+4

Hence Y¢ingd(G) < 7

Let D' be a Ycg-set of G. Since <V (G) - D’> is not a dominating set, D’

contains a vertex u such that N(u) = D. u is taken to be a vertex of minimum degree

0(G) = 3 in G. The blocks A, B, C are constructed as given below.
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AB? AB?
Figure 3

n-2 n-2

G is obtained by concatenating the blocks A, B 2 andC. Thatis, G A Bz C.
The vertices with the symbol @ in each of the blocks represent the vertices that are to be
included in D’.

Therefore D’ contains 3 vertices from block A and atleast 3 vertices from each

n-2 n-2
block B of B2 and 2 vertices from block C.ThereforeYinq(G) = |D'| =3 + 3 (T) +

3n+4
2
3n+4
and hence Yctnq(G) = >
Case 2: n is odd.
n-2
Let D' = {v34} U [Uizzl{V1,2i+1, Va2i+1, V3,2i J1 U [Uisa{Vai 1

n—1 5n-3

Then|D'|:1+3(T)+n—1=

dominating set of G and N(v;;) £ D. Also <V (G) -D > =< D’> is a tree obtained from a

and D = V(G) - D’. Then D is a

path P, = < {Vz‘i.i =23, ...,n} >, (n = 2) by attaching P, at each of the vertices

V22,V23,V25 -, Vo and attaching a pendant edge at each of the vertices

V24, V326 -+» V2 n—1- Therefore D is a ctnd-set of G.

5n-3 3n+3
) T2

Yctnd(G) <ID| = [V(G) - D| = 4n - (
3n+3 _ l3n+4J

H G <
ence Yetnd(G) = 5 >

Let D' be a Y¢gnd-set of G. Since <V(G) - D’> is not a dominating set, D’

contains a vertex u such that N(u) = D. u is taken to be a vertex of minimum degree

0 (G) = 3 in G. The blocks A, B are constructed as in case 1.
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n-1
G is obtained by concatenating the blocks A and B 2 as in case 1. That is,
n-1
G =AB 2 . The vertices with the symbol @) in each of the blocks represent the vertices

that are to be included in D’.

Therefore D’ contains 3 vertices from block A and atleast 3 vertices from each
n-—-1

block Bof Bz .

3n+3 an+4J

n—-1
Therefore Ycing(G) = |D'| =3 + 3 ( > ) > >

3n+4
Hence Y¢tng(Cyx Py) = l J, n= 2.

Theorem 2.6:
If G 2 C,x P, then Yctpd(G) = 2n + 1, n= 3.
Proof:
Let G = C, x P, and V(G) = U?zl{vli, Voi) V3i, V4i,V51} such that
< A{Vi1, Vi, e, Vin} >= Pl i=1,2,3,4,5and < {vlj,vzj,v3j,v4j,vsj} > = Cj5,
j = 1,2, ..., n, where Pri1 is the i® copy of P, and CJS is the jth copy of C;in C; x P,.

|[V(G)| = 5n.

Case 1: n is odd
n+1 n-1

Let D = { Vp1,VipV3p} U [Ui=21{V1,21—1, Vs 2i—1}] U [Uiiz{V3,2i,V4,21,}]-
n+1 n-3
Then|D|=3+ZT +ZT =2n + 1.

Consider the blocks

AV
AN
AV
AN

AB2C
Figure 4
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n-3
Then G 2 AB™2 C. Let D be the set of vertices with the symbol @ in each of the
n-3
blocks A, B2 and C. D contains 5 vertices from block A, and 4 vertices from each block
n-3
B of B 2 and 2 vertices from block C. Then D is a dominating set of G and the vertex v,,

is such that N(v;;) = D and <V(G) - D>2 T, where T is a tree constructed as below.

Let H be the graph obtained by subdividing each of the pendant edges
ofP;_,exactly once and T be the tree obtained from H by attaching a pendant edge at one
pendant vertex say v of P, and then joining a vertex of degree 2 of P, by an edge to a
pendant vertex at a distance 2 from v.

Therefore D is a ctnd-set of G.

Yetnd(G) < |D'| =2n +1.

Let D' be a Y ctnd-set of G. Since ¥(C;) = 2, D’ contains 2 vertices from each of
n cycles and D’contains one more vertex from a cycle C; and hence D’contains atleast
2n+1 vertices. Therefore Y¢inq(G) = |D’| = 2n +1.

