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Abstract: A set D of a graph G = (V, E) is a dominating set if every vertex in V(G) – D is adjacent to 
some vertex in D.  The domination number γ (G) of G is the minimum cardinality of a dominating 
set. A dominating set D is called a complementary tree nil dominating set, if the induced subgraph        
< V(G) – D > is a tree and the set V(G) – D is not a dominating set. The minimum cardinality of a 
complementary tree nil dominating set is called the complementary tree nil domination number of G 
and is denoted by γ ctnd(G). The minimum number of colours required to colour all the vertices such 
that adjacent vertices do not receive the same colour is chromatic number χ (G).  In this paper, an 
upper bound for the sum of the complementary tree nil domination number and chromatic number of a 
graph is found and the corresponding extremal graphs are characterized. 
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1. Introduction 
Graphs discussed in this paper are finite, undirected and simple connected 

graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A 
graph with p vertices and q edges is denoted by G(p, q).  The concept of domination in 
graphs was introduced by Ore[5]. A set D  V(G) is said to be a dominating set of G, if 
every vertex in V(G)  D is adjacent to some vertex in D. The cardinality of a minimum 
dominating set in G is called the domination number of G and is denoted by (G). 
Muthammai, Bhanumathi and Vidhya[4] introduced the concept of complementary tree 
dominating set. A dominating set   D  V(G) is said to be a complementary tree 
dominating set (ctd-set), if the induced subgraph  < V(G) D > is a tree. The minimum 
cardinality of a ctd-set is called the complementary tree domination number of G and is 
denoted by ctd(G). The minimum number of colours required to colour all the vertices 
such that adjacent vertices do not receive the same colour is chromatic number  (G). 
Any undefined terms in this paper may be found in Harary[1]. 

The concept of complementary tree nil dominating set is introduced in [3]. A 
dominating set D  V(G) is said to be a complementary tree nil dominating set (ctnd-
set), if the induced subgraph < V(G) – D > is a tree and the set V(G) – D is not a 
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dominating set. The minimum cardinality of a ctnd-set is called the complementary tree 

nil domination number of G and is denoted by γctnd(G). 
In this paper, an upper bound for the sum of the complementary tree nil 

domination number and chromatic number of a graph is found and the corresponding 
extremal graphs are characterized. 

 

2. Prior Results 
Theorem 2.1: [1] For any connected graph G, χ (G)  ∆(G) + 1. 

 

Theorem 2.2: [3] For any connected graph G with p vertices, 2  γctnd(G) 	p ,where p 2. 
 

Theorem 2.3: [3] Let G be a connected graph with p vertices. Then γctnd (G) = 2 if and 
only if G is a graph obtained by attaching a pendant edge at a vertex of degree p - 2 in T + 
K1, where T is a tree on (p – 2) vertices. 
 

Theorem 2.4: [3] For any connected graph G, γctnd(G) = p if and only if G Kp, where      
p 2. 
 

Theorem 2.5: [3] Let G be a connected graph with p 3 and ( )G  = 1.  Then γctnd (G) = 

p–1 if and only if  the subgraph of G induced by vertices of degree atleast 2 is K2 or K1. 
That is, G is one  of the graphs K1, p-1 or Sm,n (m + n = p, m, n  2), where Sm,n  is 

a bistar which is obtained by attaching m-1 pendant edges at one vertex of K2 and n-1 
pendant edges at other vertex of K2. 

 

Theorem 2.6: [3] Let G be a connected noncomplete graph with ( )G 2. Then γctnd (G) 
=   p -1 if and only if each edge of G is a dominating edge. 
 

Theorem 2.7: [3] Let T be a tree on p vertices such that γctnd(T) p – 2. Then    γctnd (T) = 
p – 2 if and only if  T is one of the following graphs. 

1. T is obtained from a path Pn (n 4 and n < p) by attaching pendant edges at atleast 
one of the end vertices of Pn.. 

2. T is obtained from P3 by attaching pendant edges at either both the end vertices or all 
the vertices of P3 

Notation 2.8: [3] Let G  be the class of connected graphs G with  (G) = 1 having one of 
the following properties. 

