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1. Introduction 
 In topology, the Kurotowski Closure axioms are a set of axioms that can be used 
to define a topological structure on a set, which defines the closed sets as the fixed points 
of an operator on the power sets of X[2].  Ideals in topological space has been considered 
since 1930 by the author vaidyanathaswamy[12].  Jankovic and Hamlet[7] introduced new 
topologies from old via ideals.  In this paper, we introduce and analysis the concepts of 
Ideal closure space.  This is an Ideal space which satisfied kuratowski closure axioms.  
Separation axioms in closure space has different implications in comparison with the 
corresponding topological spaces.  In cech closure space, a closure space is to be separated 
by distinct neighbourhood.  K. Chandrasekhara Rao and R. Gowri[3] studied separation 
axioms in bicech closure space.  In addition we confer the relation between separation 
properties in Ideal closure space (X, I, k*) and those in associated topological space  
(X, I, I*). 
 

2. Prior Results 
Definition 2.1:[1] 
          (X, I) be a topological space. An ideal I on a topological space is a non empty 
collection of subsets of X which satisfies :  
(i)  I   
(ii)  AI,  BA  implies   BI,   
(iii) AI and BI implies A BI.  
 If  (X, I) is a topological space and I is an ideal on X, then (X, I, I) is called an Ideal 
topological space or an Ideal space. 
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Definition 2.2: [8] 
 Let P(X) be the power set of X. Then the operator ( . )* : P(X) P(X) is called a local 
function of A with respect to I and I, is defines as follows : For AX,    
A*( I, I*) = { xX : UA I for every open set U containing x}. We simply write A*. 
 Additionally, cl* (A) = AA* defines Kuratowski closure operator for a topology  
I* finer than I [11]. 
 
Definition 2.3: [4] 
 Let X be a non empty set. Let P(X) denote the collection of all subsets of X. the 
function k: P(X) P(X)  satisfying 

(i)       k( ) =    
(ii)            A    k(A)              AX 
(iii) k(AB)  =   k(A)k(B)    AX,   BX 
(iv)      k(A)    =   k(k(A))           AX 

is called the closure operator on X. The structure (X, k) is called closure spaces. 
 
Definition 2.4:[4] 
 A subset A of a closure space (X, k) is said to be closed if k(A) = A. 
 
Definition 2.5:[4] 
 A subset A of a closure space (X, k) is said to be open if k(X-A) = X - A. 
 
Definition 2.6: [4] 
 The set Int A with respect to the closure operator k is defined as  
Int A  = X – k(X-A) (i.e.) [k(AC)]C, where AC = X - A. 
 
Definition 2.7: [3] 
 If (X, k) is a closure space than the associate topology on X is  I = {AC; k(A)=A} 
 
Definition 2.8: [4] 

A  subset A in a Closure space (X, k) is called neighbourhood of x if xInt (A) 
 

Definition 2.9: [4] 
Let (X, k) be a Closure space. A Closure space (Y, kY) is called a subspace of  

(X, k) if  Y   X and kY(A)  =  k(A)Y, for each subset   AY. 
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3. Ideal Closure Spaces 
Definition 3.1: 
 Let X be a non-empty set. I be an Ideal on X. Let A* : P(X)P(X) be a local 
function of A with respect to I & I. 
 Let  k* (A) = AA*  defines Kuratowski closure operator for a topology   
 Then the function  k* : P(X)P(X)  satisfying, 

(i)          k* ( ) =     
(ii)                A   k*(A)                   AX 
(iii)   k* (AB)  =  k*(A)k*(B)       AX,   BX 
(iv)           k*(A)  =  k*(k*(A))             AX 

is called a closure operator on X. The structure (X, I, k*) is called an Ideal Closure Space. 
Example 3.2: 
  X  =  {a,b,c} 
  I  =  {X,  ,{a}, {c}, {a,c}} 
  I   =  { , {c}}  

(i)      A={a,c} A* =  {a,b}    k*(A)   =  AA*  k* {a,c}  = X  
(ii) A = {b,c}      A* =  {b}      k*(A)   =  AA*  k* {b,c}  = {b,c} 
(iii) A = {a,b}      A* =  {a,b}    k*(A)  =  AA*  k* {a,b} = {a,b} 
(iv)        A =  X A* =  {a,b}     k*(A)  =  AA*  k* (X) =  X 
(v)   A =   A* =          k*(A)  =  AA*  k* ( ) = ( ) 
(vi)        A = {a} A* =  {a,b}     k*(A)  =  AA*  k* (a) = {a,b} 
(vii) A = {b} A* =  {b}       k*(A)  =  AA*  k* (b) = {b} 
(viii)  A = {c} A* =          k*(A)  =  AA*  k* (c) = {c} 

Then(X, I, k*) is an Ideal Closure Space. 
 
