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Abstract: A clique in a graph G is a complete subgraph of G. A clique partition of G is a collection C of 
cliques such that each edge of G occurs in exactly one clique in C. The clique partition number cp(G) is 
the minimum size of a clique partition of G. In this paper upper bounds for the clique partition number 
of the Boolean function graphs 2BF (G) and BF3(G) for some standard  graphs are obtained. 
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1. Introduction 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 
V(G) and E(G) denote its vertex set and edge set respectively. A clique partition of G is a 
collection C of cliques such that each edge of G occurs in exactly one clique in C. The clique 
partition number cp(G) is the minimum size of a clique partition of G. The Line graphs, 
Middle graphs, Total graphs and Quasi-total graphs are very much useful in computer 
networks. 
 Whitney[16] introduced the concept of the line graph L(G) of a given graph G in 1932. 
The first characterization of line graph is due to Krausz. The Middle graph M(G) of a graph 
G was introduced by Hamada and Yoshimura [5]. Characterizations were presented for 
middle graphs of any graph, tree and complete graphs in [1]. The concept of total graphs 
was introduced by Behzad [2] in 1966. Sastry and Raju [15] introduced the concept of quasi-
total graphs and they solved the graph equations for line graphs, middle graphs, total graphs 
and quasi-total graphs. This motivates us to define and study other graph operations. 
 The points and Lines of a graph are called its elements. Two elements of a graph are 
neighbors if they are either incident or adjacent. The total graph T(G) of G has vertex set 

V(G)∪E(G) and vertices of T(G) are adjacent whenever they are neighbors in G. The quasi-
total graph [9] P(G) of G is a graph with vertex set as that of T(G) and two vertices are 
adjacent if and only if they correspond to two nonadjacent vertices of G or to two adjacent 
edges of G or to a vertex and an edge incident to it in G. The middle graph M(G) of G is 
the one whose vertex set is as that of T(G) and two vertices are adjacent in M(G) whenever 
either they are adjacent edges of G or one is a vertex of G and the other is an edges of G 
incident with it. Clearly, E(M(G)) = E(T(G)) – E(G).  
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 The corona 1 2G G   of two graphs G1and G2 is the graph obtained by taking one copy 
of G1 of order n and n copies of G2, and then joining the ith vertex of G1 to every vertex in 
the ith copy of G2.   
 For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. 

The Boolean function graph pB(K ,L(G), INC,NINC)  of G is a graph with vertex set V(G)

 E(G) and two vertices in pB(K ,L(G), INC,NINC)
 
are adjacent if and only if they 

correspond to two nonadjacent edges of G or to a vertex and an edge  incident to it in G, 
or to a vertex and an edge not incident to it in G, where L(G) is the line graph of G. For 
brevity, this graph is denoted by 2BF (G) .  
For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. 

The Boolean function graph pB(K ,L(G), INC,NINC)  of G is a graph with vertex set V(G) 

 E(G) and two vertices in pB(K ,L(G), INC,NINC)
 
are adjacent if and only if they 

correspond to two adjacent edges of G or to a vertex and an edge  incident to it in G, or to 
a vertex and an edge not incident to it in G, where L(G) is the line graph of G. For brevity, 
this graph is denoted by 3BF (G) . 
In this paper, upper bounds for the clique partition numbers of the Boolean function graph 
BF2(G) and BF3(G) for some standard  graphs are obtained.  For unexplained terminology 
and notations, [4] is referred. 
 

2. Clique partition of BF2(G)  
In the following, clique partition number of path, cycle, star and wheel graphs are found. 
Theorem 2.1:   

For the path Pn on n vertices (n ≥ 6), cp( 2 n
BF (P ) ) = 

2

2

+
if n isodd.

4

+
if n

 3n  2n

iseven.
4

– 1

 3n  2n







 

Proof: 
Let v1, v2, v3, …, vn be the vertices and e1, e2, …, en-1 be the edges of Pn,                                        

where ei = (vi, vi+1), (1 ≤  i ≤ n – 1). Then v1, v2, v3, …, vn, e1, e2, …, en-1  V( 2 n
BF (P ) ),   |V(

2 n
BF (P ) )| = 2n – 1 and |E( 2 n

BF (P ) )| = |E( n
L(P ) )| + n(n  –  1)  

                 =  
(n  1) – (n – 2)

2
  – (n – 2) + n (n – 1)   

        = 
23n – 7n + 6

2
.  

The clique number of 2 n
BF (P )  is 

n

2
.  
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E( 2 n
BF (P ) ) = E( n

L(P ) )  F, where F =   n -1n

j i
j=1 i =1

v ,e   ; |F|= n (n -1). 

Case1: n is odd 

The edge set of 2 n
BF (P ) is decomposed into n 1

2

K  , K3 and K2s. Vertex sets of n 1

2

K 

are listed as elements of the sets A1 and A2, where A1 = {e1, e3, …, en-2}   ;   A2 = {e2, e4, …, 

en-1},  < A1 >     <  A2 >     n 1

2

K  .   Vertex sets of K3s are given by 

 A3 = {{vi, e1, e2i + 2}, for each i,  1 ≤  i  ≤ 
n-3

2
 }, < A3  >   

n-3

2
 K3.  

A4 = 

(n 5)

2

i
i =1

B ,



 where B1 = {{ v1, ei, ei + 3 }, i = 2, 3, …, n - 4}, B2 = {{ v2, ei, ei + 5 }, i = 2, 3, …,      

n - 6}, B3 = {{ v3, ei, ei + 7 }, i = 2, 3, …, n - 8},…, n 5

2

B   = {{ n 5

2

v  , ei, ei + (n - 4) }, i = 2, 3} and 

hence < A4 >   
2n – 8n + 15

4
K3 .  

These cover all the edges of n
L(P )  and 

2n – 6n + 9

2  
edges of F. The remaining 

2 n  4+ n  – 9

2
edges of F are covered by K2 s.  