Hence Yctnq(G) = 2n + 1, n= 2

Case 2: n is even
n

2
Let D ={ V13 V12,V21, V32, Vs1,} U [U{_,{V1,2i-1, V32i Va2i, V52i-1}]- Then

n-—2
ID|=5+4 > =2n +1.

n-2 n-2
G is obtained by concatenating the blocks A, B 2 . Thatis G = AB 2 . Let D
n-2
be the set of vertices with the symbol @) in each of the blocks A and B 2 . D contains 5
n-2

vertices from block A, and 4 vertices from each block B of B2 . Then D is a dominating
set of G and the vertex v, is such that N(v,;) & D and <V(G) - D>= T, where T is a tree
constructed as in case 1.

Therefore D is a ctnd-set of G and Y¢tpq(G) < |D| = 2n +1.

Let D' be a Yctng-set of G. Since ¥(Cs) = 2, D’ contains 2 vertices from each of
n cycles and since V(G) - D is not a dominating set of G, D’ contains one more vertex
from a cycle C; and hence D’ contains atleast 2n+1 vertices. Therefore Ycnq(G) = |D'| =
2n +1.

Hence Y¢ing(G) = 2n + 1, n= 2.

Theorem 2.7:
If G = C; x Py, then Y¢nd(G) = 5.
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Proof:

Let G 2 C, x P, and V(G) = U?zl{vli, Voi) V3i, V4i'v51} such that
< {viy, vig} >= Pl i =1, 2, 3, 4, 5 and < {vy, vy, V3, Vaj, Vs > ci=12
where P} is the i copy of P, and st is the j™ copy of C,in C; x P,.

Let D = {V11' V21, V31, V41'V12}. Then N(V11) D and D is a dominating set
of G Also V(G) - D = {V31, V32,V33, V44’V52}and <V(G) - D> is a graph obtained from
P, by attaching 2 pendant edges at a pendant vertex of P, Therefore D is a ctnd-set of G.

Yctnd(G) = D[ =5.

Let D’ be a Ycgng-set of G. D' contains 4 vertices from C3 and atleast one vertex
from C%.

Therefore D' contains atleast 5 vertices.Yctnq(G) = |[D'| = 5.

Hence Y¢tnd(G) = 5.

Theorem 2.8:

5n+1

If G 2 Cyx P, then Yctnd (G) =[ > ] n=3
Proof:

Let G 2 G4 x P, and V(G) = Uj=1{V1i, V2i, Vi, Vai, Vsi, Vei} such that
< {Vi1, Vig, -, Vin} >= Pl i =1,23,4,56 and < {vy, V3, Vsj, Vaj, Vs, Ve } > c
j=1,2, ..., n, where Pl is the i® copy of P, and Cj6 is the j ™ copy of C4in C4 x P, and |V(G)|
= 6n.
Case 1: n is odd.

n-1

LetD'={V31, V41, V51, V32, V621U [U; 2, {V1,2i41, Vs 2i+1 Ve 2it1 U [Uit2{va; U
n-1

[Ug{vm Vai}]-

n-1 n-3 7n—-1
Then |D'| =5 + S(T) +n-1+ Z(T) = and D = V(G) -D’. Then

D is a dominating set of G and N(v;;)) &£ D. Also <V (G) -D > =< D’> is a tree obtained

from a path P, = < {Vz,i: i=23, ...,n} >, (n= 2) by attaching P,at each of the
vertices V33,V35,Vy7 ...,Vay and attaching P, at each of the vertices
V24, V326 -+» V2 n—1- Therefore D is a ctnd-set of G.