(a) There exist  two adjacent vertices u, v in G such that deg ( )G u  = 1 and <V(G) - {u, 
v}> contains P3 as an induced subgraph such that end vertices of P3 have degree 
atleast 2 and the central vertex of P3 has degree atleast 3. 
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(b) Let P be the set of all pendant vertices in G and let there exist a vertex vV(G)-P 
having minimum degree in V(G) - P and is not a support of G such that V(G) - (N

 PV [v] - P) contains P3 as an induced subgraph such that the end vertices of P3 have 

degree atleast 2 and the central vertex of P3 has degree atleast 3. 
 

Theorem 2.9: [3] Let G be a connected graph with  (G) = 1. Assume γctnd(G) p -1. 

Then γctnd (G) = p -2 if and only if G does not belong to the class G  of graphs. 
 
Theorem 2.10: [3] Let G be a connected, non-complete graph with p vertices (p 4) and 

( )G  2. Then γctnd(G) = p – 2 if and only if G is one of the following graphs. 
    1.  A cycle on atleast five vertices. 
    2.  A wheel on six vertices. 
    3.  G is the one point union of complete graphs. 
    4.  G is obtained by joining two complete graphs by an edges. 
    5.  G is a connected noncomplete graph such that there exists a vertex vV(G)  
         such that G-v is a complete graph on (p-1) vertices. 
    6.  G is a graph such that there exists a vertex vV(G) such that G - v is Kp-1 - e,  

          (e E(Kp-1)) and N(v) contains atleast one vertex of degree (p - 3) in K 1p  - e.  

 

3. Main Results 
Theorem 3.1: For any connected graph G, γctnd(G) + χ (G)  2p, (p   2). Equality holds 

if and only if G ≅ Kp. 

Proof: γctnd(G) + χ (G)  p + (G) + 1  p + p – 1 + 1= 2p. 

If γctnd(G) + χ (G) = 2p, then the only possible case is γ ctnd(G) = p and     χ  (G) = p. 

But γctnd(G) = χ (G) = p if and only if G ≅ Kp
. Conversely, if G ≅ Kp, then γctnd(G) + 

χ(G) = 2p. 
 

Theorem 3.2: For any noncomplete graph G, γctnd(G) +  (G)  2p – 2.  

Proof: Since G is not complete, γctnd(G) + χ (G)  2p – 1. 

Assume γctnd(G) + χ (G) = 2p – 1. Then either γctnd(G) = p and χ (G) = p – 1 or γctnd(G) = 
p – 1 and χ (G) = p. 

Case 1: γctnd(G) = p and χ (G) = p – 1.  

γctnd(G) = p if and only if G ≅ Kp on p vertices, But χ (Kp) = p. 

Case 2: γctnd(G) = p – 1 and χ (G) = p.  

χ (G) = p implies G ≅ Kp. But for Kp, γctnd(G) = p. From Case 1 and Case 2, no graph 

exists with γctnd(G) + χ (G) = 2p – 1. Hence γctnd(G) + χ (G)  2p – 2. 



 
 

268 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

 

Theorem 3.3: For any connected graph G (p  3), γctnd(G) + χ (G) = 2p – 2  if and only if 

G ≅ P3 or Kp – e.. 

Proof: If G ≅ P3, then γctnd(G) = 2, χ (G) = 2 and γctnd(G) + χ (G) = 4 = 2p – 2. 

If G ≅ Kp – e, then γctnd(G) = p – 1 and χ (G) = p – 1, and γctnd (G) + χ (G) = 2p – 2. 

Conversely, assume γctnd(G) + χ (G) = 2p – 2.  
Then there are three cases to consider 

1. γctnd (G) = p and  χ (G) = p – 2  

2. γctnd (G) = p – 1 and  χ (G) = p – 1 and 

3. γctnd G) = p - 2 and χ (G) = p. 

Case 1: γctnd (G) = p and χ (G) = p – 2.  

γctnd (G) = p if and only if G ≅ Kp on p vertices, But χ (Kp) = p. 

Therefore no graph exists with γctnd(G) = p and  (G) = p – 2. 

Case 2: γctnd(G) = p – 1 and χ (G) = p – 1.  