Therefore, 2 n
BF (P ) = 2 n 1

2

K     
2n – 6n + 9

4

 
 
 

K3   
2n  4n  –+ 9

2

 
 
 

K2 and hence  

cp( 2 n
BF (P ) ) =  2 + 

2 n – 6n + 9

4

 
 
 

+ 

2n  4n  –+ 9

2

 
 
   

= 
23n  2+ n - 1

4
 .  

 
Case2: n is even 

         The edge set of 2 n
BF (P )  is decomposed into n

2

K , n 2

2

K  , K3 and K2s. Vertex sets of 

n

2

K , n 2

2

K   are listed as elements of the sets C1 and C2.  C1 = {e1, e3, …, en-1};   C2 = {e2, e4, 

…, en-2} and  < C1 >   n

2

K , < C2  >  n 2

2

K  .  Vertex sets of K3’s are given by  C3 = 

 n 4

2

i
i 1

D






where  D1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 4}, D2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 6},  
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D3 = {{ v3, ei, ei + 7 }, i = 1, 2, 3, …, n - 8}, …
n 4

2

D 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i = 1, 2} and hence 

< C3 > ≅ 
2 n – 6n + 8

4

 
 
 

 K3.  

These cover all the edges of n
L(P )  and 

2n – 6n + 8

2  
edges of F. The remaining 

2 n  4+ n-8

2
 

edges of F are covered by K2 s.  

Therefore, 2 n
BF (P ) = n

2

K    n 2

2

K   
2n – 6n + 8

4

 
 
 

 K3 
2n  4n-8+

2

 
 
 

K2 and hence 

cp( 2 n
BF (P ) ) =  2 + 

2 n – 6n + 8

4

 
 
 

+ 

2n  4n-8+

2

 
 
   

= 
23n  + 2n  

4
 .  

Therefore, cp( 2 n
BF (P ) ) =

2

2

+
if n isodd.

4

+
if n

 3n  2n

iseven.
4

– 1

 3n  2n







.
  

Theorem 2.2: 

For any cycle Cn on n vertices (n ≥ 6), cp(BF2(Cn)) = 

+
if n isodd.

4

+
if n iseven.

4

2 3n  6n – 1

2 3n  4n+ 8







.
.
 

Proof: 
 Let vi  (1 ≤ i ≤ n) be the vertices of Cn. Let ei = (vi, vi +1), (1 ≤ i ≤ n - 1) and  en = (vn, v1). 

Then V(BF2(Cn)) = V(Cn)   E(Cn), |V(BF2(Cn)| = 2n, |E((BF2(Cn)| = |E( n
L(C ) )| + n2  =  

 3n n –1

2

 
  
 

.  The clique number of BF2(Cn) is 
n 1

2


. 

E( 2 n
BF (C ) ) = E( n

L(C ) )  F, where F =   nn

j i
j=1 i =1

v , e   ; |F|= n2.
 

Case1: n is odd 

The edge set of BF2(Cn ) is decomposed into n 1

2

K  , K3 and K2s.  

Vertex sets of 2 n 1

2

K  are listed as elements of the sets A1 and A2, where  

A1 = {e1, e3, …, en-2};   A2 = {e2, e4, …, en-1},  < A1 >   < A2 >  n 1

2

K  .     



 
 

 

160 Clique Partition Numbers of Boolean Function Graphs B(K , L(G), INC, NINC)p  and
 
B(K ,L(G), INC, NINC)p  

 Vertex sets of K3’s are given by A3 = 

 n 3

2

i
i 1

B




 where B1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 3}, 

B2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 5}, B3 = {{ v3, ei, ei + 7 }, i = 1, 2, 3, …, n - 7},…,             

n 3

2

B = {{ n 3

2

v  , ei, ei + (n - 2) }, i = 1, 2} and hence < A3 >   
2n – 4n + 3

4

 
 
 

 K3.  

These cover
2n – 4n + 3

2

 
 
 

edges of n
L(C )  and 

2n – 4n + 3

2

 
 
 

 edges of F. The 

remaining 
n–3

2
edges of n

L(C ) and 
2n  4n – 3+

2

 
 
 

edges of F are covered by K2s and in 

total there are 

2n  5n–6+

2

 
 
 

K2s. 

Therefore, 2 n
BF (C ) = 2 n 1

2

K     
2n – 4n + 3

4

 
 
 

K3   

2n  5n–6+

2

 
 
 

K2 and hence  

cp( 2 n
BF (C ) ) = 2 + 

2 n – 4n + 3

4

 
 
 

+ 

2n  5n–6+

2

 
 
   

= 
2 3n  + 6n – 1

4  
Case2: n is even 

The edge set of 2 n
BF (C )  is decomposed into n

2

K , K3 and K2s. Vertex sets of 2 n

2

K

are listed as elements of the sets D1 and D2.  
D1 = {e1, e3, …, en-1};  D2 = {e2, e4, …, en} and < D1 >   < D2 >   n

2

K .     

Vertex sets of K3’s are given by  

D3 = {{vi, e1, e2i + 2}, for each i,  1 ≤  i  ≤ 
n –4

2
 } and < D3 >    

n –4

2
 K3. 

D4 = 

 n 4

2

j,i
j 1

D




 where D1,i = {{ v1, ei, ei + 3 }, i =  2, 3, …, n - 3}, D2,i = {{ v2, ei, ei + 5 }, i =  2, 3, 

…, n - 5}, D3,i = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 7},…,
n 4

,i
2

D 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i =  2, 3} 

and < D4 > 
2n – 6n + 8

4

 
 
 

.  