7n—1 5n+1
2 ) g

Yetnd(@ = D] = [V(G) - D'| = 6n - (
S5n+1

Hence Y¢ing(G) <

Let D' be a Y¢ipg-set of G. Since <V (G) - D’> is not a dominating set.Therefore

D’ contains a vertex of u such that N(u) © D. u is taken to be a vertex of minimum

degree 0 (G) = 3 in G. The blocks A, B, C are constructed as given below.
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C B2
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7

B
X

AB’C

Figure 5
n-3 n-3
G is obtained by concatenating the blocks A, B'2 and C. That is, G = A B 2
C. The vertices with the symbol (@) in each of the blocks represent the vertices that are to

be included in D’. Therefore D’ contains 6 vertices from block A and atleast 5 vertices

n-3
from each block B of B2 and 2 vertices from block C. Therefore Y¢tng(G) = [D'| = 6 +
n-3 5n+1 5n+1
5 > )t 2= > and hence Ycnq(G) = >
Case 2: n is even.
n-2

/ 2
Let D'={V31, V41 V51, V32, V62!V [U; 2, {V1,2i41, V5 2i+1) Ve 2i+1 11U
n

(UM, {va; YU[UZ, (V3 51 Va2i)l.

) n-2 n-2\ 7n-2 ,
Then|D|=5+3T +n—1+27 = and D = V(G) - D'. Then D is a

dominating set of G and N(v,;) £ D. Also <V (G) -D > =< D’> is a tree obtained from a

path P, = < {Vz'i,i = 2,3, ...,n} >, (n= 2) by attaching P, at each of the vertices
V23,V25,V27 -, Van—1 and  attaching P; at each of the vertices
V24, V26 -+, V2 n-Therefore D is a ctnd-set of G.

7n—2 5n+2
thnd(G)S|D|=|V(G)-D'|=6n-( )= 2
5n+2
Hence Y¢ind(G) < >

Let D’ be a y¢ng-set of G. Since <V(G) - D'> is not a dominating set,D’

contains a vertex of u such that N(u) & D. u is taken to be a vertex of minimum degree

o) (G) = 3 in G. The blocks A, B are constructed as in case 1.
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n-2 n-2

G is obtained by concatenating the blocks A and B 2 . That is, G = AB 2 . The
vertices with the symbol @ in each of the blocks represent the vertices that are to be
included in D’.

Therefore D’ contains 6 vertices from block A and atleast 5 vertices from each

n-2 , n-2 5n+2
block B of Bz . Therefore Yctnd(G) = ID'| = 6 + 5\—|= > and hence

2
5n+2 [5n+1]

thnd(G)= 2 = 2

Hence Y¢tnd(Cex P,) :[5n2+1'|’ n= 2.
Theorem 2.9:
If G = C4 x P, then Vg (G) = 5.
Proof:
G & G x P, and V(G) = U?zl{vli, V2ir V3is Vai, Vsis V6i} such that

< {Vi1, Vig, v, Vin} >= Pli=1, 2, 3, 4,5,6 and < {Vlj,sz,V3j,V4j,V5j,V6j} >=C,
j=1, 2, where PIi1 is the i copy of P, and Cj6 is the j ™ copy of C¢in C x P,

Let D = {V11: V21, V61, V12, V42‘}. Then N(v{1) =D and D is a dominating set
of G Also V(G) - D = {V31,V41,V51,V22,V32,V44,V52,V62}and <V(G) - D>2 P,
Therefore D is a ctnd-set of G.Y¢tndq(G) = |D| = 5.

Let D' be a Yceng-set of G. D’ contains 3 vertices from C} and atleast 2 vertices
from C2.

Therefore D' contains atleast 5 vertices. Therefore Y¢tnq(G) = |[D| = 5.

Hence Y¢tnd(G) = 5.

Remark 2.2:
In view of Theorem 2.4,Theorem 2.5, Theorem 2.6, and Theorem 2.8,
L Yetnd(Csx C,) = n+3,n =3.
2 Yeena( Cox G = [ =3,
3. Yetnd(GCsxCy) = 2n +3,n =3.
4. Yctnd(Cex C,) = 3n,n =3.

Remark 2.3:
If G, =K,,and G, =K, then Y¢ng (G, + G,) =m + n.
2. If G, and G, are any two non-complete connected graphs of order m and n
respectively, with minimum degree atleast two, then Y¢ing(G,+ G,) =m +n - 1.

Equality holds, if G;= K, - ,G,= K, - e.
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3. For any two connected graphs G, and G, of order m and n respectively,

thnd(G1 °

G,) = m+n-1. Equality holds, if G, =P, and G,= nK,

4. For any two nontrivial connected graphs G, and G, with the of order m and n

respectively, Yetnd( G, ° G,) = m + n - 2. Equality holds, if G,;=P,and G,=C,
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