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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex 
not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric 
dominating set if for every vVD, there exists at least one eccentric vertex of v in D. Let p  4 be a 
positive integer. The circulant graph Cp1, 2 is the graph with vertex set  {v0, v1, v2, …, vp-1} and edge 
set {{vi, vi+j}: i{0, 1, 2, …, p1} and j{1, 2}}.  In this paper, we initiate the study of domination 
number, eccentric domination number and restrained eccentric domination number in the circulant 
graphs Cp1, 2. 
Keywords: domination, eccentric domination, restrained eccentric domination, circulant graphs. 
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1. Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge 
set E(G). For graph theoretic terminology refer to Harary [5], Buckley and Harary [3].  

The concept of domination in graphs is originated from the chess games theory 
and that paved the way to the development of the study of various domination parameters 
and its relation to various other graph parameters. For details on domination theory, refer 
to Haynes, Hedetniemi and Slater [8]. Janakiraman, Bhanumathi and Muthammai [6] 
introduced Eccentric domination in Graphs. Bhanumathi, John Flavia and Kavitha [1] 
introduced and studied the concept of Restrained Eccentric domination in Graphs.  
 

Definition 1.1: Let p  4 be a positive integer. The circulant graph Cp1, 2 is the graph 

with vertex set {v0, v1, v2, …, vp-1} and edge set {{vi, vi+j}: i{0, 1, 2, …, p1} and j{1, 2}}.   
 
Definition 1.2: Let G be a connected graph and v be a vertex of G. The eccentricity e(v) of 

v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}. The radius 
r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) = d(G) is 
the maximum eccentricity. For any connected graph G, r(G) ≤ diam(G) ≤ 2r(G). The 
vertex v is a central vertex if  e(v) = r(G). The center C(G) is the set of all central vertices.  

For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. 

Eccentric set of a vertex v is defined as     E(v) = {u  V(G) / d(u, v) = e(v)}. 
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Definition 1.3: A graph G is called a m-eccentric point graph if each point of G has 

exactly m  1 eccentric points. 
 

Definition 1.4 [4, 8]: A set D  V is said to be a dominating set in G, if every vertex in 

VD is adjacent to some vertex in D. The minimum cardinality of a dominating set is 

called the domination number and is denoted by (G).  
 

Definition 1.5 [5]: A set D  V(G) is a restrained dominating set if every vertex not in 

D is adjacent to a vertex in D and to a vertex in VD. The cardinality of minimum 
restrained dominating set is called the restrained domination number and is denoted by 

r(G).  
 

Definition 1.6 [6]: A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every vVD, there exists at least one eccentric vertex of v in D. The 
minimum cardinality of an eccentric dominating set is called the eccentric domination 

number and is denoted by ed(G).  
 
Definition 1.7 [1]: A subset D of V(G) is a restrained eccentric dominating set if D is a 

restrained dominating set of G and for every vVD, there exists at least one eccentric 
vertex of v in D. The minimum of the cardinalities of the restrained eccentric dominating 
set of G is called the restrained eccentric domination number of G and is denoted by 

red(G). 
 

Theorem 1.1 [8]: For any graph G, p/(1+(G)) ≤ γ(G) ≤ p(G). 

 
2. Domination, Eccentric Domination, Restrained Domination and 
Restrained Eccentric Domination. 

In this section, we determine the eccentric domination and the restrained 

eccentric domination number of circulant graphs     G = Cp1, 2, for any integer p  4. 
Cleary, G is a 4-regular graph on p vertices.  

It is obvious that C41, 2 = K4 and C51, 2 = K5. So     (C41, 2) = ed(C41, 

2) = r(C41, 2) = red(C41, 2) = 1 and (C51, 2) = ed(C51, 2) = r(C51, 2) = 

red(C51, 2) = 1. For       p  6 we have the following results: 
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Example: 2.1 
 
  
 
 
 
 
 
                                          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 2.1, 
D1 = {v0, v5, v10} is a dominating set of G and is also a restrained dominating set of G. 

Therefore, (G) = r(G) = 3. 
D2 = {v0, v3, v6, v9, v12} is an eccentric dominating set of G and is also a restrained eccentric 

dominating set of G. Therefore,  ed(G) = red(G) = 5. 
 