These cover all the edges of n
L(C )  and 

2n – 4n 

2
 edges

 
of F. The remaining 

2 n – 4n 

2
edges 

of F are covered by K2s.  
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Therefore, 2 n
BF (C ) = 2 n

2

K     
2n – 4n 

2

 
 
 

K3   

2 +

2

n  4n 
 
 

K2 and hence  

cp( 2 n
BF (C ) ) = 2 + 

2 n – 4n 

2

 
 
 

+ 

2 +

2

n  4n 
 
   

= 
2 3n  4+ n+8 

4
. 

Therefore, cp( 2 n
BF (C ) ) = 

2

2

+
if n isodd.

4

+
i

 3n  6n – 1

f n iseven.
4

 3n  4n+ 8







.
  

Theorem 2.3:  
For the star K1,n on n vertices (n ≥ 3), cp(BF2(K1, n))  =  n(n +1). 
Proof:   

Let  v be the central  vertex and v1, v2, v3, …, vn be the  pendant vertices and  e1, e2, 
…, en be the edges of K1, n, where ei = (v, vi), (1 ≤ i ≤ n ).  
Then v, v1, v2, v3, …, vn, e1, e2, …, en   V(BF2(K1, n)) and |V(BF1(K1, n))| = 2n + 1 and  
|E(BF1(K1, n))| =  n(n +1) and the clique number  is 2. Since BF2(K1, n) is C3 free and edges of 

BF2(K1, n) can be decomposed into K2s only. The edge sets of n(n +1)K2 are denoted as A1 

and A2 are given as                  

A1 = {(v, ei): 1 ≤ i ≤ n} and A2 =   nn

j i
j=1 i =1

v ,e   , |A1| = n ; |A2| = n2. |A1| + |A2| = n(n +1). 

 Therefore cp(BF2(K1, n)) =  n(n +1). 
 
Theorem 2.4:  
 For the wheel Wn+1 on (n+1) vertices (n ≥ 6),  

cp(
2 n 1

BF (W ) ) = 

2

2

-
if n isodd.

4

-
if n iseven.

4

 11n  2n – 1

 11n  4n+ 8







  . 

Proof:   
Let  v be the central  vertex  of  Wn+1 and v1, v2, v3, …, vn be the  vertices of cycle     

C n .  Let ei = (vi, vj), 1 ≤ i ≤ n and j   (i + 1)(mod n) and fi = (v, vi), 1≤ i ≤ n. Then                  

V(
2 n 1

BF (W ) ) = V(Wn + 1) E(Wn + 1).  

|V( 2 n 1
BF (W ) )| = (n + 1) + (2n)  = 3n + 1.  
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|E(
2 n 1

BF (W ) )| = |E(L(Wn + 1))| + 2n(n + 1) = 
27n 3n

2



 
and the clique number of is 

n 1

2



. Then E (
2 n 1

BF (W ) ) = E(L(Wn + 1))  F   H, where F =   n n

j i j i
j=1 i 1

(v ,e )(v , f )


 

  
and       

H =  n

i i
i 1

(v,e )(v, f )

 ; |F|= 2n2 , |H|= 2n . 

 
Case1: n is odd  

The edge set of BF2(Wn + 1 ) is decomposed into n 1

2

K  , K3 and K2s.  

Vertex sets of  2 n 1

2

K  are listed as elements of the sets A1 and A2, where  

A1 = {e1, e3, …, en-2};   A2 = {e2, e4, …, en-1}, < A1 >     <  A2 >    n 1

2

K  .     

 Vertex sets of K3s are given by 

A3 = 

 n 3

2

i
i 1

B




 where   

B1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 3}.  
B2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 5}.  
B3 = {{ v3, ei, ei + 7 }, i = 1, 2, 3, …, n - 7}.  
. 
. 

n 3

2

B 
= {{ n 3

2

v  , ei, ei + (n - 2) }, i = 1, 2} and < A3 >   
2n – 4n + 3

4

 
 
 

K3. 

  
A4 = {{v, fi, ei + 1}; 1≤ i ≤ n, en+1 = e1} and < A4 >   nK3. 

These cover all the edges of H, 
2 n – 2n+3 

2
 edges of 

n +1
L(W )

 
and 

2n  – 4n + 3

2   
edges of 

F. The remaining 
2 5n  – n– 6

2  
edges are covered by K2 s.  

Therefore, 
2 n 1

BF (W ) = 2 n 1

2

K     
2 +

4

n  3 
 
 

K3   
25n  – n– 6

2

 
 
 

K2 and hence  

cp(
2 n 1

BF (W ) ) =  2 + 
2 +

4

 n  3 
 
 

+ 

25n  – n– 6

2

 
 
   

= 
211n  – 2n–1

4
.
 
 

Case 2: n is even 

The edge set of 2 n 1
BF (W )  is decomposed into n

2

K , K3 and K2s.  
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Vertex sets of 2 n

2

K are listed as elements of the sets C1 and C2.  

C1 = {e1, e3, …, en-1}  ;  C2 = {e2, e4, …, en} and < C1 >   < C2 >  n

2

K .     

 Vertex sets of K3’s are given by  

C3 = {{vi, e1, e2i + 2}, for each i, 1 ≤  i  ≤ 
n –4

2
 }and < C3 >   

n –4

2
 K3.    

C4 = 

 n 4

2

i
i 1

D




 , where D1 = {{ v1, ei, ei + 3 }, i =  2, 3, …, n - 3}, D2 = {{ v2, ei, ei + 5 }, i =  2, 3, …, 

n - 5}, D3 = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 7},…, 
n 4

2

D 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i =  2, 3}and 

< C4 > 
2 n – 6n + 8

4

 
 
 

K3.                                                                                          

c5 = {{v, fi, ei + 1}; 1≤ i ≤ n, en+1 = e1} and < C5 >   nK3. 

