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Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) – D is adjacent to 
some vertex in D.  The domination number γ (G) of G is the minimum cardinality of a dominating 
set. A dominating set D is called a complementary tree nil dominating set, if the induced subgraph        
< V(G) – D > is a tree and also the set V(G) – D is not a dominating set. The minimum cardinality of 
a complementary tree nil dominating set is called the complementary tree nil domination number of G 
and is denoted by (G)γctnd . In this paper, complementary tree domination numbers of Cartesian 
product of some standard graphs are found. 
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1. Introduction 
Graphs discussed in this paper are finite, undirected and simple connected 

graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A 
graph G with p vertices and q edges is denoted by G(p, q).  The concept of domination in 
graphs was introduced by Ore[5]. A set D  V(G) is said to be a dominating set of G, if 
every vertex in V(G) – Dis adjacent to some vertex in D. The cardinality of a minimum 
dominating set in G is called the domination number of G and is denoted by  (G). 
Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree 
dominating set. A dominating set D   V(G) is said to be a complementary tree 
dominating set (ctd-set), if the induced subgraph < V(G) - D >is a tree. The minimum 
cardinality of a ctd-set is called the complementary tree domination number of G and is 
denoted by (G)γ ctd . Any undefined terms in this paper may be found in Harary[2]. 
The cartesian product of two graphs G1 and G2 is the graph, denoted by G1 x G2 with V(G1

 G2) =V (G1)  V (G2) (where x denotes the cartesian product of sets) and two vertices u 
= (u1, u2) and v = (v1, v2) in V (G1  G2) are adjacent in G1  G2 whenever [u1 = v1 and (u2, 

v2)  E(G2)] or [u2 = v2 and (u1, v1)  E(G1)].The corona G1⊙G2of two graphs G1and 
G2are defined as the graph G obtained by taking one copy of G1of order p1and p1copies of 
G2and then joining the ithvertex of G1to every vertex in the ithcopy of G2. The Corona           
G1 G2has p1(1 + p2) vertices and q1+ p1q2+ p1p2edges. The concept of complementary 
tree nil dominating set is introduced in [4]. A dominating set D  V(G) is said to be a 
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complementary tree nil dominating set (ctnd-set), if the induced subgraph <V(G) D> is a 
tree and the set V(G) - D is not a dominating set. The minimum cardinality of a ctnd-set 
is called the complementary tree nil domination number of G and is denoted by (G)γctnd

. 
In this paper, we find an upper bound for complementary tree nil domination 

number of Cartesian product of Pm  Pnand this number found for Km x Kn, Km x Pn,           

Km x Cn and Cm x Pn. 

 

2. Main Results 
Theorem 2.1: 

If G  Km x Kn (m,n൒ 3 andm  n), then γୡ୲୬ୢ(G) = ൜
mሺn െ 2ሻ ൅ 	3, if	m ൌ n
mሺn െ 2ሻ ൅ 	2, if	m ൏ n

 

 Proof: 
Let G  Km x Kn . 

Let V(G) =⋃ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ
୫
୧ୀଵ  such that ൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ K୬୧ ,          

i = 1,2, …, m and ൏ ൛vଵ୨, vଶ୨, … , v୫୨ൟ ൐≅ K୫
୨

, j=1,2, …, n, where K୬୧  is the ith copy 

of Kn and K୫
୨  is the jth copy of Km in Km x Kn. |V(G)| = mn. 

Case 1: m = n.  

 Let Dᇱ = ൫⋃ ൛v୧୧, v୧,୧ାଵൟ
୫ିଵ
୧ୀଶ ൯ ∪ ൛v୫,୫ൟ and D =V(G) –Dᇱ. Then V(G) – D = 

Dᇱand |Dᇱ| = 2(m – 2) +1= 2m – 3. The verticesv୧୧, v୧,୧ାଵin V(G) – D are adjacent to 
vi1inD, i = 2,3, …, m-1 and the vertex vmm is adjacent to vm1 in D. Therefore D is a 

dominating set of G. Also <V (G) –D >≅P2(m-2) + 1 = P2m – 3. Therefore D is a ctd-set of G 
and since N(v11)  D, D is a ctnd-set of G. Thereforeγୡ୲୬ୢ(G) |D| =|V(G)| – |Dᇱ| = 
mn – (2m – 3) = m(n – 2) + 3.   