γctnd(G) = p – 1 if and only if G is one of the following graphs 
1. K1, p-1 or Sm,n (m + n = p, m, n  1), if  (G) = 1. 
2. G is a graph in which each edge is a dominating edge, if ( ) 2G  . 

Subcase 2.1: Let G ≅ K1, p -1 or Sm,n, (m + n = p, m, n  2). 
 If G ≅ K1, p -1,  χ ( K 1, p -1) = 2 implies p = 3 and hence, G ≅ P 3. 

If G ≅ Sm, n , χ (Sm, n) = 2 is not possible, since  m, n  2. 
Subcase 2.2: G is a graph in which each edge is a dominating edge. χ (G) = p – 1 implies 
G contains a clique Kp-1 on p – 1 vertices. Let x V(G) such that x V(Kp – 1 )  and let u1, 
u2, …, up-1 be the vertices of Kp-1.  Since G is connected, x is adjacent to ui for some i, i = 1, 
2, …, p – 1. x is not adjacent to all the ui, since otherwise G will contain a clique on p 
vertices. Let x be adjacent to atleast two vertices and atmost (p – 3) vertices of Kp–1, then 

γctnd(G)  p – 2,  which is a contradiction to γctnd(G) = p – 1. Therefore, x is adjacent to 
exactly (p – 2) vertices of Kp-1 and hence G is isomorphic to Kp – e. 

Case 3: γctnd(G) = p - 2 and  χ (G) = p. 

But,  χ (G) = p implies G ≅ Kp and  γctnd(G) = p. Hence, no graph exists for this case. 

From Case 1, Case 2 and Case 3, G ≅ P3 or Kp – e.  
 
Notation 3.4: We use the following notations in this paper  

(i) G1  is a graph such that V(G) can be partitioned into two sets X = { x, y } and    

V – X = { u1, u2, …, up-2 }, < V – X > ≅ Kp – 2 , <X> ≅ 2K1 and both x and y are 
adjacent to exactly p – 3 vertices of Kp-2. 



 
 

269 Complementary tree nil domination number and Chromatic number of Graphs 
 

(ii) G2  is a graph such that V(G) can be partitioned into two sets X = { x, y } and V 

– X = { u1, u2, …, up-2 }, < V – X > ≅ Kp – 2 , <X> ≅ K2 and both x and y are 
adjacent to exactly p – 3 vertices of Kp-2. 

(iii) G3  is a graph such that V(G) can be partitioned into two sets X = { x } and V – 

X = { u1, u2, …, up-1 }, < V – X > ≅ Kp – 1 and  x is adjacent to atleast one vertex 
and atmost (p – 3) vertices of Kp – 1. 

Theorem 3.5: For any connected graph G, γctnd(G) + ߯ (G) = 2p – 3 if and only if G is 
one of the following graphs. K1,3, P4 , G1, G2 and G3. 

Proof: If G ≅ K1,3 , then γctnd (G) = 3, χ (G) = 2, and γctnd (G) + χ (G) = 5 = 2p – 3.  

If G ≅ P4 , then γctnd (G) = 3, χ (G) = 2 and γctnd(G) + χ (G) = 5 = 2p – 3. 

If G is isomorphic to the graphs G2 or G3, then γctnd(G) = p – 1, χ (G) = p – 2 and        

γctnd (G) + χ (G) = 2p – 3. If G is isomorphic to the graph G1, then γctnd (G) = p – 2 and 

χ (G) = p – 1 and γctnd (G) + χ (G) = 2p – 3. 

Conversely, assume γctnd(G) + χ (G) = 2p – 3.  
Then there are four cases to consider 

1. γctnd(G) = p and χ  (G) = p – 3  

2. γctnd(G) = p – 1 and χ (G) = p – 2  

3. γctnd(G) = p - 2 and χ (G) = p – 1 and  

4. γctnd(G) = p - 3 and χ (G) = p. 

Case 1: γctnd(G) = p and  χ (G) = p – 3.  

 γctnd(G) = p if and only if G ≅ Kp on p vertices, But  χ (Kp) = p. 

Therefore no graph exists with γctnd(G) = p and χ (G) = p – 3. 

Case 2: γctnd(G) = p – 1 and χ (G) = p – 2.  