 These cover all the edges of H,  
2

2

n – n  
 
 

 edges of n
L(C )  and edges 

2n – 4n 

2

 
 
   

of F. 

The remaining 

25n  – 2n

2

 
 
 

edges of F are covered by K2 s.  

Therefore, 
2 n 1

BF (W ) = 2 n

2

K     
2n

4

 
 
 

K3   

25n  – 2n

2

 
 
 

K2 and hence  

cp(
2 n 1

BF (W ) ) = 2 + 
2 n

4

 
 
 

+ 
 

25n  – 2n

2

 
 
 

= 
211n  – 4n+8 

4
. 

Therefore, cp(
2 n 1

BF (W ) ) =

2

2

-
if n isodd.

4

-
if n iseven.

4

 11n  2n – 1

 11n  4n+ 8







.
 
 

In the following clique partition number of 
n 1

P o K and n 1
C K are found. 

 
Theorem 2.5:  

For the graph 
n 1

P o K  (n ≥ 6), cp( 2 n 1
BF (P K ) ) = 

2

2

-
if n isodd.

2

-
i

 9n  6n+ 3

f n is even.
2

 9n  7n+ 8







 

 



 
 

 

164 Clique Partition Numbers of Boolean Function Graphs B(K , L(G), INC, NINC)p  and
 
B(K ,L(G), INC, NINC)p  

Proof: 
Let vi  (1 ≤ i ≤ n) be the vertices of Pn with v1 and vn  as pendant vertices and let  

ei = (vi, vi + 1), (1 ≤ i ≤ n-1) be the edges of Pn. Let ui be the pendant vertex adjacent to  
vi   (1 ≤ i ≤ n) and let  fi = (vi, ui),   (1 ≤ i ≤ n).   

V( 2 n 1
BF (P K ) ) = V( n 1P K ) E( n 1P K ).  

Therefore |V( 2 n 1
BF (P K ) )| = 2n + 2n – 1 = 4n – 1.  

Let F = 
n -1n

j i j i
j=1 i =1

{(v , e ),(u ,e )}
 
 
 

 
 

and H = 
n n

j i j i
j=1 i =1

{(v , f ),(u ,f )}
 
 
 

   

 |F|= 2n(n - 1) ; |H|= 2n2 . Then E ( 2 n 1
BF (P K ) ) = E( L( n 1P K ) F   H .    

|E( 2 n 1
BF (P K ) |= 6n2 – 8n + 5. The clique number of 2 n 1

BF (P K )  is 
n 1

2



 
Case1: n is odd 

Vertex sets of n 1

2

K  are listed as elements of the sets A1, A2, A3 and A4 .  

A1 = {e1, e3, …, en-2};   A2 = {e2, e4, …, en-1}.     
A3 = {f1, f3, …, fn-2};   A4 = {f2, f4, …, fn-1}.     
Vertex sets of K3’s are given by 

A5 = 

 n 5

2

i
i 1

B




 where   

B1 = {{ v1, ei, ei + 3 }, i =  2, 3, …, n - 4}.  
B2 = {{ v2, ei, ei + 5 }, i =  2, 3, …, n - 6}.  
B3 = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 8}.  
. 
. 

n 5

2

B 
= {{ n 5

2

v  , ei, ei + (n - 4) }, i =  2, 3} and < A5 > 
2n – 8n + 15

4

 
 
 

K3.                                                                     

A6 = 

 n 3

2

i
i 1

C




 where   

C1 = {{ u1, fi, fi + 3 }, i = 1, 2, 3, …, n - 3}.  
C2 = {{ u2, fi, fi + 5 }, i =  1, 2, 3, …, n - 5}.  
C3 = {{ u3, fi, fi + 7 }, i =  1, 2, 3, …, n - 7}.  
. 
. 

n 3

2

C 
= {{ n 3

2

u  , fi, fi + (n - 2) }, i = 1, 2} and < A6 > 
2n – 4n + 3

4

 
 
 

K3.                                                                         

A7 = {{vi, fi, fi + 1}; 1≤ i ≤ n, fn+1 = f1} and < A7 > 
 

nK3.                                                                                          
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A8 = {{vi, e1, e2i + 2}, for each i,  1 ≤  i  ≤ 
n –3

2
 }and < A7 > 

 

n –3

2
K3.                                                                       

These cover 
22n – 7n +9

2

 
 
 

edges of 1n
L(P K )  and 

2n – 6n +9

2

 
 
 

edges of F and 

2

2

 n  +3 
 
 

 edges of H. The remaining 
28n – 3n–11

2

 
 
 

 edges  are covered by K2 s.  

Therefore, 2 n 1
BF (P K ) = 4 n 1

2

K      
2n – 3n + 6

2

 
 
 

K3   
28n – 3n–11

2

 
 
 

K2 and hence 

cp( 2 n 1
BF (P K ) ) =  4 + 

2 n – 3n + 6

2

 
 
 

 + 
28n – 3n–11

2

 
 
 

= 
2 69n – n+3 

2
. 

Case2: n is even 
Vertex sets of n

2

K , n 2

2

K  are listed as elements of the sets D1, D2, D3 and D4, where  

D1 = {e1, e3, …, en-1} .   
D2 = {e2, e4, …, en-2}.     
D3 = {f1, f3, …, fn-1} .  
 D4 = {f2, f4, …, fn} and < D1 >   < D3 >   < D4 >   n

2

K ; < D2 >  n 2

2

K  .        