 It is to be noted that, any tree in G is a path and ߜ(G) = m. Let Dᇱ be a γୡ୲୬ୢ-
set of G. Then there exists a vertex u ∈ Dᇱ such that N(u) ⊆ Dᇱ. The longest path that 
can be obtained from the subgraph of G induced by the vertices of V(G) – N(u) is       
P2m – 3.Therefore <V (G) –Dᇱ>  P2m – 3. 

Therefore Dᇱ contains atleast mn – (2m – 3) = m(n – 2) + 3 vertices. 
Thereforeγୡ୲୬ୢ(G) = |Dᇱ|  m(n – 2) + 3. 

 Hence γୡ୲୬ୢ(G) = m(n – 2) + 3. 
Case 2: m < n. 

 Let Dᇱ = ⋃ ൛v୧୧, v୧,୧ାଵൟ
୫
୧ୀଶ  and D = V(G) – Dᇱ. Then V(G) – D = Dᇱand         

|Dᇱ| = 2(m – 1) . The vertices v୧୧, v୧,୧ାଵ(i = 2, 3, …, m) are adjacent to vi1, (i = 2, 3, …, 

m) in D. Therefore D is a dominating set of G. Also <V (G) – D >≅P2(m – 2)  = P2m – 2. 

Therefore D is a ctd-set of G and since N(v11)  D, D is a ctnd-set of G.  

Therefore γୡ୲୬ୢ(G)  |V(G)| – |Dᇱ| = mn – (2m – 2) = m(n – 2) + 2.   
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 As in case 1, any tree in G is a path and ߜ(G) = m. Let Dᇱ be γୡ୲୬ୢ-set of G. 
Then there exists a vertex u ∈ Dᇱ such that N(u) ⊆ Dᇱ. The longest path that can be 
obtained from the subgraph of G induced by the vertices of V(G) – N(u) is P2m – 2. 

Therefore <V (G) –Dᇱ>  P2m – 2.Therefore Dᇱ contains atleast mn – (2m – 2) = 

m(n – 2) + 2 vertices. Thereforeγୡ୲୬ୢ(G) = |Dᇱ| m(n – 2) + 2. 
 Thereforeγୡ୲୬ୢ(G) = m(n – 2) + 2. 

Hence γୡ୲୬ୢ(G) = ൜
mሺn െ 2ሻ ൅ 	3, if	m ൌ n
mሺn െ 2ሻ ൅ 	2, if	m ൏ n

 

Example 2.1: 
For the graph G given in Figure 1.a and Figure 1.b, the set of vertices within the                

is a minimum ctnd-set of Km x Knand  γୡ୲୬ୢ(K4 x K4) = 11 and  γୡ୲୬ୢ(K4 x K5) = 14. 

 

 
 
        
    

         
 
 
 
Theorem 2.2: 

  If G  Km x Pn ( 4൑m ൑n), then γୡ୲୬ୢ(G) = n (m – 2) + 2. 
Proof: 

       Let G  Km x Pn . 

Let V(G) = ⋃ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ
୫
୧ୀଵ  such that ൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ K୬୧ ,       

i = 1, 2, …, m and ൏ ൛vଵ୨, vଶ୨, … , v୫୨ൟ ൐≅ P୫
୨

, j = 1, 2, …, n, where K୬୧  is the ith copy 

of Kn and K୫
୨  is the j th copy of Pm in Km x Pn. 

 Let Dᇱ =ቐ
ሾ⋃ ሼvଶ୧	

୬
୧ୀଶ ሽሿ ∪ ሾ⋃ ሼvଷ,ଶ୧,vଵ,ଶ୧ାଵ,

౤షభ
మ
୧ୀଵ ሽሿ, if	n	is	odd

ሾ⋃ ሼvଶ୧	
୬
୧ୀଶ ሽሿ ∪ ሾ⋃ ሼvଵ,ଶ୧ିଵ,vଷ,ଶ୧		

౤
మ
୧ୀଵ ሽሿ, if	n	is	even

 .  

Then |Dᇱ| = 2(n – 1). If D = V(G) - Dᇱ, then D is a dominating set of G and 

N(v11)  D. Also <V(G) – D > = <	Dᇱ>≅ Pn-1 K1. Therefore D is a ctnd-set of G. 