γctnd(G) = p – 1 if and only if G is one of the following  

1. K1, p-1 or Sm, n  (m + n = p, m, n  2) if ߜ(G) = 1. 

2. G is a graph in which each edge is a dominating edge if δሺGሻ  2. 

Subcase 2.1: Let G ≅ Kp -1 or Sm, n (m + n = p, m, n   2). 

χ ( K1, p -1) = 2 and  χ (G) = p – 2 implies p = 4 and hence G ≅ K1, 3. 

χ  (Sm,n) = 2,  χ (G) = p – 2 implies p = 4 and hence, G ≅ S2, 2. But S2,2 ≅ P4. 
Subcase 2.2: G is a graph in which each edge is a dominating edge. 
 χ (G) = p – 2 implies G contains a clique Kp-2 on p – 2 vertices. 
 Let x, y V(G) - V(Kp – 2 )  and let u1, u2, …, up-2 be the vertices of Kp-2. Now, G is 
a graph such that V(G) can be partitioned into two sets X = { x, y } and V – X = {u1, u2, 
…, up-2}, where x, y V(G).  Let x, y be adjacent to atleast two vertices and atmost (p – 4) 

vertices of Kp – 2, then γctnd(G)   p – 2,  which is a contradiction to γctnd(G) = p – 1. 
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Subcase 2.2.1: < X > ≅  Kଶതതതത.  

If x or y is adjacent to all the vertices of  V – X, then ߯ (G) = p – 1. If x or y is 

adjacent to atmost p – 4 vertices of V – X, then γctnd(G)   p – 2. Therefore, both x and y 

are adjacent to exactly p – 3 vertices of Kp-2. Hence G ≅ G1. 

Subcase 2.2.2: < X > ≅ K2.  

 If x or y is adjacent to all the vertices of  V – X, then ߯ (G) = p – 1. If x or y is 

adjacent to atmost p – 4 vertices of V – X, then γctnd(G)  p – 2. Therefore, x and y are 

adjacent to atmost p – 3 vertices of  V – X and hence G ≅ G2. 

Case 3: γctnd(G) = p – 2 and χ (G) = p – 1. 

߯ (G) = p – 1 implies G contains a clique Kp-1 on p – 1 vertices. Let x V(G) - V(Kp – 1 ) 
and let u1, u2, …, up-1 be the vertices of Kp-1.  Since G is connected, x is adjacent to ui for 
some i, i = 1, 2, …, p-1. x is not adjacent to all the ui, since otherwise G will contain a 
clique on p vertices. Let x be adjacent to exactly p – 2 vertices in Kp-1 and ui be the 
nonadjacent vertex to x, then D = V(G) – { ui } or D = V(G) – { x } is a minimum ctnd-set 

and hence γctnd(G) = p – 1, which is a contradiction to γctnd(G) = p – 1. Therefore x is not 
adjacent to exactly (p – 2) vertices of Kp – 1. Therefore x is  adjacent to atleast one vertex 
and  atmost (p – 3) vertices of Kp – 1. Then D = {x, u1, u2, …, up-3} is a minimum  

complementary dominating set. V – D = {up - 2, up-1} and < V – D> ≅ K2 and hence 

γctnd(G) = p – 2. Hence G ≅G3  

Case 4: γctnd(G) = p – 3 and χ (G) = p.  

But χ (G) = p implies G ≅ Kp and γctnd(G) = p. Hence no graph exists . 
From Case 1, Case 2, Case 3 and Case 4, G is one of the graphs  K1,3, P4, G is K1,3, 

P4, G1, G2 and G3.  
 
Notation 3.6: We use the following notations in this paper  
(i) G4  is a graph such that V(G) can be partitioned into two sets X = { x, y, z} and V – X 

= { u1, u2, …, up – 3 }, < V – X > ≅ Kp – 3, <X> is complete and each vertex in X is 
adjacent to exactly p – 4 vertices of  Kp - 3. 

(ii) G5 is a graph obtained by attaching  two pendent edges at exactly one vertex of  Kp–2. 

(iii) G6 is a graph obtained by attaching two pendent edges at any two vertex of Kp-2. 