Lemma 2.1: Let G = Cp1, 2 be a connected graph then for any integer p  6, γ(G) = 

γr(G) = p/5. 
 

Proof: Let G = Cp1, 2 and let v0, v1, v2, …, vp-1 be the vertices of G. From Theorem 1.1, 

p/(1+(G)) ≤ γ(G).  

That is, p/5 ≤ γ(G).                                       ….. (1) 

Figure 2.1 
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Case (i): p = 5k+1, k  1. 
In this case, S = {v0, v5, v10, …, vp-9, vp-4}is a dominating set of G.  

Hence, (G) ≤ p/5. 
 

Case (ii): n = 5k+2, k  1. 
In this case, S = {v0, v5, v10, …, vp-10, vp-5}is a dominating set of G.  

Hence, (G) ≤ p/5. 
 

Case (iii): n = 5k+3, k  1. 
In this case, S = {v0, v5, v10, …, vp-6, vp-1}is a dominating set of G.  

Hence, (G) ≤ p/5. 
 

Case (iv): n = 5k+4, k  1. 
In this case, S = {v0, v5, v10, …, vp-7, vp-2}is a dominating set of G.  

Hence, (G) ≤ p/5. 
 

Case (v): n = 5k+5, k  1. 
In this case, S = {v0, v5, v10, …, vp-8, vp-3}is a dominating set of G. 

Hence, (G) ≤ p/5. 

So in all the cases, (G) ≤ p/5.                       ….. (2)                                                     

From (1) and (2), γ(G) = p/5. 

In all the above cases, S is also a restrained dominating set of G. Therefore, γr(G) = γ(G). 
 

Lemma 2.2: Let G be a connected graph. Let uV(G) is eccentric to atmost m vertices, 

then  p/(1+m) ≤ γed(G). 

Proof: Let S be a γed-set of G. A vertex in G is eccentric to atmost m vertices.                      

Hence, p/(1+m) ≤ γed(G). 
 

Theorem 2.1: Let G = Cp1, 2 be a connected graph then for any integer p  6,                             
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ed(C91, 2) = 3 = γred(C91, 2). 
Proof: Let G = Cp1, 2 and let v0, v1, v2, …, vp-1 be the vertices of G. 

When G = C91, 2. G is a 2-self centered graph. The vertices 

i
p

i
p

i
p

i
p vvvv













2

3
,

2

1
,

2

1
,

2

3
are the eccentric vertices of vi(i = 0, 1, 2, ..., p1). S = {v0, v4, v8} is 

a minimum eccentric dominating set of G. S is also a minimum restrained eccentric 

dominating set of G.  Thus, γed(G) = γred(G) = 3.  
 

Case (i): p = 12k, k  1. 

In this case, G is a (
4

p
)-self centered graph. The vertices 

i
p

i
p

i
p vvv







2

2
,

2
,

2

2
are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p1).Therefore, G is a 3-eccentric point graph.  

Hence, by Lemma 2.2, 
4

p
≤ γed(G).                  ….. (1)                                            
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S = 









 tppm vvvvvvv ,...,,,,...,,,

4
2

4

2

4840 is an eccentric dominating set of G (where m is 

the multiple of 4 such that m is the largest integer less than or equal p/2 and t is of the 

form n
p

4
2

4


  such that t ≤ p1). S= 
4

p

 
if 

2

4p

 
is a multiple of 4, otherwise S= 

4

p

+1.                                             

Thus, γed(G) = 
4

p
, otherwise γed(G) = 

4

p
+1.      ..... (2)                                          

From (1) and (2), γed(G) = 1
44


p
or

p
. 

Case (ii): p = 12k+1, k  1. 

In this case, G is a (
4

1p
)-self centered graph.                     

The vertices 
i

p
i

p
i

p
i

p vvvv












2

3
,

2

1
,

2

1
,

2

3
are the eccentric vertices of                                  

vi (i = 0, 1, 2, ..., p1). Therefore, G is a 4-eccentric point graph.  