 γୡ୲୬ୢ(G) |D| = mn – 2(n -1) = mn – 2n + 2 = n(m – 2)+2. 

 Hence γୡ୲୬ୢ(G) ൑n(m – 2)+2.  
 Let Dᇱ be a γୡ୲୬ୢ-set of G. Since Dᇱ is a ctd-set of G, Dᇱ contains atleast (m – 2) 

vertices in each of (n – 1)Km’s and since, V(G) – Dᇱ is not a dominating set,	D′ contains 

Figure 1.a Figure 1.b

G   K4 x K4  G   K4 x K5 
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all the vertices of the remaining Km. Hence Dᇱ contains atleast (m – 2)(n -1) + m = mn – 

m -2n +2 + m = n(m – 2) + 2 vertices. Therefore 	γctnd(G) = |Dᇱ| n(m – 2) + 3. 

Hence γୡ୲୬ୢ(Km x Pn) = n (m – 2) + 2.    
   
Example 2.2: 

For the graph G given in Figure 2, the set of vertices within the    is a minimum 
ctnd-set of Km x Kn and  γୡ୲୬ୢ(K4 x K9) = 20. 

 
 

 
 
 
          
   
 
 
Remark 2.1: 
 In view of Theorem 2.2, 

γୡ୲୬ୢ( Km x Cn) = n(m – 2) + 3.        
Theorem 2.3: 
 If G  Pm x Pn (m, n  2), then γୡ୲୬ୢ(G) ൑ γୡ୲ୢ(G) + 2. 
Proof: 

 Let G  Pm x Pn. Then ߜ(G) = 2. 
            Let D be a γୡ୲ୢ - set of G. Let u  D be a vertex of minimum degree in G and 

deg(u) =  ߜ(G). Then Dᇱ = D N(u) is a ctnd –set of G, since N(u)⊆ Dᇱ. Therefore 

γୡ୲୬ୢ(G) ൑|Dᇱ| = |D| + |N(u)| = γୡ୲ୢ(G)+ߜ(G) = γୡ୲ୢ(G) + 2. 
Hence γୡ୲୬ୢ(G) ൑ γୡ୲ୢ(G)+2. 

Equality holds, if G  P2 x Pn, n  3.      
  
Theorem 2.4: 

      If G  C3 x Pn, then γୡ୲୬ୢ(G) = n + 2, n൒ 3. 
Proof: 
       Let G  C3 x Pn. 

Let V(G) = ⋃ ሼvଵ୧, vଶ୧, vଷ୧ሽ
୬
୧ୀଵ  such that ൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ P୬୧ , i =1,2,3 

and ൏ ൛vଵ୨, vଶ୨, vଷ୨ൟ ൐≅ Cଷ
୨ , j=1,2, …, n,where P୬୧  is the ith copy of Pn and Cଷ

୨  is the j th 
copy of C3 in C3 x Pn. 

G   K4x P9 

Figure 2
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Let D =ቐ
ሼvଵଵ,vଶଵሽ 	∪ ሾ⋃ ሼvଶ,ଶ୧,

౤
మ
୧ୀଵ vଷ,ଶ୧ିଵሽሿ,												if	n	is	even

ሼ	vଵଵ,vଶଵ, vଷଵሽ 	∪ ሾ⋃ ሼvଶ,ଶ୧,
౤షభ
మ
୧ୀଵ vଷ,ଶ୧ାଵሽሿ, if	n	is	odd.

 

Then D is a dominating set of G and N(v11)  D. Also <V (G) – D >≅Pn  K1. 

Therefore D is a ctnd-set of G. 

 γୡ୲୬ୢ(G)  |D| = ቐ
2 ቀ

୬

ଶ
ቁ ൅ 	2 ൌ n ൅ 2, if	n	is	even

2 ቀ
୬ିଵ

ଶ
ቁ ൅ 3 ൌ n ൅ 2, if	n	is	odd.

 

 Let 	Dᇱ be a γୡ୲୬ୢ-set of G. Then D  contains atleast one vertex from each cycle. 
Since C3 x Pncontains n copies of C3, D  contains atleast n vertices. Also, since V(G) – D  is 
not a dominating set, the remaining vertices of first cycle C3 in C3 x Pn must be included 
in D .  

Therefore D contains atleast n + 2 vertices andγୡ୲୬ୢ(G) = |D | ൒n + 2.  

