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Abstract: For any simple graph G, let V(G) and E(G) denote the vertex set and edge set of G 
respectively. The Boolean function graph B( G, Kq, NINC ) of G is a graph with vertex set             
V(G) ∪ E(G) and two vertices in B(G, K , INC)q  are adjacent if and only if they correspond to two 

nonadjacent vertices of G or to a vertex and an edge incident to it in G. For simplicity, this graph is 

denoted by BF1(G). Two vertices in the complement )G(BF1 of BF1(G)  are adjacent if and only if they 
correspond to two adjacent vertices of G, two adjacent edges of G, two nonadjacent edges of G or to a 
vertex and an edge not incident to it in G. In this paper, structural properties of the complement

)G(BF1 of BF1(G) including traversability and eccentricity properties are studied. Also covering 
numbers and various domination numbers are determined. 
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1. Introduction 
 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) 
and E(G) denote its vertex set and edge set respectively. For two vertices u and v in a 
connected graph G, the distance d(u,v) from u to v is the length of a shortest u – v path in 
G. A connected graph G is said to be geodetic, if a unique shortest path joins any two 
vertices. A closed trail connecting all vertices and edges is called an Eulerian trail. A graph 
having an Eulerian trail is called an Eulerian graph. A Spanning cycle in a graph is called 
Hamiltonian cycle. A graph having a Hamiltonian cycle is called Hamiltonian graph. For a 
connected graph G, the eccentricity eG(v) of a vertex v in G is the distance to a vertex 
farthest from v. Thus, eG(v) = {dG(u, v) : u ∈V(G)}, where dG(u, v) is the distance between 
the vertices u and v. The minimum and maximum eccentricities are the radius and 
diameter of G, denoted r(G) and diam(G) respectively. 

A covering of a graph G = (V, E) is a subset K of V such that every edge of G is 
incident with a vertex in K. A covering K is called a minimum covering if G has no 

covering K′with |K′| < |K|. The number of vertices in a minimum covering of G is called 
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the covering number of G and is denoted by α0(G) or α0. An edge covering of G is a 
subset L of E such that every vertex is incident with an edge of L. The number of edges in 
a minimum edge covering of G is called the edge covering number of G and is denoted by 

α1(G) or α1. For graph theoretic terminology, Harary [1] is referred. 
The concept of domination in graphs was introduced by Ore [10]. A set D ⊆ V 

(G) is said to be a dominating set of G, if every vertex in V(G) – D is adjacent to some 
vertex in D. D is said to be a minimal dominating set if  D – {u} is not a dominating set, 

for any u ∈ D. The domination number γ(G) of G is the minimum cardinality of a 

dominating set. We call a set of vertices a γ− set, if it is a dominating set with cardinality 

γ(G). Different types of dominating sets have been studied by imposing conditions on 
dominating sets. A dominating set D is called a independent dominating set, if the 
induced subgraph < D > is independent and is called a perfect dominating set, if every 
vertex in V(G) – D is adjacent to exactly one vertex in D is called a restrained dominating 

set, if every vertex in V(G) – D is adjacent to another vertex in V(G) – D . By γi, γp, γr we 
mean the minimum cardinality of a independent dominating set respectively. Janakiraman 
et al., introduced the concepts of Boolean and Boolean function graphs [2 – 5]. 

Kulli and Janakiram introduced the concept of split [7] and nonsplit [8] 
domination in graphs. A dominating set D of a connected graph G is a split (nonsplit), if 

< V(G) – D > is disconnected (connected). Split (nonsplit) domination number γs(G) 

(γns(G)) of G is the minimum cardinality of a split (nonsplit)  dominating set. 
For any simple graph G, let V(G) and E(G) denote the vertex set and edge set of 

G respectively. The Boolean function graph B(G, Kq, NINC) of G is a graph with vertex 
set V(G) ∪ E(G) and two vertices in B(G, K , INC)q  are adjacent if and only if they 

correspond to two nonadjacent vertices of G or to a vertex and an edge incident to it in G.  

For simplicity, this graph is denoted by BF1(G). Two vertices in the complement )G(BF1 of 
BF1(G)  are adjacent if and only if they correspond to two adjacent vertices of G, two 
adjacent edges of G, two non adjacent edges of G or to a vertex and an edge not incident 

to it in G. In this paper, structural properties of )G(BF1  including traversability and 
eccentricity properties are studied. Also covering numbers and various domination 
numbers are determined. 

 

2. Main Results 
In this section, the properties including traversability and eccentricity properties 

are studied. Also decomposition of )G(BF1 for some known graphs are given. 

