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Abstract: Representations of rational numbers as continued fraction always exist. In number theory 
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Notations: 
1. 

n3210
a,a,a,a,a   : Continued fraction expansion. 

2.   




2

n
               : Integer part of the rational  number  2n . 

3.
 

 
2

1nn
T

n


        : thn   Triangular  number 

4.  2

n
nS                  : thn   Square number 

5. 1)1n(n3H
n


  

: thn  Centered Hexagonal number 

6. 1)1n(n6S*

n
        : thn   Star number 

 
1. Introduction 
 The Indian mathematician Aryabhata used a continued fraction to solve a linear 
indeterminate equation.  For more than a thousand years, any work that used continued 
fractions was restricted to specific examples. Throughout Greek and Arab mathematical 
writing, we can find examples and traces of continued fractions.  Euler showed that every 
rational can be expressed as a terminating simple continued fraction.   He also provided 
an expression for e in continued fraction form. He used this expression to show that e  

and 2e  are irrational [3]. 
 Polygonal numbers have graphical representation. Golden ratio which is an 
irrational also has a graphical representation.  This idea motivated me to create a set of 
rational numbers using polygonal numbers and represent them in terms of continued 
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fractions. First we give different representations of a rational number as a continued 
fraction [2, 3, 4, 5].  
 
An expression of the form 
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Where 

ii
b,a  are real or complex numbers is called a continued fraction. 

An expression of the form 
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Where  ,i1b

i
   and ,a,a,a

210
  are each positive integers also represents a simple 

continued fraction. 
The continued fraction is commonly expressed   as 


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  or simply as  ,a,a,a,a

3210
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The elements ,a,a,a,a
3210

 are called the partial quotients.  If there are finite number 

of partial quotients, we call it   finite simple continued fraction, otherwise it is infinite.  
We have to use either Euclidean algorithm[1] or continued fraction algorithm to find such 
partial quotients.  The finite simple continued fraction is denoted by 


n3210

a,a,a,a,a   and it has an alternate form .1,1a,a,a,a,a
n3210

   
 
1.1 The Continued Fraction Algorithm  
Suppose we wish to find continued fraction expansion of .Rx  
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 This process is continued infinitely or to some finite stage till an Nxi  exists such that 
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2. Triangular Numbers 
Definition 2.1[5, 6]: Triangular Numbers 

The numbers 1, 3, 6, 10, 15, 21, 28, 36, 45,…, 
 

2

1nn
T

n


 ,…     are called triangular 

numbers, since the nth number counts the number of dots in an equilateral triangular 
array with n dots to the side.   
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Hence For each 3n  ,  the continued fraction expansion of   
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when n  is 
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3. Square Numbers  

Definition 3.1[5, 6]: Square Numbers 
A square number or perfect square is an integer that is the square of an integer or it is the 
product of some integer with itself. 

 In other wards the numbers 1,4,9,16,25,36,49,64,81,…, 2

n
nS  ,…     are called square 

numbers, since the nth number counts the number of dots in a square array with n dots to 
each side. 
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Theorem: 3 .1: 

For 3n  ,      























 .evenisnwhen

2

n
,3,1,1

2

n
,1;0

.oddisnwhen
2

n
,1,3,

2

n
,1;0

S

S

1n

n  

Proof:  
Using algorithm 1.1 the proof follows  
Case (i): n is odd 
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Hence .1,1,3,1,1;0
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Hence by induction the result is true for all values of n  where n is odd. 
Case(ii): n is even 
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Hence by induction the result is true for all values of n  where n is even. Hence from 
case(i) and (ii) we have  For each 3n  , the continued fraction expansion of  
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4. Centered Hexagonal Number 
Definition 4.1[7]: Centered Hexagonal Number 
A centered hexagonal number, or hex number, is a centered figurate number that 
represents a hexagon with a dot in the center and all other dots surrounding the center 
dot in a hexagonal lattice. 
The nth centered hexagonal number is given by the formula 
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Shows that the centered hexagonal number for n is 1 more than 6 times the (n − 1)th 
triangular number. The first few centered hexagonal numbers are 
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Using algorithm 1.1 the proof follows 
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Hence from case(i) and (ii) we have  For each 3n , the continued fraction expansion of 









n6,
2

n
,1;0is

H

H

1n

n

 
when n  is odd and is  2,1

2

n3
,1,1,1

2

n
,1;0  when n  is 

even.  
 

5. Star Numbers 
Definition 5.1[7]: Star Numbers 
A star number is a centered figurate number that represents a centered hexagram (six-
pointed star), such as the one that Chinese checkers is played on. 
 
The nth star number is given by the formula 

1)1n(n6S*

n
  

The first few star numbers are 1, 13, 37, 73, 121, 181, 253, 337, 433, 541 
The digital root of a star number is always 1 or 4, and progresses in the sequence 1, 4, 1. 
                   

          
             1S*

1
                            13S*
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                                           37S*
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  

 
 
 
 

 
 
 
 
Theorem: 5.1: 

For 3n  ,        














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
 .evenisnwhen2,1n3,1,1,1

2

n
,1;0

.oddisnwhenn12,
2

n
,1;0

S

S
*

1n

*

n  

Proof :  Similar to the proof of theorem 2 
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6. The following table summarizes the continued fraction 
expansion of consecutive fraction of some polygonal numbers. 

Types of Numbers  Consecutive  
Fraction of 
Numbers 

Continued Fractions Nature of  

n  

Triangular number 

1n

n

T

T



 



 2,
2

n
,1;0  

Odd 

Triangular number 

1n

n

T

T



 
2

n
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Even 

Square number 
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n

S

S



 




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




2

n
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2

n
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1n

n

S

S



 
2

n
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2

n
,1;0  

Even 

Centered Hexagonal 
Number  

1n

n

H

H


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


 n6,
2

n
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Number  

1n

n

H

H


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2
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2

n
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Star Number 
*

1n

*

n

S

S
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2
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Star Number 
*

1n

*

n

S

S



  2,1n3,1,1,1
2

n
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7. Illustration 
The following table gives the patterns of continued fraction of consecutive fractions of 
some polygonal numbers. 

Consecutive fraction of 
numbers

 Continued fraction expansion 

8

7

T
T

 
 2,3,1;0  

93

94

T
T

 
 47,1;0  

11

10

S
S

 
 5,3,1,4,1;0  
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8. Conclusion 
 In this paper we have identified various patterns of continued fractions of ratios of 
polygonal numbers of consecutive order and rank.  This work may be extended to higher 
order figurate numbers like pyramidal numbers. 
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