Hence γୡ୲୬ୢ(C3 x Pn) = n + 2, n൒ 3.      
   
Theorem 2.5: 

      If G  C4 x Pn, then γୡ୲୬ୢ(G) = ቔ
ଷ୬ାସ

ଶ
ቕ, n൒ 2. 

Proof: 
 Let G  C4 x Pn and V(G) = ⋃ ሼvଵ୧, vଶ୧, vଷ୧, vସ୧ሽ

୬
୧ୀଵ  such that                           

൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ P୬୧ ,i =1,2,3,4 and ൏ ൛vଵ୨, vଶ୨, vଷ୨, vସ୨ൟ ൐≅ Cସ
୨ , j=1,2, …, n, 

where P୬୧  is the ith copy of Pn and Cସ
୨  is the j th copy of C4 in C4 x Pnand |V(G)| = 4n. 

Case 1: n is even. 

Let Dᇱ = { vଷଵ, vଷ୬}∪ ሾ⋃ ሼvଵ,ଶ୧ାଵ,
౤షమ
మ
୧ୀଵ vସ,ଶ୧ାଵ, vଷ,ଶ୧	ሽ]∪ ሾ⋃ ሼvଶ୧	

୬
୧ୀଶ ሽሿ and         

D = V(G) –Dᇱ. Then |Dᇱ| = 2 + 3ቀ
୬ିଶ

ଶ
ቁ + n – 1 = 

ହ୬ିସ

ଶ
.  Then D is a dominating set of 

G and N(v11)  D. Also <V (G) – D > = <	Dᇱ> is a tree obtained from a path Pn-1 =          

൏ ൛vଶ,୧, i ൌ 2,3, … , nൟ ൐,(n൒ 2) by attaching P3  at each of the vertices 
vଶଶ, vଶଷ, vଶହ, … , 	vଶ,୬ିଵ and attaching a pendant edge at each of the vertices 
vଶସ, vଶ଺ … , vଶ,୬. Therefore D is a ctnd-set of G. 

γୡ୲୬ୢ(G)  |D| = |V(G) - Dᇱ| = 4n - ቀ
ହ୬ିସ

ଶ
ቁ = 

ଷ୬ାସ

ଶ
. 

Hence γୡ୲୬ୢ(G) ൑
ଷ୬ାସ

ଶ
. 

Let Dᇱ be a γୡ୲୬ୢ-set of G. Since <V (G) – Dᇱ> is not a dominating set, Dᇱ 
contains a vertex  u such that N(u)  D. u is taken to be a vertex of minimum degree 

 .3 in G. The blocks A, B, C are constructed as given below = (G)ߜ
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G is obtained by concatenating the blocks A, B
౤షమ
మ  andC. That is, G ≅A B

౤షమ
మ  C. 

The vertices with the symbol     in each of the blocks represent the vertices that are to be 
included in Dᇱ. 
 Therefore Dᇱ contains 3 vertices from block A and atleast 3 vertices from each 

block B of B
౤షమ
మ  and 2 vertices from block C.Thereforeγୡ୲୬ୢ(G) = |Dᇱ|  3 + 3 ቀ

୬ିଶ

ଶ
ቁ + 

2 =	
ଷ୬ାସ

ଶ
. 

and hence γୡ୲୬ୢ(G) = 
ଷ୬ାସ

ଶ
. 

Case 2: n is odd. 

Let Dᇱ = { vଷଵ} ∪ ሾ⋃ ሼvଵ,ଶ୧ାଵ,
౤షమ
మ
୧ୀଵ vସ,ଶ୧ାଵ, vଷ,ଶ୧	ሽ] ∪ ሾ⋃ ሼvଶ୧	

୬
୧ୀଶ ሽሿ.  

Then |Dᇱ| = 1 + 3ቀ
୬ିଵ

ଶ
ቁ + n – 1 = 

ହ୬ିଷ

ଶ
  and D = V(G) - Dᇱ.	 Then D is a 

dominating set of G and N(v11)  D. Also <V (G) – D > = <	Dᇱ> is a tree obtained from a 

path Pn-1 = ൏ ൛vଶ,୧.i ൌ 2,3,… , nൟ ൐, (n	൒ 2) by attaching P3 at each of the vertices 
vଶଶ, vଶଷ, vଶହ, … , vଶ,୬ and attaching a pendant edge at each of the vertices 
vଶସ, vଶ଺ … , vଶ,୬ିଵ. Therefore D is a ctnd-set of G. 