Vertex sets of K3′s are given by  

D5 = 

 n 4

2

i
i 1

E




 where   

E1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 4}.  
E2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 6}.  
E3 = {{ v3, ei, ei + 7 }, i =  1,2, 3, …, n - 8}.  
. 
. 

n 4

2

E 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i = 1, 2} and < D5 > 
2n – 6n + 8

4

 
 
 

K3.                                                                        

 

D6 = 

 n 3

2

i
i 1

J




 , where   

J1 = {{ u1, fi, fi + 3 }, i =  2, 3, …, n - 3}.  
J2 = {{ u2, fi, fi + 5 }, i =  2, 3, …, n - 5}.  
J3 = {{ u3, fi, fi + 7 }, i =  2, 3, …, n - 7}.  
. 
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. 

n 3

2

J 
= {{ n 4

2

u  , fi, fi + (n - 3) }, i = 2, 3} and < D6 > 
2n – 6n + 8

4

 
 
 

K3.                                                                         

D7 = {{ui, f1, f2i + 2}; 1≤ i ≤ 
n 4

2


} and < D7 >   

n 4

2


K3.                                                                                         

D8 = {{vi, fi, fi + 1}; 1≤ i ≤ n, fn+1 = f1} and  < D8 >   nK3 . 

These cover n2 – 3n + 3 edges of 1n
L(P K )  and 

n

2
edges of F and

 

2n – 2n + 8

2

 
 
 

 edges 

H. The remaining 
2 8n – 4n– 4

2

 
 
 

edges  are covered by K2 s.  

Therefore, 2 n 1
BF (P K ) = 3 n

2

K    n 2

2

K     
2n – 3n +4

2

 
 
 

K3   
28n – 4n– 4

2

 
 
 

K2 

and hence cp( 2 n 1
BF (P K ) )  =  4 + 

2n – 3n +4

2

 
 
 

+ 
28n – 4n– 4

2

 
 
 

= 
2 79n – n+8 

2
. 

Therefore, cp( 2 n 1
BF (P K ) ) = 

2

2

-
if n isodd.

2

-
i

 9n  6n+ 3

f n is even.
2

 9n  7n+ 8







. 

 
Theorem 2.6: 

For the graph n 1
C K  (n ≥ 6), cp(

2 n 1
BF (C K ) ) = 

2

2

-
if n isodd.

2

-
i

 9n  6n+ 3

f n is even.
2

 9n  7n+ 8







. 

Proof:  
Let vi  (1 ≤ i ≤ n) be the vertices of Cn and let ui  (1 ≤ i ≤ n)  be the pendant vertex 

adjacent to vi .  Let ei = (vi, vi +1), (1 ≤ i ≤ n - 1), en =  (vn, v1) and fi = (vi, ui) ; (1 ≤ i ≤ n).                                              

V(
2 n 1

BF (C K ) ) = V( n 1
C K ) E( n 1

C K ). Therefore | V(
2 n 1

BF (C K ) )|= 4n.                           

Then E(
2 n 1

BF (C K ) ) = L( n 1
(C K ) ) F,  

where F =  n n

j i j i j i j i
j 1 i 1

(v ,e ),(v , f ),(u ,e ),(u , f )
 
  ; |F|= 4n2.  

| E(
2 n 1

BF (C K ) )|= 6n2 – 4n. 

Case1: n is odd 
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The edge set of 
2 n 1

BF (C K )  is decomposed into n 1

2

K  , K3 and K2′s.                 

Vertex set of  n 1

2

K  are listed as elements of the sets A1, A2, A3 and A4, where  

A1 = {e1, e3, …, en-2};   A2 = {e2, e4, …, en-1}.     
A3 = {f1, f3, …, fn-2};   A4 = {f2, f4, …, fn-1}.     

Vertex sets of K3s are given by 

A5 = 

n 3

2

i
i 1

B

 
 
 


 , where   

B1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 3}.  
B2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 5}.  
B3 = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 7}. 
. 
. 

n 3

2

B 
= {{ n 3

2

v  , ei, ei + (n - 2) }, i =  1, 2} and < A5 > 
2n – 4n + 3

4

 
 
 

K3.                                                                       

 

A6 = 

 n 3

2

i
i 1

C




 where   

C1 = {{ u1, fi, fi + 3 }, i = 1, 2, 3, …, n - 3}.  
C2 = {{ u2, fi, fi + 5 }, i =  1, 2, 3, …, n - 5}.  
C3 = {{ u3, fi, fi + 7 }, i =  1, 2, 3, …, n - 7}.  
. 
. 

n 3

2

C 
= {{ n 3

2

u  , fi, fi + (n - 2) }, i = 1, 2}and < A6 >   
2n – 4n + 3

4

 
 
 

 K3 

A7 = {{vi, fi, fi + 1}; 1≤ i ≤ n, fn+1 = f1} and  < A7 >   nK3  

These cover n2 – 3n + 3 edges of 1n
L(C K )  and n2 – 2n + 3 edges of F. The remaining   4n2 

+ n - 6 edges  are covered by K2 s.  

Therefore, 
2 n 1

BF (C K ) = 4 n 1

2

K      
2n – 2n + 3

2

 
 
 

K3   (4n2 + n - 6)K2 and hence  

cp(
2 n 1

BF (C K ) ) =  4 + 
2 n – 2n + 3

2

 
 
 

+ (4n2 + n - 6)
 
= 

29n – 1 

2
. 

Case2: n is even 

The edge set of 
2 n 1

BF (C K )  is decomposed into edges of n

2

K , K3, K2s. 
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Vertex sets of 4 n

2

K  are listed as element of the sets D1, D2, D3 and D4, where  

D1 = {e1, e3, …, en-1};   D2 = {e2, e4, …, en}.     
D3 = {f1, f3, …, fn-1};   D4 = {f2, f4, …, fn}.     