Definition 3.3: 
 A subset A of an Ideal closure space (X, I, k*) is said to be closed if k*(A) = A. 
 
Definition 3.4: 
 A subset A of an Ideal closure space (X, I, k*) is said to be open if 
 k*( X – A) = X – A (i.e)  Int(A) = A. 
 
Definition 3.5: 
              The set Int A with respect to the closure operator k* is defined as  
Int A  = X – k*(X-A)  (i.e.) [k*(AC)]C, where AC = X – A. 
 
Definition 3.6: 
 If  (X, I, k*) is anIdeal closure space than the associate topology on X is   
I*= {AC; k*( A)=A}. Here I is not equal to I*. 
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Definition 3.7: 
          A  subset A in an Ideal Closure space (X, I, k*) is called neighbourhood of x  
if xInt (A) 
 
Definition 3.8: 

Let (X, I, k*) be an Ideal Closure space. An Closure space (Y, I, k*Y) is called a 
subspace of (X, I, k*) if  Y   X and k*Y (A)  =  k*(A)Y, for each subset  AY. 

 
Proposition 3.9: 
 Let (X, I, k*) be an Ideal closure space and let A   X, then  

(i) A is open if and only if A = X – k*( X – A). 
(ii) If B is open and B   A, then B  X – k* (X – A) 

Proof:(i)Assume that A is open.  Then X – A is closed.  This implies k*( X – A) = X – A. 
So,  X – k*( X – A) = X – ( X – A).  Therefore A = X – k*( X – A). 
          Conversely, let B be open subset of (X, I, k*) such that X – A   B. Then  
X – B  A.  Since X – B is closed subset of (X, I, k*). 
We have, X – B   X – k*( X – A).  Consequently, k*( X – A)    B.  Hence X – A is 
closed and so A is open. 
(ii)Let B is open and B   A, then by (i), we get B   X – k*( X – A). 
 
Proposition 3.10: 
         Let  (X, I, k*) be an Ideal closure space and let (Y, I, k*Y) be a closed subspace of  
(X, I, k*).  If A is closed subset of (Y, I, k*Y), then A is closed subset of (X, I , k*). 
Proof: Let A is closed set of  (Y, I, k*Y).  Then k*Y(A) = A.  Since Y is closed subset of  
(X, I, k*).  This implies k*(A) = A.  Therefore, A is a closed subset of (X, I, k*). 
 
Proposition 3.11: 
          Let (X, I, k*)  be an Ideal closure space, if A and B are closed sets then AB also 
closed. 
Proof: Let (X, I, k*) be an Ideal closure space.  Let A and B be two closed sets.   k*(A) = A 
and k*(B) = B.  Since, by additivity, k*( A  B ) = k*(A)    k*(B) = AB.  Hence,  
AB is also closed. 
 
Proposition 3.12: 
          Let (X, I, k*) be an Ideal closure space and let A   X.  If A is closed set then 
k*(A)– A contains no non empty sets. 
Proof: Let (X, I, k*) be an Ideal closure space.  Let B be a closed subset of (X, I, k*) such 
that B   k*(A)– A.  Then A  X – B.  Since, A is closed and X – B is open subset of  
(X, I, k*).  Then, k*(A)   X – B.  This implies, B   X – k*(A) and we get  
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B (X – k*(A))   k*(A) = .  Therefore B =  .  Hence, k*(A) – A contains no non 
empty sets. 
 
Proposition 3.13: 
          Let (X, I, k*) be an Ideal closure space.  If A   X is closed then  
k*(A) – A is open. 
Proof:  Let (X, I, k*) be an Ideal closure space.  Suppose that A   X is closed and let B be 
a closed subset of (X, I, k*) such that B  k*(A) – A.  By proposition 3.12 B =   and 
hence B   X – k*( X – (k*(A) – A)).  By proposition 3.9(ii), k*(A) – A is open. 
 
Proposition 3.14: 
         Let (X, I, k*) be an Ideal closure space.  If A and B be two open sets, then A   B 
also open. 
Proof: Let (X, I, k*) be an ideal Closure space.  Let A and B be two open sets, then AC  and 
BC are closed set.  This implies k*(AC) = AC and k*(BC) = BC.  Since, by additivity,  
k*(ACBC) = k*(AC) k*(BC) = ACBC.  Therefore, ACBC  is closed.  That is  
A   B is open. 
  