 γୡ୲୬ୢ(G) ൑|D| = |V(G) - Dᇱ| = 4n - ቀ
ହ୬ିଷ

ଶ
ቁ = 

ଷ୬ାଷ

ଶ
. 

Hence γୡ୲୬ୢ(G) ൑
ଷ୬ାଷ

ଶ
 = ቔ

ଷ୬ାସ

ଶ
ቕ. 

Let Dᇱ be a γୡ୲୬ୢ-set of G. Since <V(G) – Dᇱ> is not a dominating set, Dᇱ 
contains a vertex  u such that N(u)  D. u is taken to be a vertex of minimum degree 

  .3 in G. The blocks A, B are constructed as in case 1 = (G)ߜ

Figure 3
AB2

C BA

       

B2

AB2 
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G is obtained by concatenating the blocks A and B
౤షభ
మ  as in case 1. That is,                

G ≅AB
౤షభ
మ . The vertices with the symbol    in each of the blocks represent the vertices 

that are to be included in Dᇱ. 
 Therefore Dᇱ contains 3 vertices from block A and atleast 3 vertices from each 

block B of  B
౤షభ
మ . 

 Therefore γୡ୲୬ୢ(G) = |Dᇱ|  3 + 3 ቀ
୬ିଵ

ଶ
ቁ= 

ଷ୬ାଷ

ଶ
 = ቔ

ଷ୬ାସ

ଶ
ቕ. 

 Hence γୡ୲୬ୢ(C4 x Pn) = ቔ
ଷ୬ାସ

ଶ
ቕ, n൒ 2.     

   
Theorem 2.6: 

      If G  C5 x Pn, then γୡ୲୬ୢ(G) = 2n + 1, n൒ 3. 
Proof: 

 Let G  C5 x Pn and V(G) = ⋃ ൛vଵ୧, vଶ୧, vଷ୧, vସ୧,vହ୧ൟ
୬
୧ୀଵ  such that                    

൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ P୬୧ ,     i =1, 2, 3, 4, 5 and ൏ ൛vଵ୨, vଶ୨, vଷ୨, vସ୨, vହ୨ൟ ൐	≅ Cହ
୨ ,    

j = 1,2, …, n, where P୬୧  is the ith copy of Pn and Cହ
୨  is the jth copy of C5 in C5 x Pn.       

|V(G)| = 5n. 
Case 1: n is odd 

Let D = { vଶଵ, vଵଶ,vଷଶ} ∪ ሾ⋃ ሼvଵ,ଶ୧ିଵ,
౤శభ
మ
୧ୀଵ vହ,ଶ୧ିଵሽሿ ∪ ሾ⋃ ሼvଷ,ଶ୧,vସ,ଶ୧,

౤షభ
మ
୧ୀଶ ሽሿ. 

Then |D| = 3 + 2ቀ
୬ାଵ

ଶ
ቁ + 2ቀ

୬ିଷ

ଶ
ቁ = 2n + 1. 

Consider the blocks 
 
  
 
 
 
 
 
 

 
 
 
 
 
 

A  B   C  B

AB2 C  
Figure 4 
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Then G  AB
౤షయ
మ C. Let D be the set of vertices with the symbol     in each of the 

blocks A, B
౤షయ
మ  and C.  D contains 5 vertices from block A, and 4 vertices from each block 

B of B
౤షయ
మ  and 2 vertices from block C. Then D is a dominating set of G and the vertex v11 

is such that N(v11)  D and <V(G) – D>  T, where T is a tree constructed as below. 
  Let H be the graph obtained by subdividing each of the pendant edges 
ofP୬ିଶ

ା exactly once and T be the tree obtained from H by attaching a pendant edge at one 
pendant vertex say v of Pn-2 and then joining a vertex of degree 2 of P4 by an edge to a 
pendant vertex at a distance 2 from v. 
 Therefore D is a ctnd-set of G. 

 γୡ୲୬ୢ(G) ൑ |Dᇱ| = 2n +1.  

 Let Dᇱ be a γୡ୲୬ୢ-set of G. Since (C5) = 2, Dᇱ contains 2 vertices from each of 

n cycles and Dᇱcontains one more vertex from a cycle C5 and hence Dᇱcontains atleast 
2n+1 vertices. Therefore γୡ୲୬ୢ(G) = |Dᇱ|  2n +1. 