Vertex sets of K3s are given by 

D5 = {{vi, e1, e2i + 2}; 1≤ i ≤ 
n –4

2
 } and < D5 >   

n–4

2

 
 
 

 K3 . 

 

D6 = 

n 4

2

i
i 1

E

 
 
 


 where   

E1 = {{ v1, ei, ei + 3 }, i =  2, 3, …, n - 3}.  
E2 = {{ v2, ei, ei + 5 }, i =  2, 3, …, n - 5}.  
E3 = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 7}.  
. 
. 

n 4

2

E 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i = 2, 3} and  < D6 >   
2n – 6n + 8

4

 
 
 

K3, 

 

D7 = 

n 3

2

i
i 1

J

 
 
 


 where   

J1 = {{ u1, fi, fi + 3 }, i =  2, 3, …, n - 3}.  
J2 = {{ u2, fi, fi + 5 }, i =  2, 3, …, n - 5}.  
J3 = {{ u3, fi, fi + 7 }, i =  2, 3, …, n - 7}.  
. 
. 

n 4

2

J 
= {{ n 4

2

u  , ei, ei + (n - 3) }, i = 2, 3}and ,  < D7 >   
2n – 6n + 8

4

 
 
 

K3, 

  

D8 = {{ui, f1, f2i + 2}; 1≤ i ≤ 
n –4

2
 } and < D8 >   

n –4

2
 K3 , 

 
D9 = {{vi, fi, fi + 1}; 1≤ i ≤ n, fn+1 = f1} and < D9 >   nK3 . 

These cover n2 – 2n edges of 1n
L(C K )  and n2 – 2n edges of F.  

The remaining 4n2 edges are covered by K2 s.  

Therefore, 
2 n 1

BF (C K ) = 4 n

2

K   
2n – 2n 

2

 
 
 

K3   (4n2 ) K2 and hence  
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cp(
2 n 1

BF (C K ) ) =  4 + 
2 n – 2n 

2

 
 
 

+ 4n2 
 
= 

2 29n – n+4 

2
. 

 

Therefore, cp(
2 n 1

BF (C K ) ) = 

2

2

 9n  1

 9n  

-
if n isodd.

2

-
if n is even.

n+ 4

2

2







. 

 
3. Clique partition of BF3(G)   
In the following, clique partition number of path, cycle, star and wheel graphs are found. 
Theorem 3.1:   
For the path Pn on n vertices (n ≥ 5), cp(

3 n
BF (P ) ) = n2 – 2n + 2. 

Proof:   
Let v1, v2, v3, …, vn be the vertices and e1, e2, …, en-1 be the edges of Pn,  

where ei = (vi, vi+1), (1 ≤  i ≤ n – 1). Then  v1, v2, v3, …, vn, e1, e2, …, en-1  V(
3 n

BF (P ) ) and  
|V(

3 n
BF (P ) )| = 2n – 1. |E(

3 n
BF (P ) )| = |E(L(Pn))| + n (n - 2) = n2 – 2n + 2 .  

The clique number of 
3 n

BF (P ) is 3.  

E(
3 n

BF (P ) ) = E(L(Pn))  F, where F =   n -1n

j i
j=1 i =1

v , e  ;|F|= n (n -1). 

The edge set of 
3 n

BF (P )  is decomposed into K3 and K2s.  
Vertex sets of K3′s is given by B = {{ei, ei+1, ei+1}, for each i, 1 ≤  i  ≤  n- 2}.  
These cover all the edges of L(Pn ) and 2(n - 2) edges of F. The remaining  

(n2 – 3n + 4) edges in F are covered by K2 s.  
Therefore, 

3 n
BF (P ) = (n  –  2)K3   (n2 – 3n + 4)K2 and hence  

cp(
3 n

BF (P ) ) =  n  –  2 + n2 – 3n + 4  =  n2 – 2n + 2.  
 
Theorem 3.2:  
 For the cycle Cn on n vertices (n ≥ 5), cp(

3 n
BF (C ) )  =  n2 - n. 

Proof:   
Let v1, v2, v3, …, vn be the vertices and e1, e2, …, en be the edges of Cn,  

where ei = (vi, vi+1),  for  (1 ≤  i ≤  n – 1) and  en = (vn, v1).  

V(
3 n

BF (C ) ) = V(Cn)  E(Cn). Then |V(
3 n

BF (C ) )|= 2n and  
|E(

3 n
BF (C ) )| = |E(L(Cn))| + n2  =  n2 + n . The clique number of 

3 n
BF (C )  is 3.  

E(
3 n

BF (C ) ) = E( L(Cn))   F, where F =   nn

j i
j=1 i =1

v ,e  ; |F|= n2. 
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The edge set of 
3 n

BF (C )  is decomposed into K3 and K2’s.  

Vertex sets of K3 ′s is given by  
C = {{ei, ei+1, vi+1}, for each i, 1 ≤ i ≤ n ,  vn+1 = v1, e0 = e1}.  
These sets cover all the edges of L(Cn) and 2n edges of F. The remaining n(n – 2) edges are 

covered by K2′s. Therefore 
3 n

BF (C )  = nK3   (n(n – 2))K2 and  
hence cp(

3 n
BF (C ) ) =  n + n (n – 2) = n2   –  n . 

 
Theorem 3.3:  

For the star K1,n on n vertices (n ≥ 6), cp(BF3(K1, n))  =  

2

2

+ -
if n isodd.

4

+ 12
if n iseven.