Hence, by Lemma 2.2, p/5 ≤ γed(G).              ….. (3)                                               

 S = 









 tppm vvvvvvv ,...,,,...,,,

5
2

5

2

51050 is an eccentric dominating set of G (where m is 

the multiple of 5 such that m is the largest integer less than or equal p/2 and t is of the 

form n
p

5
2

5


  such that t≤p1). S= p/5.  

Thus, γed(G) ≤ p/5.                                       ….. (4)           

From (3) and (4), γed(G) = p/5. 

Case (iii): p = 12k+2, k  1. 

In this case, G is a (
4

2p
)-self centered graph.                   

The vertex 
i

pv


2

is the eccentric vertex of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 

self centered unique eccentric point graph.  

Hence, γed(G) ≥ 
2

p
.                                         ….. (5)                                              

 S = {v0, v2, v4, …, vp-6, vp-4, vp-2} is an eccentric dominating set of G.  

Thus, γed(G) ≤ 
2

p
.                                            ….. (6)                                    

From (5) and (6), γed(G) = 
2

p
 .   
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Case (iv): p = 12k+3, k  1. 

In this case, G is a (
4

1p
)-self centered graph. The vertices 

i
p

i
p vv







2

1
,

2

1
are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 2-eccentric point graph.                          

Hence, by Lemma 2.2, 
3

p
≤ γed(G).                   ….. (7)                                           

S = {v0, v3, v6, …, vp-9, vp-6, vp-3} is an eccentric dominating set of G.  

Thus, γed(G) ≤ 
3

p
.                                            ….. (8)                                          

From (7) and (8), γed(G) = .
3

p
 

Case (v): p = 12k+4, k  1. 

In this case, G is a (
4

p
)-self centered graph. The vertices 

i
p

i
p

i
p vvv







2

2
,

2
,

2

2
are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 3-eccentric point graph.  

Hence, by Lemma 2.2, 
4

p
≤ γed(G).                    ….. (9)                                             

 S = 


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




 tppm vvvvvvv ,...,,,,...,,,

4
2

4

2

4840 is an eccentric dominating set of G (where m 

is the multiple of 4 such that m is the largest integer less than or equal p/2 and t is of the 

form n
p

4
2

4


  such that t ≤ p1). S= 
4

p
if 

2

4p is a multiple of 4, otherwise S= 
4

p
+1.  

Thus, γed(G) = 
4

p
, otherwise γed(G) = 

4

p
+1.       …..(10)                                       

From (9) and (10), γed(G) = 1
44


p
or

p
. 

Case (vi): p = 12k+5, k  1. 

In this case, G is a (
4

1p
)-self centered graph.                    

The vertices 
i

p
i

p
i

p
i

p vvvv






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
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
2

3
,

2

1
,

2

1
,

2

3
are the eccentric vertices of              vi (i = 0, 

1, 2, ..., p1). Therefore, G is a 4-eccentric point graph.  

Hence, by Lemma 2.2, p/5 ≤ γed(G).                 ….. (11)                                            
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

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




 tppm vvvvvvv ,...,,,,...,,,

5
2

5

2

51050 is an eccentric dominating set of G (where m 

is the multiple of 5 such that m is the largest integer less than or equal p/2 and t is of the 
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form n
p

5
2

5


  such that t ≤ p1). S= p/5 if 
2

5p is a multiple of 5, otherwise          

S= p/5 +1. 

Thus, γed(G) = p/5, otherwise γed(G) = p/5 +1. ….. (12)                         

From (11) and (12), γed(G) = p/5 or p/5 +1. 
 

Case (vii): p = 12k+6, k  0. 

In this case, G is a (
4

2p
)-self centered graph. The vertex 

i
pv


2

is the eccentric 

vertex of vi  (i = 0, 1, 2, ..., p1). Therefore, G is a self centered unique eccentric point 
graph.  

Hence, γed(G) ≥ 
2

p
.                                            ….. (13)                                     

S = {v0, v2, v4, …, vp-6, vp-4, vp-2} is an eccentric dominating set of G.   

Thus, γed(G) ≤ 
2

p
.                                             ….. (14)                                

From (13) and (14), γed(G) = 
2

p
 .   

 

Case (viii): p = 12k+7, k  0. 

In this case, G is a (
4

1p
)-self centered graph. The vertices 

i
p

i
p vv







2

1
,

2

1
are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 2-eccentric point graph.  