Hence γୡ୲୬ୢ(G) = 2n + 1, n൒ 2 
Case 2: n is even 

 Let D ={ vଵଵ,vଵଶ,vଶଵ, vଷଶ, vହଵ,} ∪ ሾ⋃ ሼvଵ,ଶ୧ିଵ,
౤
మ
୧ୀଶ vଷ,ଶ୧,vସ,ଶ୧,	vହ,ଶ୧ିଵሽሿ. Then 

|D| = 5 + 4ቀ
୬ିଶ

ଶ
ቁ = 2n +1. 

G is obtained by concatenating the blocks A, B
౤షమ
మ  . That is G  AB

౤షమ
మ . Let D 

be the set of vertices with the symbol    in each of the blocks A and B
౤షమ
మ .  D contains 5 

vertices from block A, and 4 vertices from each block B of B
౤షమ
మ . Then D is a dominating 

set of G and the vertex v11 is such that N(v11)  D and <V(G) – D>  T, where T is a tree 
constructed as in case 1. 

 Therefore D is a ctnd-set of G and γୡ୲୬ୢ(G) ൑ |D| = 2n +1.  

 Let Dᇱ be a γୡ୲୬ୢ-set of G. Since (C5) = 2, Dᇱ contains 2 vertices from each of 

n cycles and since V(G) – D is not a dominating set of G, Dᇱcontains one more vertex 
from a cycle C5 and hence Dᇱcontains atleast 2n+1 vertices. Therefore γୡ୲୬ୢ(G) = |Dᇱ|  
2n +1. 

Hence γୡ୲୬ୢ(G) = 2n + 1, n൒ 2.       
 
Theorem 2.7: 

      If G  C5 x P2, then γୡ୲୬ୢ(G) = 5. 
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Proof: 

 Let G  C5 x P2 and V(G) = ⋃ ൛vଵ୧, vଶ୧, vଷ୧, vସ୧,vହ୧ൟ
୬
୧ୀଵ  such that                     

൏ ሼv୧ଵ, v୧ଶሽ ൐≅ P୬୧ , i =1, 2, 3, 4, 5 and ൏ ൛vଵ୨, vଶ୨, vଷ୨, vସ୨, vହ୨ൟ ൐≅ Cହ
୨

, j = 1, 2, 

where P୬୧  is the ith copy of Pn and Cହ
୨  is the jth copy of C5 in C5 x P2. 

 Let D = ൛vଵଵ, vଶଵ, vଷଵ, vସଵ,vଵଶൟ. Then N(vଵଵ) D and D is a dominating set 

of G. Also V(G) – D = ൛vଷଵ, vଶଶ, vଷଷ, vସସ,vହଶൟand <V(G) – D> is a graph obtained from 
P3 by attaching 2 pendant edges at a pendant vertex of P3. Therefore D is a ctnd-set of G.  
 γୡ୲୬ୢ(G)  |D| = 5. 

 Let Dᇱ be a γୡ୲୬ୢ-set of G. Dᇱ contains 4 vertices from  Cହ
ଵ and atleast one vertex 

from Cହ
ଶ.  

Therefore Dᇱ contains atleast 5 vertices.γୡ୲୬ୢ(G) = |Dᇱ|  5. 

 Hence γୡ୲୬ୢ(G) = 5.       
   
Theorem 2.8: 

      If G  C6 x Pn, then γୡ୲୬ୢ(G) =ቒ
ହ୬ାଵ

ଶ
ቓ, n൒ 3. 

Proof: 
 Let G  C6 x Pn and V(G) = ⋃ ሼvଵ୧, vଶ୧, vଷ୧, vସ୧, vହ୧, v଺୧ሽ

୬
୧ୀଵ  such that             

൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ P୬୧ , i =1,2,3,4,5,6 and ൏ ൛vଵ୨, vଶ୨, vଷ୨, vସ୨, vହ୨, v଺୨ൟ ൐≅ C଺
୨

, 

j=1,2, …, n, where P୬୧  is the ith copy of Pn and C଺
୨  is the j th copy of C6in C6 x Pn and |V(G)| 

= 6n. 
Case 1: n is odd. 