The following elementary properties of )G(BF1 are immediate.  
Observation 2.1: 
Let G be a (p,q) graph 
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1. G and L(G) are induced subgraphs of )G(BF1 and the subgraph of )G(BF1

induced by q vertices in L(G) is a complete graph. 

2. Number of vertices in )G(BF1  = p + q.  

3. Number of edges in )G(BF1 = | E(G)) | + | E( Kq) | + q(p – 2)  

                                           = q +୯ሺ୯ିଵሻ
ଶ

+ q(p – 2) =  
q

2
 ( 2p  + q – 3 ). 

4. Degree of vertex vof  G in )G(BF1  = degv
G + (q – degv

G )  =  q. 

5. Degree of vertex e ∈V( L( G ) ) in )G(BF1 = (q – 1) + (p – 2) + p + q – 3. 

6. )G(BF1 is bi-regular if p ≠ 3 and regular if p = 3. 

7. )G(BF1 contains isolated vertices if and only if q = 0 (or) p + q – 3 = 0. 
If q = 0, then G ≅ nK1. If p + q – 3 = 0, then  p = 3, q = 0 (or) p = 2, q = 1.  
Therefore,   G ≅ nK1, n ≥ 1 (or) G ≅ K2 . 

8. )G(BF1 is disconnected if and only if G ≅ nK1 (or) G ≅ K2 mK1, 

where n ≥ 1, m ≥ 0, since if q(G) ≥ 2, then )G(BF1  is connected. 

9. If p ≥ 4, then δ( )G(BF1 ) = q and ∆( )G(BF1 ) = p + q – 3  if p ≥ 4.  

If p ≤ 3, then δ( )G(BF1 ) = p + q – 3 and ∆( )G(BF1 ) = q.  

10. For any connected graph G with atleast 3 vertices, no vertex of )G(BF1  is a cut 
vertex. 

11. )G(BF1 contains a cut vertex, if and only if  G  K2 ∪ nK1, K2, 2K2. 

In the following, the girth of )G(BF1 is found. 

Theorem 2.2: For any (p, q) graph G having atleast 3 vertices, the girth of )G(BF1 is either 
3 or 5. 

Proof: Since Kq is an induced subgraph of )G(BF1 , )G(BF1 contains triangles, if q ≥ 3. 
Assume q ≤ 2. 

If G  2K2 ∪ nK1, n ≥ 0 or  P3 ∪ mK1, m ≥ 1, then )G(BF1 contains triangles. Therefore, G 

 P3. Then )G(BF1  C5.. If G  P3, then girth of )G(BF1  is 5. 
 

Theorem 2.3: Let G be a graph with atleast two edges. Then )G(BF1  is geodetic if and 
only if G is one of the following graphs.P3 ∪ nK1, 2K2 ∪ nK1, n ≥ 0. 

Proof: Assume )G(BF1 is geodetic. 
Case 1. G contains triangles.  

Let V(C3) = {v1, v2, v3} and E(C3) = {e12, e23, e31},where e12= (v1, v2), e23 = (v2, v3),    

e31  = (v3, v1). Then v1, v2, v3, e12, e23, e31 ∈ V( )G(BF1 ) and <{v1,v3,e12,e23}> ≅ C4 in )G(BF1 . 

Therefore )G(BF1  is not geodetic. 
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Case 2. G is triangle free 
Assume q ≥ 3. Since G is a triangle free, G contains P3 ∪ K2, 3K2, K1,3 (or) P4 as a 

subgraph of G. Then )G(BF1  contains either K4 – e, C4 as an induced subgraph.Therefore, 
q ൑ 2.Since G contains atleast 2 edges, q = 2. Therefore, G ≅ P3 ∪ nK1 or 2K2 ∪ nK1,n ≥ 0. 

Conversely, if G ≅ P3 ∪ nK1 or 2K2 ∪ nK1, n ≥ 0.  Then )G(BF1  is geodetic. 

In the following, a necessary and sufficient condition for )G(BF1  to be Eulerian is given. 
 

Theorem 2.4: Let G be a (p, q) graph with q ≥ 2 and p + q ≥ 5. Then )G(BF1  is Eulerian if 
and only if p is odd and q is even. 

Proof: Assume p is odd and q is even. Let v ∈ V(G), e ∈ V(L(G). Then v, e∈V( )G(BF1 ).

1 ( )
deg v

BF G  
= q, is even. 

1 ( )
deg e

BF G  
=  p + q – 3 is also even, since p is odd and p + q ≥ 5. 

Therefore )G(BF1  is Eulerian. 

Conversely, if )G(BF1  is Eulerian, then q is even and p is odd.  

In the following, a necessary condition that )G(BF1   to be Hamiltonian is given.  
 