(iv) G7 is isomorphic to a graph obtained by attaching P3 at exactly one vertex of Kp – 2. 

(v) G8 is isomorphic to a graph obtained by attaching C3 at exactly one vertex of Kp – 2. 

 

Theorem 3.7: For any connected graph G, γctnd(G) + ߯ (G) = 2p – 4 if and only if G is 
one of the following graphs. 

1. K1,4, S3, 2, C5, G4, G5,G6, G7, G8 



 
 

271 Complementary tree nil domination number and Chromatic number of Graphs 
 

2. G is a graph such that there exists a vertex vV(G) such that G – v is Kp–1 – e,    
(eE(Kp – 1) ) and N(v) contains atleast one vertex of degree (p–3) in Kp – 1 – e.  

Proof: If G is a graph stated in the theorem, then γctnd(G) + χ (G) = 2p – 4. 

Conversely, assume γctnd(G) + χ (G) = 2p – 4. Then there are five cases to consider 

1. γctnd(G) = p and χ (G) = p – 4  

2. γctnd(G) = p – 1 and χ (G) = p – 3 

3. γctnd(G) = p - 2 and χ (G) = p – 2 and  

4. γctnd(G) = p - 3 and χ (G) = p - 1. 

5. γctnd(G) = p - 4 and χ (G) = p. 

Case 1: γctnd(G) = p and χ (G) = p – 4.  

γctnd (G) = p if and only if G ≅ Kp on p vertices, But  (Kp) = p. Therefore no graph 

exists with γctnd(G) = p and χ (G) = p – 4. 

Case 2: γctnd(G) = p – 1 and χ (G) = p – 3.  

γctnd(G) = p – 1 if and only if G is one of the following  

1. K1, p-1 or Sm,n  (m + n = p, m, n   2) if ߜ(G) = 1. 

2. G is the graph in which each edge is a dominating edge if δሺGሻ  2. 

Subcase 2.1: Let G ≅ Kp -1 or Sm,n (m + n = p, m, n  2). 

߯( Kp -1) = 2 and  ߯ (G) = p – 3 implies p = 5 and hence, G ≅ K1,4. 

߯ (Sm,n) = 2 and  ߯ (G) = p – 3 implies p = 5 and hence, G ≅ S3, 2. 
Subcase 2.2: G is a graph in which each edge is a dominating edge. 

߯ (G) = p – 3 implies G contains a clique Kp – 3 on p – 3 vertices. 
Let x, y, z V(G) - V(Kp – 3 )  and let u1, u2, …, up-3 be the vertices of Kp-3. G is a graph 
such that V(G) can be partitioned into two sets X = { x, y, z } and V- X = { u1, u2, …, up – 3} 
where x, y, z V(G).  

Subcase 2.2.1:  < X > ≅ Kଷതതതത.  

If one or two vertices of X is adjacent to all the vertices of V – X, then ߯(G)   p – 2. If x, 

y and z are adjacent to atmost p – 4 vertices of V – X, then γctnd(G)   p – 2. Therefore no 
graph exists in this case. 
Subcase 2.2.2:  < X > ≅ K1 UK2.  γctnd(G)  p – 2, since K2 is not a dominating edge. 

Subcase 2.2.3:  < X > ≅ K3. 

If one or two vertices of X is adjacent to all the vertices of V – X, then ߯ (G)  p – 2. If x, 

y or z are adjacent to atmost p – 5 vertices of V – X, then γctnd(G)  p – 2. Therefore each 

vertex in X is adjacent to exactly p – 4 vertices of Kp – 3 and G ≅ G4.   

Case 3: γctnd(G) = p – 2 and χ (G) = p – 2. 
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By  Theorem 2.7. Notation 2.8.  Theorem 2.9. and  Theorem 2.10. γctnd(G) = p – 2 if and 
only if 

1. G ≅ T, where T is tree either obtained from a path Pn (n 4 and n < p) by attaching 
pendant edges at atleast one of the end vertices of Pn, or obtained from P3 by 
attaching pendant edges at either both the end vertices or all the vertices of P3. 