LetDᇱ={vଷଵ, vସଵ,vହଵ, vଷଶ,v଺ଶ}∪ ሾ⋃ ሼvଵ,ଶ୧ାଵ,
౤షభ
మ
୧ୀଵ vହ,ଶ୧ାଵ, v଺,ଶ୧ାଵሽ]∪ ሾ⋃ ሼvଶ୧,

୬
୧ୀଶ ሽሿ

ሾ⋃ ሼvଷ,ଶ୧	,vସ,ଶ୧ሽሿ
౤షభ
మ
୧ୀଶ .	 

Then |Dᇱ| = 5 + 3ቀ
୬ିଵ

ଶ
ቁ + n – 1 + 2ቀ

୬ିଷ

ଶ
ቁ = 

଻୬ିଵ

ଶ
  and D = V(G) –Dᇱ.	 Then 

D is a dominating set of G and N(v11)  D. Also <V (G) – D > = <	Dᇱ> is a tree obtained 

from a path Pn-1 = ൏ ൛vଶ,୧, i ൌ 2,3, … , nൟ ൐, (n൒ 2) by attaching P4at each of the 
vertices vଶଷ, vଶହ, vଶ଻, … , vଶ,୬ and attaching P3 at each of the vertices 
vଶସ, vଶ଺ … , vଶ,୬ିଵ. Therefore D is a ctnd-set of G. 

γୡ୲୬ୢ(G)  |D| = |V(G) - Dᇱ| = 6n - ቀ
଻୬ିଵ

ଶ
ቁ = 

ହ୬ାଵ

ଶ
. 

Hence γୡ୲୬ୢ(G) ൑
ହ୬ାଵ

ଶ
. 

Let Dᇱ be a γୡ୲୬ୢ-set of G. Since <V (G) – Dᇱ> is not a dominating set.Therefore 
Dᇱ contains a vertex of u such that N(u)  D. u is taken to be a vertex of minimum 

degree ߜ(G) = 3 in G. The blocks A, B, C are constructed as given below. 
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G is obtained by concatenating the blocks A, B
౤షయ
మ  and C. That is, G ≅ A B

౤షయ
మ  

C. The vertices with the symbol     in each of the blocks represent the vertices that are to 
be included in Dᇱ. Therefore Dᇱ contains 6 vertices from block A and atleast 5 vertices 

from each block B of B
౤షయ
మ and 2 vertices from block C. Therefore γୡ୲୬ୢ(G) = |Dᇱ|  6 + 

5ቀ
୬ିଷ

ଶ
ቁ + 2 =

ହ୬ାଵ

ଶ
 and hence γୡ୲୬ୢ(G) = 

ହ୬ାଵ

ଶ
. 

Case 2: n is even. 

 Let	Dᇱ={vଷଵ, vସଵ,vହଵ, vଷଶ,v଺ଶ}∪ ሾ⋃ ሼvଵ,ଶ୧ାଵ,
౤షమ
మ
୧ୀଵ vହ,ଶ୧ାଵ, v଺,ଶ୧ାଵሽ]∪

ሾ⋃ ሼvଶ୧,
୬
୧ୀଶ ሽሿ ሾ⋃ ሼvଷ,ଶ୧	,vସ,ଶ୧ሽሿ

౤
మ
୧ୀଶ . 

Then |Dᇱ| = 5 + 3ቀ
୬ିଶ

ଶ
ቁ + n – 1+2ቀ

୬ିଶ

ଶ
ቁ = 

଻୬ିଶ

ଶ
  and D = V(G) - Dᇱ.	 Then D is a 

dominating set of G and N(v11)  D. Also <V (G) – D > = <	Dᇱ> is a tree obtained from a 

path Pn-1 = ൏ ൛vଶ,୧,i ൌ 2,3, … , nൟ ൐, (n൒ 2) by attaching P4 at each of the vertices 
vଶଷ, vଶହ, vଶ଻, … , vଶ,୬ିଵ and attaching P3 at each of the vertices 
vଶସ, vଶ଺ … , vଶ,୬.Therefore D is a ctnd-set of G. 

 γୡ୲୬ୢ(G) ൑|D| = |V(G) - Dᇱ| = 6n - ቀ
଻୬ିଶ

ଶ
ቁ =

ହ୬ାଶ

ଶ
. 

Hence γୡ୲୬ୢ(G) ൑
ହ୬ାଶ

ଶ
. 