4

 3n  14n 1

 3n n+ 8







 

Proof:   
Let  v be the central  vertex and v1, v2, v3, …, vn be the  pendant vertices and e1, e2, 

…, en be the edges of K1, n, where ei = (v, vi), (1 ≤ i ≤ n ).  
Then v, v1, v2, v3, …, vn, e1, e2, …, en = V(BF3(K1, n)) and |V(BF3(K1, n))| = 2n + 1 and  

|E(BF3(K1, n))| = E(L(K1, n)) + n(n + 1)  = 
n(3n + 1)

2
 and the clique number is 

n

2
.  

E(BF3(K1, n)) = E( L(BF3(K1, n)))   F    H, where 

 F = {(v, ei): 1 ≤ i ≤ n}; H =   nn

j i
j=1 i =1

v ,e   . |F|= n and |H|= n2. 

Case1: n is odd. 

The edge set of BF3(K1, n)is decomposed into n 1

2

K  , K3 and K2s.  

Vertex sets of  2 n 1

2

K  are listed as elements of the sets A1 and A2, where 

A1 = {e1, e3, …, en-2};   A2 = {e2, e4, …, en-1}.     

 Vertex sets of K3s are given by 

A3 = 

 n 3

2

i
i 1

B




 where   

B1 = {{ v1, ei, ei + 3 }, i = 1, 2, 3, …, n - 3}.  
B2 = {{ v2, ei, ei + 5 }, i = 1, 2, 3, …, n - 5}.  
B3 = {{ v3, ei, ei + 7 }, i = 1, 2, 3, …, n - 7}.  
. 
. 
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n 3

2

B 
= {{ n 3

2

v  , ei, ei + (n - 2) }, i = 1, 2}and < A3 >   
2n – 4n + 3

4
 K3.  

These cover 
2 n – 4n + 3

2

 
 
 

 edges of 1, n
L(K )  and H. The remaining 

2n  9n–6+

2

 
 
   

edges 

are covered by K2 s.  

Therefore, BF3(K1, n) = 2 n 1

2

K     
2n – 4n + 3

4

 
 
 

K3   

2n  9n–6+

2

 
 
 

K2 and hence  

cp(BF3(K1, n)) =  2 + 
2 n – 4n + 3

4

 
 
 

+ 

2n  9n–6+

2

 
 
   

= 
2 3n  1+ 4n  – 1

4
. 
 

Case2: n is even 

The edge set of BF3(K1, n) is decomposed into n

2

K , K3 and K2s.  

Vertex sets of 2 n

2

K are listed as elements of the sets C1 and C2.  

C1 = {e1, e3, …, en-1};   C2 = {e2, e4, …, en}.     

 Vertex sets of K3s are given by  

C3 = {{vi, e1, e2i + 2}, for each i,  1 ≤  i  ≤ 
n – 4

2
 } and < C3 >   

n – 4

2  
K3. 

 C4 = 

 n 4

2

i
i 1

D




 where   

D1 = {{ v1, ei, ei + 3 }, i =  2, 3, …, n - 3}.  
D2 = {{ v2, ei, ei + 5 }, i =  2, 3, …, n - 5}.  
D3 = {{ v3, ei, ei + 7 }, i =  2, 3, …, n - 7}.  
. 
. 

n 4

2

D 
= {{ n 4

2

v  , ei, ei + (n - 3) }, i =  2, 3} and < C4 >   
2n – 6n + 8

4

 
 
 

K3. 

.  

These cover 
2 -

2

 n  3n 
 
 

 edges of 1, n
L(K ) and edges 

2n – 4n 

2

 
 
    

of H. The remaining 

2 +

2

 n  8n 
 
 

edges are covered by K2′s.  
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Therefore, BF3(K1, n) = 2 n

2

K     
2n – 4n 

4

 
 
 

K3   

2 +

2

n  8n 
 
 

K2 and hence  

cp(BF3(K1, n))  = 2 + 
2 n – 4n 

4

 
 
 

+ 

2 +

2

n  8n 
 
   

= 
2 3n  12+ n + 8

4
. 

Therefore, cp(BF3(K1, n)) = 

2

2

+ -
if n isodd.

4

+ 12
if n iseven.

4

 3n  14n 1

 3n n+ 8







 .
  

Theorem 3.4:  
For the wheel Wn+1 on (n+1) vertices (n ≥ 6), cp(

3 n +1
BF (W ) ) = 2n2 – n + 1. 

Proof:   
Let  v be the central  vertex  of  Wn+1 and v1, v2, v3, …, vn  be the  vertices of cycle 

Cn. Let ei = (vi, vj), 1 ≤ i ≤ n and j   (i + 1) (mod n) and fi = (v, vi), 1≤ i ≤ n.  

Then V(
3 n +1

BF (W ) ) = V(Wn + 1)  E(Wn + 1). |V(
3 n +1

BF (W ) )| = (n + 1) + (2n)  = 3n + 1.  

|E(
3 n +1

BF (W ) )| = |E(L(Wn + 1))| + 2n (n + 1) = 3n + 
n(n - 1)

2
 + 2n(n + 1) = 

n(5n + 9)

2  
and 

the clique number of  is n.  

Then |E(
3 n +1

BF (W ) )| = |E(L(Wn + 1)|  |E(Kn )|  F   H, where  

F =  
n

i i
i =1

(v,e ),(v, f ) ; |F|= 2n and H =   n n

j i j i
j=1 i =1

(v ,e ),(v , f )  ; |H|= 2n2 .  