Hence, by Lemma 2.2, p/3 ≤ γed(G).                ….. (15)                              

 S = 









 tppm vvvvvvv ,...,,,...,,,

3
2

3

2

3630  is an eccentric dominating set of G (where m is 

the multiple of 3 such that m is the largest integer less than or equal to p/2 and t is of the 

form n
p

3
2

3


  such that t ≤ p1).  S= p/3.  

Thus, γed(G) ≤ p/3.                                       ….. (16) 

From (15) and (16), γed(G) = p/3. 
 

Case (ix): p = 12k+8, k  0. 

In this case, G is a (
4

p
)-self centered graph. The vertices 

i
p

i
p

i
p vvv







2

2
,

2
,

2

2
are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 3-eccentric point graph.  



 
 

 
 

Eccentric Domination and Restrained Eccentric Domination in Circulant Graphs 9 

Hence, by Lemma 2.2, 
4

p
≤ γed(G).                   ….. (17)                              

 S = 









 tppm vvvvvvv ,...,,,,...,,,

4
2

4

2

4840  is an eccentric dominating set of G (where m 

is the multiple of 4 such that m is the largest integer less than or equal p/2 and t is of the 

form n
p

4
2

4


  such that t ≤ p1). S= 
4

p
if 

2

4p is a multiple of 4, otherwise S= 
4

p
+1.  

Thus, γed(G) = 
4

p
, otherwise γed(G) = 

4

p
+1.      ….. (18)                              

From (17) and (18), γed(G) = 1
44


p
or

p
. 

Case (x): p = 12k+9, k  1. 

In this case, G is a (
4

1p
)-self centered graph.                     

The vertices 
i

p
i

p
i

p
i

p vvvv












2

3
,

2

1
,

2

1
,

2

3
are the eccentric vertices of vi (i = 0, 1, 2, ..., p1). 

Therefore, G is a 4-eccentric point graph.  

Hence, by Lemma 2.2, p/5 ≤ γed(G).              ….. (19)                                   

 S = 









 tppm vvvvvvv ,...,,,...,,,

5
2

5

2

51050 is an eccentric dominating set of G (where m is 

the multiple of 5 such that m is the largest integer less than or equal to p/2 and t is of the 

form n
p

5
2

5


  such that t ≤ p1). S= p/5.  

Thus, γed(G) ≤ p/5.                                      ….. (20)                                      

From (19) and (20), γed(G) = p/5. 
 

Case (xi): p = 12k+10, k  0. 

In this case, G is a (
4

2p
)-self centered graph.                   

The vertex 
i

pv


2

is the eccentric vertex of vi (i = 0, 1, 2, ..., p1). Therefore, G is a 

self centered unique eccentric point graph.  

Hence, γed(G) ≥ 
2

p
.                                           ….. (21) 

 S = {v0, v2, v4, …, vp-6, vp-4, vp-2} is an eccentric dominating set of G. 

Thus, γed(G) ≤ 
2

p
.                                            ….. (22)                              
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From (21) and (22), γed(G) = 
2

p
 .   

Case (xii): p = 12k+11, k  0 

In this case, G is a (
4

1p
)-self centered graph.                    

The vertices 
i

p
i

p vv






2

1
,

2

1
are the eccentric vertices of vi (i = 0, 1, 2, ..., p1). 

Therefore, G is a 2-eccentric point graph.  

Hence, by Lemma 2.2, p/3 ≤ γed(G).              ….. (23)                                     

 S = 









 tppm vvvvvvv ,...,,,...,,,

3
2

3

2

3630 is an eccentric dominating set of G (where m is 

the multiple of 3 such that m is the largest integer less than or equal p/2 and t is of the 

form n
p

3
2

3


  such that t ≤ p1).  S= p/3.  

Thus, γed(G) ≤ p/3.                                      ….. (24)                   

From (23) and (24), γed(G) = p/3. 
In all the above cases, S is also a restrained eccentric dominating set of G. 

Therefore, γred(G) = γed(G). 

 
Conclusion: 

Here we have studied eccentric domination and restrained eccentric domination 

in circulant graph Cp1, 2, and also studied a bound for the eccentric domination 
number of a connected graph. 
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