Let Dᇱ be a γୡ୲୬ୢ-set of G. Since <V(G) – Dᇱ> is not a dominating set,Dᇱ 
contains a vertex of u such that N(u)  D. u is taken to be a vertex of minimum degree 

  .3 in G. The blocks A, B are constructed as in case 1 = (G)ߜ

Figure 5

A B   B 2 

AB 2C

C
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G is obtained by concatenating the blocks A and B
౤షమ
మ . That is, G ≅ AB

౤షమ
మ . The 

vertices with the symbol   in each of the blocks represent the vertices that are to be 
included in Dᇱ. 
 Therefore Dᇱ contains 6 vertices from block A and atleast 5 vertices from each 

block B of B
౤షమ
మ . Therefore γୡ୲୬ୢ(G) = |Dᇱ|  6 + 5ቀ

୬ିଶ

ଶ
ቁ= 

ହ୬ାଶ

ଶ
 and hence    

γୡ୲୬ୢ(G) = 
ହ୬ାଶ

ଶ
 =ቒ

ହ୬ାଵ

ଶ
ቓ. 

 Hence γୡ୲୬ୢ(C6x Pn) =ቒ
ହ୬ାଵ

ଶ
ቓ, n൒ 2.  

 
Theorem 2.9: 
      If G  C6 x P2, then γୡ୲୬ୢ(G) = 5. 
Proof: 

 G  C6 x Pn and V(G) = ⋃ ൛vଵ୧, vଶ୧, vଷ୧, vସ୧,vହ୧, v଺୧ൟ
୬
୧ୀଵ  such that                    

൏ ሼv୧ଵ, v୧ଶ, … , v୧୬ሽ ൐≅ P୬୧ ,i=1, 2, 3, 4,5,6 and ൏ ൛vଵ୨, vଶ୨, vଷ୨, vସ୨, vହ୨, v଺୨ൟ ൐≅ C଺
୨ ,  

j = 1, 2, where P୬୧  is the ith copy of Pn and C଺
୨  is the j th copy of C6 in C6 x P2. 

 Let D = ൛vଵଵ, vଶଵ, v଺ଵ, vଵଶ, vସଶ,ൟ. Then N(vଵଵ) D and D is a dominating set 

of G. Also V(G) – D = ൛vଷଵ, vସଵ, vହଵ, vଶଶ, vଷଶ, vସସ,vହଶ, v଺ଶൟand <V(G) – D>  P7. 

Therefore D is a ctnd-set of G.γୡ୲୬ୢ(G)  |D| = 5. 

 Let Dᇱ be a γୡ୲୬ୢ-set of G. Dᇱ contains 3 vertices from  C଺
ଵ and atleast 2 vertices 

from C଺
ଶ.  

Therefore Dᇱ contains atleast 5 vertices. Therefore γୡ୲୬ୢ(G) = |Dᇱ|  5. 

Hence γୡ୲୬ୢ(G) = 5.       
   
Remark 2.2: 
 In view of Theorem 2.4,Theorem 2.5, Theorem 2.6, and Theorem 2.8, 

1. γୡ୲୬ୢ( C3 x Cn) = n+3, n 3. 

2. γୡ୲୬ୢ( C4 x Cn) = ቒଷ୬ା଺
ଶ
ቓ,n 3. 

3. γୡ୲୬ୢ( C5 x Cn) =  2n +3, n 3. 

4. γୡ୲୬ୢ( C6 x Cn) = 3n, n 3. 
         

Remark 2.3: 

1. If G1 ≅Km and G2 ≅Kn, then γୡ୲୬ୢ(G1 + G2) = m + n. 
2. If G1 and G2 are any two non-complete connected graphs of order m and n 

respectively,  with minimum degree atleast two, then γୡ୲୬ୢ(G1 + G2)  m + n – 1. 
Equality holds, if G1  Km – e,G2  Kn – e.  
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3. For any two connected graphs G1 and G2 of order m and n respectively,    

γୡ୲୬ୢ(G1  G2)  m+n–1. Equality holds, if G1≅P2 and G2≅	nK1. 
4. For any two nontrivial connected graphs G1 and G2 with the of order m and n 

respectively, γୡ୲୬ୢ( G1  G2)  m + n – 2. Equality holds, if G1≅P2and G2≅C3. 
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