Theorem 2.5: Let G be a connected (p, q) graph such that q ≥ 3.Then )G(BF1 	 is 
Hamiltonian. 

Proof: This is proved by finding the closure of )G(BF1 . Let v ∈ V(G) and e ∈ V(L(G)). 

Then 
1 ( )

deg v
BF G

= q and
1 ( )

deg e
BF G

= p + q – 3. In )G(BF1 , any two vertices of  L(G) are 

adjacent and any vertex of L(G) in )G(BF1 is adjacent to ( p – 2 ) vertices of G in )G(BF1 . 

Let v ∈ V(G)  and e ∈ V(L(G)) such that (v, e)   E( )G(BF1 ). Then 
1 ( )

deg v
BF G

+ 
1 ( )

deg e
BF G

 

= p + 2q – 3 ≥ p + q, since q ≥ 3. Therefore, a vertex of G which is not adjacent to a vertex 

of L(G)  in )G(BF1 can  be  joined by an edge in )G(BF1 . Now, deg (e) = p + q – 1 and deg 

(v) = q + degv
G . Let v1, v2 be two non adjacent vertices of G in )G(BF1 . 1

1 ( )
deg v

BF G
+ 

2

1 ( )
deg v

BF G  
= 2q + 1degv

G  + 2degv
G  ≥ 2q  + 2 ൐ p  +  q, since q ≥ p–1. Therefore, any two 

nonadjacent vertices of G in )G(BF1  can be joined by an edge. Therefore closure of 

)G(BF1  is complete and )G(BF1  is Hamiltonian.  
 

Note 2.1: If q ≤ 2, then G ≅ P3 (or) K2. )G(BF1   C5 and 1 2( )BF K  ≅ 3K1. 
Theorem 2.6: If G is disconnected such that each component contains atleast two edges, 

then )G(BF1  is Hamiltonian. 
Proof: 

By Theorem 2.5., each component of G induces a Hamiltonian cycle in )G(BF1 . 
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Let G1, G2, …,Gw be the components of G, where w ≥ 2. Through one end of the 

Hamiltonian path of )G(BF1 , we can enter into the Hamiltonian path of )G(BF1  and in 

turn into that of )G(BF1 , …, covering all the Hamiltonian paths of )G(BF1 and come back 

to )G(BF1  through a vertex of G (or) L(G). Therefore, there exists a Hamiltonian cycle in 

)G(BF1  and hence )G(BF1  is Hamiltonian. 
 

Theorem 2.7: 1 2( )BF nK , (n ≥ 3) is Hamiltonian. 
Proof : Let v1,v2,…,v2n  be vertices of G and ei, i+1 = (vi, vi+1), i = 1, 3, 5,…, (2n – 1). Then  

v1,…,v2n , ei, i+1 ∈ V( )G(BF1 ) . e2n-1,2n = (v2n-1,v2n) 
Case 1. n is odd. 
Then v1v2e2n-1,2nv3v4e2n-3,2n-2v5v6,…en+2,n+3vnvn+1e12vn+2vn+3e34,…v2n-1v2nen,n+1v1 is a Hamiltonian 

cycle in 1 2( )BF nK . 
Case 2. n is even. 

Then v1v2e2n-1,2nv3v4,…,en+3,n+4vn-1vne12vn+1vn+2v34,…,en+1,n+2v1is a Hamiltonian cycle  in

1 2( )BF nK .  Therefore 1 2( )BF nK  is Hamiltonian. 
 
Remark 2.1: 

1, If G isa connected graph with atleast two edges, then 1 2( )BF nK  is hamiltonian and 

hence )G(BF1  is 2-connected. Therefore,	 )G(BF1  has no cut vertices, if G is connected. 

2, If G is disconnected with atleast two edges, then )G(BF1  contains cut vertices if and 
only G ≅ 2K2∪ nK1, n ≥ 0. 

In the following a necessary and sufficient condition that )G(BF1 contains Cn     
(n ≥ 4), as an induced subgraph is obtained, where G is any graph which is not totally 
disconnected. 
 

Theorem 2.8: )G(BF1 contains C4 as an induced subgraph if and only if one of the 
following holds. 
(i) G contains triangles. 
(ii) G contains either C4 or K1,3 as an induced subgraph. 
(iii) G contains P4 as a subgraph. 
Proof: (i) Let G contains triangles and let V(C3) = {v1, v2, v3} and E(C3)={e12, e23, e31}, 

where  ei, i+1 = (vi, vi+1) i = 1, 2 and e31 = (v3, v1). Then )G(BF1  contains C4, induced by the 
vertices v1, v3, e12, e23. 

(ii) Since G is an induced subgraph of )G(BF1 , if G contains C4 then )G(BF1  also 
contains C4. 