 The edge set of 
3 n +1

BF (W ) is decomposed into Kn , K3 and K2s. 
V(Kn) = {  f1, f2, …,fn };  
Vertex sets of K3 ‘s are given by  
B1 = {( ei, ei + 1, vi), 1 ≤ i ≤ n} and 
B2 = {{ei, fi+1, vi+1}, 1 ≤ i ≤ n , vn+1 = v1, fn+1 = f1}and  
B3 = {( ei+1, fi + 1, vi+3), 1 ≤ i ≤ n, en+1 = e1, vn+3 =  v3, fn+1 = f1} and  
< B1 >   < B2 >  < B3 >   nK3. 
 The sets V(Kn), B1 , B2 and B3 cover all the edges of Kn , L(Wn + 1) and 6n edges of F. The 

remaining 2n2 – 4n edges are covered by K2s. Therefore 
3 n +1

BF (W )  = Kn   (3n)K3   (2n2 

– 4n  ) K2  and hence  cp(
3 n +1

BF (W ) ) = 1 + 3n + 2n2 – 4n  = 2n2 – n + 1. 

 
In the following, clique partition number of 

n 1
P o K and n 1

C K are found. 
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Theorem 3.5: 
For the graph 

n 1
P o K  (n ≥ 6), cp(

3 n 1
BF (P o K ) ) = 4n2 – 5n + 4. 

Proof:  
Let vi  (1 ≤ i ≤ n) be the vertices of Pn with v1 and vn  as pendant vertices and let  

ei = (vi, vi + 1), (1 ≤  i ≤  n-1) be the edges of Pn. Let ui be the pendant vertex adjacent to vi (1 

≤ i ≤ n) and let fi = (vi, ui),  (1 ≤ i ≤ n).  V(
3 n 1

BF (P o K ) ) = V(
n 1

P o K ) E(
n 1

P o K ).  

Therefore |V(
3 n 1

BF (P o K ) )| = 2n + 2n – 1 = 4n – 1.  

Let F =   n n

j i j i
j=1 i =1

(v , f ),(u , f ) 

 
; H =   n -1n

j i j i
j=1 i =1

(v ,e ),(u ,e )   and 

 |F|= 2n2, |H|=  2n(n - 1). Then E (
3 n 1

BF (P o K ) ) = E( L(
n 1

P o K ) F   H .    

 |E (
3 n 1

BF (P o K ) )| = |E( L(
n 1

P o K )|+ 2n(2n – 1) = (2n – 1) (2n – 1) + 
(9n - 10)

2
 = 4n2 + n- 4. 

The clique number of 
3 n 1

BF (P o K ) is 3.  

Edge set of 
3 n 1

BF (P o K ) is decomposed into K3 and K2s.  
Vertex sets of K3s are given by   
C1 = {{ei, ei+1, vi}, }, 1 ≤ i ≤ n – 2 }  
C2 = {{ei, fi+1, vi + 1}, 1 ≤ i ≤ n – 1} and 
C3 = {{ei, ui, fi+1}, for each i, 1 ≤ i ≤ n - 1} and < C1 >   (n – 2)K3, 
< C2 >   < C3 >   (n – 1)K3. 
The sets C1, C2 and  C3 cover all the edges of L(

n 1
P o K ). 2(n – 2) edges of H. (n – 1) edges 

of F are covered by C1 and C2 respectively.  2(n – 1) edges of H and (n - 1) edges of F are 

covered both by C2 and C3. The remaining (4n2 - 8n + 8) edges are covered by K2s.  
Therefore 

3 n 1
BF (P o K )  = (3n – 4)K3   ( 4n2 – 8n + 8)K2 and hence   

cp(
3 n 1

BF (P o K ) ) = 3n – 4 +  4n2 – 8n + 8 = 4n2 – 5n + 4. 

 
Theorem 3.6: 
For the graph n 1

C K  (n ≥ 6), cp(
3 n 1

BF (C o K ) ) = 4n2
  - 3n . 

Proof:  
Let vi  (1 ≤ i ≤ n) be the vertices of Cn and let ui  (1 ≤ i ≤ n)  be the pendant vertex 

adjacent to vi . Let ei = (vi, vi +1), (1 ≤ i ≤ n - 1), en =  (vn, v1) and fi = (vi, ui) ; (1 ≤ i ≤ n).  

V(
3 n 1

BF (C o K ) ) =   V( n 1
C K ) E( n 1

C K ).  

Therefore |V(
3 n 1

BF (C o K ) )| = 2n + 2n = 4n.  

Let F =  n n

j i j i j i j i
j 1 i 1

(v ,e ),(v , f ),(u ,e ),(u , f )
 
  . Then E(

3 n 1
BF (C o K ) ) = E(L( n 1

C K )) F.  

|E(
3 n 1

BF (C o K ) )| = 
28n 6n

2


 = n(4n + 3).  
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The clique number of 
3 n 1

BF (C o K )  is 3.  

Edge set of 
3 n 1

BF (C o K ) is decomposed into K3 and K2s. 
Vertex sets of K3s are given by  
B1 = {{ei, ei + 1, vi}, for each i, 1 ≤ i ≤ n, en + 1 = e1} and  
B2 = {{ei, vi + 1, fi + 1}, for each i, 1 ≤ i ≤ n , fn+1 = f1}.  
B3 = {{ei+1, ui, fj+1}, for each i, 1 ≤ i ≤ n, en+1 = e1, fn+1 = f1} and  
< B1 >   < B2 >  < B3 >   nK3. 
The sets B1, B2 and B3 cover all the edges of L( n 1

C K ) and 6n edges of F. The remaining 

n(4n – 6) edges of F are covered by K2s.  
Therefore, 

3 n 1
BF (C o K ) = (3n)K3   (4n2 – 6n) K2 and hence   

cp(
3 n 1

BF (C o K ) )  =  3n +  4n2  – 6n  = 4n2 – 3n. 
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