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Abstract:A set D of a graph G = (V, E) is a  dominating set, if every vertex in V(G) - D is adjacent to 
some vertex in D. The domination number γ (G) of G is the minimum cardinality of a dominating 
set. A dominating set D is called a complementary tree nil dominating set, if V(G) - D is not a 
dominating set and also the induced subgraph < V(G) - D >  is a tree. The minimum cardinality of a 
complementary tree nil dominating set is called the complementary tree nil domination number of G 
and is denoted by  

ctnd
γ (G). In this paper, some results regarding the complementary tree nil 

domination number of connected cubic graphs are found. 
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1.Introduction 
 

Graphs discussed in this paper are finite, undirected and simple graphs. For a 
graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A graph G with 
p vertices and q edges is denoted by G(p, q). The concept of domination in graphs was 
introduced by Ore[4]. A set D   V(G) is said to be a dominating set of G, if every vertex 
in V(G)   D is adjacent to some vertex in D. The cardinality of a minimum dominating 
set in G is called the domination number of G and is denoted by γ (G). Muthammai, 
Bhanumathi and Vidhya[3] introduced the concept of complementary tree dominating 
set. A dominating set D  V(G) is said to be a complementary tree dominating set (ctd-
set) if the induced subgraph <V(G) D> is a tree. The minimum cardinality of a ctd-set is 
called the complementary tree domination number of G and is denoted by 

ctd
γ (G).  

The concept of complementary tree nil dominating set is introduced in [2]. A 
dominating set D   V(G) is said to be a complementary tree nil dominating set (ctnd-
set) if the induced subgraph <V(G)   D> is a tree and V(G) – Dis not a dominating set. 
The minimum cardinality of a ctnd-set is called the complementary tree nil domination 
number of G and is denoted by 

ctnd
γ (G). In this paper, some results regarding the 

complementary tree nil domination number of connected cubic graphs are found.Any 
undefined terms in this paper may be found in Harary[1]. 
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2. Prior Result 
Theorem 2.1.[2] Let G be a connected graph with p vertices. Then  

ctnd
γ (G) = 2 if and 

only if G is a graph obtained by attaching a pendant edge at a vertex of degree p - 2 in T + 
K 1 , where T is a tree on (p - 2) vertices. 

 
3. Main Results 
Theorem 3.1: 
 For any connected cubic graph G with atleast 4 vertices, 

ctnd
γ (G) ≥ 4. 

Proof. 
 By Theorem 2.1, 

ctnd
γ (G) = 2 if and only if G is a graph obtained by attaching a 

pendant edge at a vertex of degree (p – 2) in T + K1, where T is a tree on (p – 2) vertices. 
 Therefore 

ctnd
γ (G) ≥ 3. 

Case 1: γୡ୲୬ୢ(G) = 3. 
 Let D be a ctnd-set of G with |D| = 3. Then <D> is one of the following graphs 

:C3, P3, K2	∪ K1 and 3K1. 

 Therefore, there exists no vertex uD such that N(u)   D, since (u)
<D>deg  3. 

Therefore 
ctnd

γ (G)്3 and hence 
ctnd

γ (G)≥4. 

 
Theorem 3.2: 

If G be a connected cubic graph with atleast 6 vertices. Then 
ctnd

γ (G) = 4 if and 

only if G ≅K4 ,G1, G2, G3, G4, G5 and G6, where  
 

 
 
 
 
 
 
 
 
 
Proof.  
 Let D be a ctnd-set of G with |D| = 4. 
 Since D is a dominating set, <V – D> is a tree and since G is cubic, each vertex in 
<V – D> is of degree 1 or 2. 

Therefore <V – D> is a path. 

G5: G6: 
G4: 

 G1: 
G2: G3: 
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Since G has an even number of vertices, the number of vertices in <V – D> is 
even. 

Let <V – D> have six vertices. Since G is cubic and |V(G)| = 10, V(G) has 15 
edges and each vertex in <D> is of degree atmost 3. 

Therefore, <D> has t edges, where 3  t 	6 and <V – D> has 5 edges and 
hence number of edges between D and V – D is atleast 8. There exists no cubic graph in 
this case. 

Similar is the case, when <V – D> has more than m vertices where m is even and 

m 	8.  
Case 1: |V – D| =   

Then <D>	≅	K4.Therefore G ≅ K4. 
Case 2: |V – D| = 2 

Then <V – D>≅ K2 and the number of edges between D and V – D is 4.  
Since G has 6 vertices and 9 edges, number of edges in <D> is |E(G)| - |E(K2)| - 4 = 4.  

Since there exists a vertex u ∈	 D such that N(u) ⊆	D, <D> is a graph obtained 

by attaching a pendant edge at a vertex of C3.Therefore G ≅ G1. 
Case 2: |V – D| = 4. 

 Then <V – D>≅ P4 and the number of edges between D and V – D is 6.  
Since G has 8 vertices and 12 edges, number of edges in <D>is |E(G)| - |E(P4)| - 6 = 3.  

Since there exists a vertex u ∈	 D such that N(u) ⊆	D, Therefore <D>≅ K1,3. 