(iii) Let G contain K1,3 as induced subgraph. 
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Then )G(BF1  contains C4 induced by the central vertex w, any two pendant vertices u, v 

of K1,3 and the vertex in )G(BF1 corresponding to the edges not incident with u and v. 

(iv) Let G containP4 as a subgraph. Then )G(BF1  contains C4 induced by the 

central vertices of P4 and the vertices in )G(BF1  corresponding to the pendant edge of P4. 

Conversely, assume )G(BF1  contains C4 as an induced subgraph.  

If the vertices of C4 in )G(BF1  are vertices of G, then G contains C4 as an induced 
subgraph.  

If three vertices of C4 in )G(BF1  are vertices of G and the fourth vertex is a vertex of L(G), 
then G contains K1,3 as an induced subgraph.  

If two vertices of C4 in )G(BF1  are vertices of G and the remaining two vertices are 
vertices of L(G), then G contains either C3 (or) P4 as a subgraph.  

Since any two vertices of L(G) are adjacent in )G(BF1 , the cases in which three (or) four 

vertices of  C4  in )G(BF1  are vertices of  L(G) are not possible. 
 

Theorem 2.9: )G(BF1 Contains C5 as an induced subgraph if and only if G contains P3 as 
an induced subgraph. 

Proof: Let G contain P3 as an induced subgraph. Since 1 3( )BF P  ≅ C5, )G(BF1  contains 
C5 as an induced subgraph.  

Conversely, assume )G(BF1  contains C5 as an induced subgraph. Since any two vertices of 

L(G) are adjacent in )G(BF1 , any cycle on 5 vertices in )G(BF1 contains atmost 2 vertices 
of L(G). 

(i) If all the vertices of C5 in )G(BF1 are vertices of G, then G also contains C5 as 

an induced subgraph of )G(BF1  . 

(ii) If four vertices of C5 in )G(BF1  are vertices of G and the fifth vertex is a 
vertex of L(G), then G contains P4 as an induced subgraph. 

(iii) If three vertices of C5 is )G(BF1  are vertices of G and the remaining two 
vertices are  vertices of L(G), then G contains P3  as an induced subgraph. 

Theorem 2.10: )G(BF1 contains Cn (n ≥ 6) as an induced subgraph if and only if G 
contains Cn (n ≥ 6) as an induced subgraph. 

Proof: If G contains Cn as an induced subgraph, then so is )G(BF1 . 

Conversely assume )G(BF1  contains Cn (n ≥ 6) as an induced subgraph. If atleast 

one vertex of Cn in )G(BF1  is a vertex of L(G), then a Cn in )G(BF1  contains a chord. 
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Therefore no vertex of Cn in )G(BF1  is a vertex of L(G) and hence G contains Cn (n ≥ 6) 
as an induced subgraph. 

In the following, the edge Partition of )G(BF1 for some known graphs are given. 
 
Theorem 2.11: 

1. Edges of )G(BF1  can be partitioned into G, complete graph on q vertices and qK1, p-2 , 
such that central vertex of  K1, p-2 is a vertex of  Kq. 

2. Edges of 1 nBF (C )  can be partitioned in to  

(i) Cn, Kn ,
nିଶ

ଶ
 C2n , if n is even. 

(ii) Cn, Kn ,
୬ିଷ

ଶ
 C2n, nK2 , if n is odd. 

3. Edges of 1 1,nBF (K )  can be partitioned in to  

(i) K1,n , Kn, 
୬ିଵ	

ଶ
 C2n , if n is odd. n 

(ii) K1,n , Kn, 
୬ିଶ

ଶ
 C2n , if n is even. 

4. Edges of 1 nBF (K )  (n ≥ 3) can be partitioned in to 

(i) Kn, n

2

K
 
 
 

  and୬ିଵ	
ଶ

 H, where H  is a (n – 2 ) regular graph on 2n vertices, if n is odd. 

(ii) Kn, n

2

K
 
 
 

, ௡ିଵ	
ଶ

 H and  ௡
ଶ
 K1, n-2 if n is even. 

In the following, eccentricity properties of  )G(BF1  are discussed.  
 

Theorem 2.12: Eccentricity of a vertex in )G(BF1  corresponding to an edge in G is 2. 

Proof: Let e  E(G) and let e be vertex in )G(BF1  corresponding to e. Then                    

e  V(L(G)) 

Since the subgraph of )G(BF1  induced by vertices  of  L(G) is complete, distance between 

any two vertices of  L(G) in )G(BF1  is 1. 