2. G  G  , if ߜ(G) =1 

3. If ߜ(G)  2, then G is one of the following graphs. 
(i) A cycle on atleast five vertices. 
(ii) A wheel on six vertices. 
(iii) G is the one point union of complete graphs. 
(iv) G is obtained by joining two complete graphs by an edge. 
(v) G is a graph such that there exists a vertex vV(G) such that G –  v is a 
complete graph on (p – 1) vertices. 
(vi)  G is a graph such that there exists a vertex vV(G) such that G – v is Kp – 1 – e, 
(eE(Kp – 1) ) and N(v) contains atleast one vertex of degree (p – 3) in Kp – 1 – e. 

Case  3.1: G ≅ T,  
 χ ( T ) = 2 and  χ (G) = p – 2 implies p = 4. But this case is not possible, since p  5. 
Therefore no graph exists in this case. 

Case 3:2: G G  and ߜ(G) = 1 

χ (G) = p – 2 implies G contains a clique Kp-2 on p – 2 vertices. 
Let x, y V(G) - V(Kp – 2 )  and let u1, u2, …, up-2 be the vertices of Kp-2. Now, G is a graph 
such that V(G) can be partitioned into two sets X = {x, y} and V – X = {u1, u2, …, up-2}, 

where x, y V(G) and < V – X > ≅ Kp – 2 . If < X > ≅ Kଶതതതത, then G ≅ G5 or G6. 

If < X > ≅ K2, then x or y is adjacent to exactly one vertex of  V – X. Hence G ≅ G7. 

Case 3.3: ߜ(G)  2. 
Subcase 3.3.1: A cycle on atleast five vertices. 

χ ( Cp ) = ൜
2	if	p	is	even
3	if	p	is	odd   and  χ (G) = p – 3 implies p = 5. Hence G ≅ C5. 

Subcase 3.3.2: A wheel on six vertices. 
χ ( W6 ) = 4 and  χ (G) = p – 2. This case is not possible. 
Subcase 3.3.3: G is the one point union of complete graphs. 
From Case 3.2, V(G) can be partitioned into two sets X = {x, y} and V–X = {u1, u2,…, up-2}, 
where x, y V(G),  both x and y are adjacent to exactly one vertex of Kp – 2. Therefore G is 
isomorphic to a graph obtained by attaching C3 at exactly one vertex of Kp – 2 and hence    

G ≅ G8. 

Subcase 3.3.4: G is obtained by joining two complete graphs by an edge. 
 This case is also not possible. 
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Subcase 3.3.5: G is a graph such that there exists a vertex vV(G) such that G – v is a 

complete graph on (p – 1) vertices. In this case ߯(G) = p – 1. Therefore no graph exists in 
this case. 
Subcase 3.3.6: G is a graph such that there exists a vertex vV(G) such that G – v is       
Kp – 1 – e, (eE(Kp – 1) ) and N(v) contains atleast one vertex of degree (p – 3) in Kp – 1 – e. 

From this graph γctnd(G) = p – 2 and ߯ (G) = p – 2. 

Case 4: γctnd(G) = p – 3 and ߯ (G) = p – 1. 

߯ (G) = p – 1 implies G contains a clique Kp – 1 on p – 1 vertices. 
Let x be the vertex other than the vertices of Kp – 1 and let u1, u2, …, up – 1 be the vertices of 
Kp – 1.  Since G is connected, x is adjacent to ui for some i, i = 1, 2, …, p – 1, x is not 
adjacent to all  ui, since otherwise G will contain a clique on p vertices. 

Let x be adjacent to atleast one vertex and atmost (p – 2) vertices of Kp – 1. Then γctnd(G)   

p – 2, which is a contradiction to γctnd(G) = p – 3. Hence no graph exists in this case. 

Case 5: γctnd(G) = p – 4 and ߯ (G) = p.   

߯ (G) = p implies G ≅ Kp. But for G ≅ Kp, γctnd(G) = p.  
From Case 1, Case 2, Case 3, Case 4 and Case 5.  G is one of the graphs K1,4, S3,2, C5, G4, G5, 
G6, G7, G8, G is a graph such that there exists a vertex vV(G) such that G – v is Kp–1– e, 
(eE(Kp – 1) ) and N(v) contains atleast one vertex of degree (p–3) in Kp – 1 – e. 
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