Then G is one of the cubic graphs: G2, G3, G4, G5 and G6 

Conversely, if G ≅K4,G1, G2, G3, G4, G5 and G6, then
ctnd

γ (G) = 4. 

 
Theorem 3.3: 
 If G be a connected cubic graph with atleast 6 vertices. Then 

ctnd
γ (G) = 5 if and 

only if G is one of the following graphs: Gi, i= 7,8, …, 60, where 
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G10: 
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G15
G1 G1G17

G29
G28: 

G27
G30:

G31: G32: G33: G34

G21 G2
G20G19:

G2G24: G2G23

G37: G36 G38: 
G35
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Proof. 
 Let D be a ctnd-set of G with |D| = 5. 
Since D is a dominating set, <V – D> is a tree and since G is cubic, each vertex in <V – 
D> is of degree 1 or 2. 

Therefore <V – D> is a path. 
Since G has an even number of vertices, the number of vertices in <V – D>is odd. 
Let<V – D> have seven vertices. Since G is cubic and |V(G)| = 14, V(G) has 21 edges and 
each vertex in <D> is of degree atmost 3. 

Therefore, <D> has t edges, where 3 t 	6 and <V – D> has 9 edges and hence 
number of edges between D and V – D is atleast 11. There exists no cubic graph in this 
case. 

G47: 

G53
G52: 

G48: G49 G5

G5 G5

G44G43: G45: G46

G59: G60: 

G5

G55: G56: G58: 
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Similar is the case, when <V – D> has more than m vertices where m is odd and 

m 	13. Therefore, <V – D> is nonempty and has atmost 7 vertices. 
Case 1: |V – D| = 1. 
Then the vertex in V – D is adjacent to three vertices in D.  
Therefore, <D> is a graph on 5 vertices in which 2 vertices have degree 3 and 3 vertices 

have degree 2.Therefore G ≅ G1 or G7. 

But 
ctnd

γ (G1) = 4. Therefore G ≅ G7. 

Case 2: |V – D| = 3. 

 Then <V – D>≅ P3 and the number of edges between D and V – D is 5.  
Since G has 8 vertices and 12 edges, number of edges in <D> is |E(G)| - |E(P3)| - 5 = 5.  

Since there exists a vertex u ∈	 D such that N(u) ⊆	D, <D> is one of the following graphs 
(i) <D> is obtained from C3 by attaching a pendant edge at two vertices of C3. 
(ii) <D> is obtained from C4 by attaching a pendant edge at a vertex of C4. 
(iii) <D> is obtained from C3 by attaching a path of length 2 at a vertex of C3. 

(iv) <D>≅ (K4 – e) ∪ K1. 
Subcase 2.1: <D> is obtained from C3 by attaching a pendant edge at two vertices of C3. 

Then G is one of the following cubic graphs: G4, G5 and G6. 

 But in this case,
ctnd

γ (G) = 4 

Subcase 2.2: <D> is obtained from C4 by attaching a pendant edge at a vertex of C4. 
Then G is one of the following cubic graphs: G4, G6 and G8. 

But if G ≅ G4 or G6, then 
ctnd

γ (G) = 4. 

Therefore G ≅ G8. 

Subcase 2.3:<D> is obtained from C3 by attaching a path of length 2 at a vertex of  C3. 
Then G is one of the following cubic graphs: G4, G6, G8 and G9. 

If G ≅ G4 or G6, then 
ctnd

γ (G) = 4. 

Therefore G ≅ G8, G9. 

Subcase 2.4: <D>≅ (K4 – e) ∪ K1. 

Then G ≅	G9. 
Case  3: |V – D| = 5. 
 Then <V – D> P5 and |E(<V – D>)| = 4. 
 G has 10 vertices and 15 edges and number of edges between D and V – D is 7.  

Therefore, |E(<D>)| =15 – (7 + 4) = 4. Also, there exists a vertex u ∈ D such that N(u) ⊆
	D,  Therefore <D> has atleast one vertex of degree 3 in <D>. 
 Therefore, <D> is one of the following graphs: 
 

(i) <D>  
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(ii) <D> is obtained from P3 by attaching two pendant edges at a pendant 
vertex of P3. 
  

Subcase 3.1:<D>  
 

Then G is one of the cubic graphs on 10 vertices: Gi,(i=10,11, …,23)   
Subcase 3.2: <D> is obtained from P3 by attaching two pendant edges at a pendant vertex 
of P3. 

Then G is one of the cubic graphs: G10, G16, Gi, i=22, 23, …, 32. 
Case 4: |V – D| = 7. 

Then <V – D>  P7 and the number of edges between D andV – D is 9.  
Since G has 12 vertices and 18 edges, number of edges in <D> is |E(G)| - |E(P7)| - 9 = 3.  

Since there exists a vertex u  D such that N(u)D, <D>  K1,3∪ K1. 
Then G is one of the cubic graphs on 12 vertices: Gi, i=33, 34, …, 60. 

Conversely, if G ≅ Gi, i=7, 8, …, 60, then 
ctnd

γ (G) = 5. 
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