 Let v, eV( )G(BF1 ), where v V(G). e is the vertex corresponding to an edge     

eE(G) . If e   E(G) is not incident with v V(G), then 
( )1

( , )
GBF

v ed   = 1.  Let             

e   E(G) be incident with v.  Let there exist an edge x in G, not incident with v and let x 
be the vertex in )G(BF1 corresponding to x. Then vxe is a geodesic path in )G(BF1  and 

hence  d( v, e ) =2.   
If all the edges of G are incident with v, then there exists a vertex uV(G) such that  u is 

not incident with e. Then vue is a geodesic path in )G(BF1  and hence d(v, e ) = 2. 

Therefore, eccentricity of e  in )G(BF1  is 2. 
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Theorem 2.13: 

 Eccentricity of a vertex of G in )G(BF1  is 1, 2 or 3. 

Proof: Let u be a vertex of G in )G(BF1 . By the previous theorem, in )G(BF1 , d(u, e) = 2, 

where e is a vertex of L(G) in )G(BF1 . 
Case 1. G is connected. 

 Let u be a vertex of G in )G(BF1  such that u ≠ v. Since G is an induced subgraph of 
G, if dG(u, v) ≤  2, then 

1 ( )
( , )

BF G
d u v

 
≤  2. If dG(u, v) ≥ 3 , then there exists atleast one 

edge e not incident with both u and v. Let e be the vertex of )G(BF1  corresponding to e. 

Then uev is a geodesic path in )G(BF1 and hence 
1 ( )

( , )
BF G

d u v
 

= 2. Therefore, 

eccentricity of a vertex of a connected graph G in )G(BF1  is 2. Thus, the distance between 

any two point vertices in )G(BF1  is 1 or 2. 
Case 2. G is disconnected. 

 Let u, v V( )G(BF1 ) ∩ V(G). If u and v belong to the same component of G, then

1 ( )
( , )

BF G
d u v

 
≤ 2. Let u and v belong to the different components of G. Let G1 and G2 be 

two components of G such that each have atleast one edge. Assume u  G1 and           v 

 G2. If there exists an edge x  E(G1)not incident with  u ((or) x E(G2) not incident 

with v), then uxv is a geodesic path in )G(BF1  and hence d(u, v) = 2 in )G(BF1 .  
 Let all the edges of G be incident with one of u and v and let e1 and e2be the edges in 

G incident with u and v respectively. Let  e1 and e2  be the vertices in )G(BF1  

corresponding to e1 and e2  respectively . Then u e2e1 v is a geodesic path in )G(BF1  and 

hence
)(1 GBF

d (u, v) = 3. Let G  K1 and V(K1) = {u}. If there exists an edge in G2 not 

incident with vthen d(u,v) = 2. Let all the edges of G2 be incident with v. Let e1 and e2 be 

the edges incident with v and e1 = (v, v1), e2 = (v, v2  ). Then u e1 v2v  is a geodesic path in 
G and hence d(u,v) = 3.  

Let G have more than 3 components. Let u,v  V(G) ∩ V( )G(BF1 ). If each component 

has atleast one edge, then d(u,v) = 2 in )G(BF1 . If G  G1 ∪ G2 ∪ mK1, m ൒ 1 and if G1, 
G2 are stars, then d(u,v) = 3. Otherwise,  d(u,v) = 2. 
Remark 2.2: 

1. If )G(BF1  is connected, then diameter of )G(BF1  is at most 3. 

2. For any connected graph G with atleast 3 vertices, )G(BF1  is self-centered with radius 2. 

3. Let G be a disconnected graph such that )G(BF1 is connected. Then )G(BF1 is self-
centered with radius 2 if and only if one of the following holds. 
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(i).  G ≇ 2K2 ∪ mK1, where m ≥ 0. 

(ii). G ≇ K1, n  ∪ K1, m , where  n, m ≥ 2 and 

(iii). G ≇K1, n ∪ mK1, where n ≥ 2 and m ≥ 1 
 

Proposition 2.1:  Let G be a disconnected graph such that )G(BF1 is connected. Then 

)G(BF1 is bieccentric with radius 2 if and only if one of the following holds. 

 (i)  G ≅ K1, n ∪K1, m∪tK1  for n, m ≥ 2. 

(ii) G ≅K1, n∪ mK1, for n ≥ 2 and m ≥ 1 and 

(iii)  G ≇ 2K2∪mK1form ≥ 0   . 
 

Theorem 2.14: For any (p, q) graph G, α0( )G(BF1 ) ≤ max{ q + α0(G), p + q – 1}.  . 

Proof: Let S be a minimum point cover of G such that |S|= α0(G). Let K = S ∪ V(L(G))                     

V( )G(BF1 ).  The q vertices of L(G) in )G(BF1 covers all the edges of L(G)  together  with 

the edges of the form (vi, ejk), where vi V(G) is not  incident with ejk E(G). Therefore S 

is a point cover for )G(BF1 . On the other hand , since the subgraph of )G(BF1  induced 

by vertices of L(G) in )G(BF1  is complete. V(G) ∪ K, where K is a point cover of L(G) is a 

point cover, is a point cover of )G(BF1 .|K| = α0(Kq) = q–1. Therefore α0( )G(BF1 ) ≤ p + q 
– 1. 

Therefore α0( )G(BF1 ) ≤ max{ q + α0(G), p + q – 1}.       
 

 Theorem 2.15: If G ≠ nK1, K1, n, then α1( )G(BF1 ) ≤ p. 
Proof: Case 1. p ≥ q. 

The set of p edges (vi, ej) i = 1, 2, …, p of )G(BF1  is a line cover for )G(BF1 , ej is 
not incident with vi. 
Case 2. p < q. 
Let S = {(vi, ej) i = 1, 2, …, p}, where ej is not incident with vi. This set S covers all the p 

vertices of G in )G(BF1 and p vertices of L(G) in )G(BF1 . Let H be the subgraph of 

)G(BF1  induced by the remaining (q – p) vertices of L(G). H is a complete graph on        

(q – p) vertices. Therefore α1( )(1 GBF ) ≤ p + α1(Kq-p) =  p +
 1

2

q p  
 
 

, since     

α1(Kq) =  
1

2

p  
  

.    α1( )(1 GBF ) ≤ 

.

1
.

2

p if p q

q p
p if p q




     



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Example 2.1: 

1.  1 1( ( ))nBF P  ≤  n, if  n ≥ 3. 

2. 1 1( ( ))nBF C  ≤ n, if n ≥ 3. 

3. 1 1 1,( ( ))nBF K  
≤ n + 1, if n ≥ 3. 

4. 1 1( ( ))nBF K  ≤ 
 1

, 3.
4

n n
if n

 
 

 
 

 
3. Domination Numbers and other parameters for the 

complement of B(G, K , INC)q  

 In the following, the graphs G for which the domination number  of )G(BF1  is 2 is 
found. 
Theorem 3.1: For any graph G, the following 2 – element sets are not dominating sets in 

)G(BF1  
(i) two adjacent vertices of G  

(ii) Vertices in )G(BF1  corresponding to two adjacent edges of G. 

(iii) Vertex in )G(BF1  corresponding to an edge of G and a vertex of G. 

Proof: Let D = {u, v} be any 2 – element set in V( )G(BF1 ). 

If u and v are adjacent vertices of G, then the edge uv  E(G) is adjacent to neither u nor 

v in )G(BF1 . 
If u and v are vertices corresponding to adjacent edges in G, then the edges in G are 

incident with a common vertex, say x. But x is adjacent to neither x nor y in )G(BF1 . 

If u = xy  E(G) and w  V(G), w ≠  x, y such that d(w, x) = d(w, y)  ≥ 2 in G. Then x 
and y are not adjacent to both u and w. 

Thus in all cases, D is not dominating set in )G(BF1 . 
 

Theorem 3.2: For any graph G, ( )G(BF1 ) = 2 if and only if q ≥ 1. 

Proof: Since there is no graph G with( )G(BF1 ) = 1, ( )G(BF1 ) ≥ 2.  

Let e=( u, v) be an edge in G. Then D = {u, e}  V( )G(BF1 ). v is adjacent to u in )G(BF1

. Since L(G) is an induced sub graph of )G(BF1 , each vertex in V(L(G)) ∩ V( )G(BF1 ) is 

adjacent to e and  each vertex in    V( )G(BF1 ) ∩ ( V(G) – {u, v}) is also adjacent to e. 
Therefore D is adominating  set of )G(BF1  and hence ( )G(BF1 ) ≤ 2. 
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Remark 3.1: 

1. For any graph G, ( )G(BF1 ) ≤ (G), since G is an induced subgraph of )G(BF1 .  

2. If α0(G) = 2 and if D is an independent point cover of G with |D| = 2 then          

( )G(BF1 ) ≤ α0(G) = 2. 

3. For any graph G, ( )G(BF1 ) ≤ α0(G),  if α0(G) ≥ 3. 
 

Remark 3.2: D is also a nonsplit (restrained) dominating set of )G(BF1 . 

Therefore r ( )G(BF1 ) ≤ ns( )G(BF1  ) = 2 . 

 
Remark 3.3: 

(i) Any nonsplit dominating set of )G(BF1 containing vertices of G only need not be a 
nonsplit dominating set of G.  
 For example in C5, the set containing any two nonadjacent vertices of  C5 is a 

nonsplit dominating set of )C(BF 51 , but is not a nonsplit dominating set of C5. 

(ii) D = {e1, e2 }  V( )G(BF1 ), where e1 and e2 are vertices in )G(BF1  corresponding to 

 edges e1 and e2 in G is a restrained dominating set of  )G(BF1  if and only if  G ≠ K1,n. 

(iii) Any proper subset D of V(G) is restrained dominating set of  )G(BF1 if and only if  D 
is a  dominating set of G. 
 
Example 3.1 : 

(i) If G ≅ P3 ∪ mK1 ,for m ൒ 0, then ns ( )G(BF1 ) = 3.  

(ii) If G ≅ 2K2 ∪ mK1,  for m ൒ 1, then ns( )G(BF1  ) = 4. 

(iii) If G ≅ P3 ∪ mK1 ,for m ൒ 0, then r ( )G(BF1 ) = 3.  

(iv)If G ≅ 2K2 ∪	mK1,  for m ൒ 1, then r ( )G(BF1  ) = 2. 
 

 In the following, the graphs G for the perfect domination number p of )G(BF1  is 2 
or 3 are obtained. 
Theorem 3.3: Let G be a graph other than a star. If the set D of vertices of L(G) in 

)G(BF1 such that atleast three of the corresponding edges are independent in G, then D is 

not a perfect dominating set of )G(BF1 . 

Proof: Let D be a subset of V(L(G)) having atleast three vertices, say e1, e2, e3  such that 

the corresponding edges  e1, e2, e3 in G are independent in G. Let v  V(G) be an end 
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vertex of  e3. Then vV( )G(BF1 ) – D  is adjacent to both  e1 and e2  and hence D is not 

a perfect dominating set of )G(BF1  . 
 
Theorem 3.4: Let G be anygraph such that there exists a pair of independent edges say e1, 

e2 in G. Then D = { e1, e2}  V( )G(BF1 ) is perfect dominating set for )G(BF1  if and 

only if G  2K2. 

Proof: Let D = {e1, e2} be a perfect dominating set of )G(BF1 . Then D = {e1, e2} is a 

dominating set of )G(BF1 . If there exists an edge in G, then the corresponding vertex in V(

)G(BF1 ) – D is adjacent to both e1and e2. Similarly,  if there exists a vertex v  V(G) 

such that e1 and e2 are not incident with v, then v  V( )G(BF1  ) – D is adjacent to both 

e1and e2. Thus, D is not a perfect dominating set of )G(BF1  and hence G  2K2. 

Conversely assume G  2K2. Let e1, e2be the vertices in V( )G(BF1 ) corresponding to the 

edges in  2K2 . Then D = {e1, e2} is a perfect dominating set for )G(BF1 . 
 

Theorem 3.5: The set {u, v}  V(G)  is a perfect dominating set of )G(BF1  if and only if  

G  K1, n ∪ K1, m, n, m ≥ 1 or K1, n ∪ K1,  n ≥ 1.            

Proof: Let D = {u, v}  V( )G(BF1 ), where  u, v  V(G) be a perfect dominating set of 

)G(BF1 . If u, v are adjacent in G, then D is not a dominating set of )G(BF1 . Therefore u 

and v are nonadjacent in G and hence in )G(BF1 . Since D is a perfect dominating set of

)G(BF1 , each vertex in V( )G(BF1 ) – D is adjacent to exactly one vertex in D. Each vertex 

of G in V( )G(BF1 ) is adjacent to exactly one of  u and v. Therefore G  K1, n ∪ K1, m,  n, m 
≥ 1 or  K1, n ∪ K1,  n ≥ 1.  

Conversely, if G is one of the graphs G  K1, n ∪ K1, m,,n, m ≥ 1 or  K1, n ∪ K1, then D = {u, 

v}  V(G)  is a perfect dominating set for )G(BF1  . 
 
Theorem 3.6: Let G be a graph having atleast four vertices.  Any subset of V(G) having at 

least three vertices is not a perfect dominating set of )G(BF1  . 

Proof: Let D be a subset of V(G) such that |D| ≥ 3 and v  V(G) - D . There exists a 

vertex u D such that  e = (u, v)  E(G) and the vertex e in )G(BF1 corresponding to e, 

e  V( )G(BF1 ) - D is adjacent to atleast two vertices in D. Hence, D is not a perfect 

dominating set of )G(BF1  . 
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Theorem 3.7: For any graph G having atleast one edge, )G(BF1 = 3. if and only if  G is 
one of the graphs: C3 and P3. 

Proof: Assume )G(BF1 =3. Then there exists a perfect dominating set D of )G(BF1 having 
three vertices  
Case 1.All the vertices of D are vertices of G . 

By Theorem 3.6,V( )G(BF1 ) – D contains no vertices of G. Therefore, V( )G(BF1 ) – D 

contains vertices corresponding to the edges inD and G  K2 ∪ K1, P3 (or) C3.  

If G K2 ∪ K1, then )G(BF1  2K2 and )G(BF1 = 2. Therefore G   P3 (or) C3. 
Case 2.D contains two vertices of G and one vertex of L(G). 

Let v1 and v2 be nonadjacent and let e = (u, v)  E(G), u, v  V(G).  

Then D= {v1, v2, e}.Since u is not adjacent to exactly one of v1 and v2, say v1.  

Let e1 = (u, v). Then e1 is adjacent to both v2 and e. Therefore v1 and v2 are adjacent. 
Case 3. D contains two vertices of  L(G) and one vertex of G. 

Let e1, e2 L(G) and e1, e2 be the edges in G. Let e1 = (u1, v1) , e2 = (u2, v2)  and   

v V(G).Then D  = {e1, e2, v}  V( )G(BF1 )  .  

Let e1 and e2 be adjacent and v1 = u2 . Since v1 is not adjacent to e1and e2, v1 is 

adjacent to  v. If x1 = (v, v1), then x1 is adjacent to both e1, e2.Therefore either v = v1 (or) 
e1 and e2 are nonadjacent. 

Let v = v1. Then u1is adjacent to both e2 and v. Similarly v2 is adjacent to e1 and 

v. This is a contradiction. Therefore G  P3.Similarly is the case when v = u1 (or) v = u2. 

Therefore e1 and e2are not adjacent. Since u1, v1 are adjacent to e2, they are not adjacent to 

v. Similarly, if u2, v2 are adjacent to e2, then they are not adjacent to v. But the 

corresponding vertex in L(G) is adjacent to both  e1 and e2. Therefore this case is not 
possible. 
Case 4. All the vertices of D are vertices L(G). 

If the subgraph of G induced by the edges corresponding to the vertices of L(G) 

in D is C3, then  G  C3. 

Conversely, if G is one of the graphs given in the theorem, then )G(BF1  = 3 . 
Remark 3.4: There exists no perfect dominating set containing atleast 4 vertices in 

)G(BF1 . 

In the following, the graphs G for the independent domination number i of )G(BF1  is 2 
are obtained. 
 
 



 
 

International Journal of Engineering Science, Advanced Computing and Bio-Technology 246 

Theorem 3.8: For any (p, q) graph G with q ≥ 2 , then )G(BF1  = 2. 

Proof: Let v  V(G) and since q ≥ 2 , there exists and edge e in G incident with v  in G. 

Let e be the vertex in )G(BF1  corresponding to e. Then D = (v, e)  V( )G(BF1 ). All the 

vertices in V( )G(BF1 ) - D corresponding to the edges in G and the vertices of V(G)  in

)G(BF1  not incident with e are adjacent to e and the vertex in V(G)  incident with e  is 

adjacent to u . Also  D   2K1. Therefore D is an independent dominating set )G(BF1

and hence )G(BF1 ≤ 2. Therefore )G(BF1 = 2. 

 In the following, an upper bound for the split domination number s of )G(BF1  
is determined. 
 

Theorem 3.9: Let G be any graph with δ(G) ≥ 2. Then )G(BF1 ≤ q. 

Proof: Let v  V(G) be such that degG(v) = δ(G) ≥ 2 and let D be the set of all vertices in 

)G(BF1  corresponding to the edges not incident with v in G. 

Then D = D ∪ NG(v)  V( )G(BF1 ) is a dominating set of )G(BF1 . Also v is an isolated 

vertex in the induced subgraph  V( )G(BF1 ) – D   and hence this subgraph is 

disconnected. Hence, D is a split dominating set of )G(BF1 . Thus  )G(BF1 ≤  |D|= q.  

This bound is attained if G  Cn, n ≥ 3. 
 

Theorem 3.10: For any connected graph G, 1( ( ))S BF G ≤  p + q – Δ(G) – 1. 

Proof: Let v be a vertex of maximum degree in G and degG(v) = Δ(G). Let S be the set of 

vertices in )G(BF1  corresponding to the edges incident with v in G and let D = S  {v} 

 V( )G(BF1 ). If D = V( )G(BF1 ) –  D, then D is a dominating set of )G(BF1 . Also v is 

an isolated vertex in the induced subgraph V( )G(BF1 ) –  D  and is disconnected.Hence, 

D is a  split dominating of )G(BF1 . 

Thus )G(BF1 ≤ |D| =  |V( )G(BF1 )| – |D| = p + q – Δ(G) – 1. 
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