4. Separation Axioms on Ideal Closure Spaces 
Definition 4.1: 
 An Ideal Closure space (X, I, k*) is said to be T0 - space iff for every distinct 
points x y and xk* ({y}) or yk* ({x}). 
Example 4.2: 
          X ={a,b,c} I =  {X,  ,{b}, {c}, {b,c}}  I   =   { , {a}} 

k*(a)   = {a}; k* (b) = {a,b}; k*(c) = {a,c}; k*{a,b} = {a,b};  
k*{b,c} = X;  k*{c,a} ={a,c};  k*(X) = X ;   k*( )  =   
Let a,b X.  Then there is a k*(a) = {a} and k*(b) = {a,b} such that  
a  k*(a), b   k*(a). 
Let b,c X.  Then there is a k*(b) = {a,b} and k*(c) = {a,c} such that 
b  k*(b), c   k*(b). 
Let c,a X.  Then there is a k*(c) = {a,c} and k*(a) = {a} such that  
a  k*(a), c   k*(a). 
Therefore (X, I, k*) is T0 – space. 

 
Definition 4.3: 
           An Ideal closure space (X, I, k*) is said to be T1-space iff for every distinct points  
x y andx k*({y}) and  yk*({x}). 
Example 4.4: 
          X ={a,b} I  =  {X,  , {a}, {b}}   I   =   { , {b}} 
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k*(a)   = {a} ;   k* (b) = {b};   k*(X) = X;   k*( )  =   
Let a,b X.  Then there is a k*(a) = {a} and k*(b) = {b} such that a  k*(a),  
b   k*(a) and b k*(b), a   k*(b). 

  Therefore (X, I, k*) is T1-space. 
 

Theorem 4.5: 
 An Ideal Closure subspace of a T0- space is T0. 
Proof: Let (X, I, k*) be an Ideal Closure T0-space and (Y, I, k*Y) be the subspace of  
(X, I, k*).Let x and y are two distinct points in Y. since (Y, I, k*Y) (X, I, k*), Then  
either x k*({y}) or  yk*({x}) implies that either x k*({y})  Y or  y k*({x})Y.  
Hence (Y, I, k*Y) is a To – space. 
 
Result 4.6: 
 Let (X, I, k*) be an Ideal Closure space then k*(A)  I*- cl(A), where 
I* -  cl(A) is a topological closure with respect to k*,  A  X. 
Proof:  Let (X, I, k*)be an Ideal closure space.  We have  A  I*- cl (A), 
     k* (A)  k*( I*– cl(A))….. (1)        Since I* – cl(A) is closed. 
k*( I* – cl(A))  = I* – cl(A)…… (2) From (1)  & (2), We have, 
     k*(A)   I*- cl (A),   A  X     
 
Theorem 4.7: 
 If (X, I, I*) is T0  - space then (X, I, k*) is  also  T0  - space. 
Proof:  Let (X, I, k*) be an Ideal Closure space.  Assume (X, I, I*) be  T0– space.  Let   
x y and either x  I* - cl ({y}) or y  I*- cl ({x})  We have, k*(A)  I* - cl (A), 
 A  X   So, x  I* - cl ({y}) implies that xk*({y}) or y  I* - cl ({x}) implies that  
yk*({x}).  Therefore xk*({y})  or  yk* ({x}).  
Hence (X, I, k*) is  T0 - space. 
 
Theorem 4.8: 
 An Ideal Closure subspace of a T1-space is T1. 
Proof:  Let (X, I, k*) be an Ideal Closure T1 space and (Y, I, k*Y) be the subspace of  
(X, I, k*).  Let x and y are two distinct points in Y.  Since (Y, I, k*Y)   (X, I, k*) then 
there exist xk*({y}) and yk*({x}).  This implies xk*({y})Y   and  
yk*({x})Y.  Hence (Y, I, k*Y) is a T1 space. 
 
Remark 4.9: 
            Let (X, I, k*) be an Ideal closure space then for every T1 space is also T0 space. But 
the converse is not true. 
Example 4.10: 
          X ={a,b,c} I =  {X, ,{a}, {b}, {a,b}}   I  =  { , {c}} 
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k*(a) = {a,c} ;   k*(b) = {b,c};  k*(c) = {c}; 
k*{a,b} = X;  k*{b,c} = {b,c};  k* {c,a} = {a,c} ;  k*(X) = X ; k* ( ) =   . 
Here (X, I, k*) is an Ideal closure space, which is T0 space but every singleton set is not 
closed therefore it is not T1. 
 
Theorem 4.11: 
 For an Ideal closure space (X, I, k*) the following are equivalent. 

(i) The space (X, I, k*) is T1. 
(ii) For any x X, the singleton set {x} is closed with respect to k*. 
(iii) Every finite subset of X is closed with respect to k*. 

 
Proof: 

(i)  (ii) 
Let  (X, I, k*) is T1.  Let  x  y  in X.  Suppose {x} is not closed with respect to k*. 

k*(x)   {x} there exists  y x,  yk*(x).  This contradicts (i) therefore {x}  is closed. 
(ii)   (iii) 

           For any xX  the singleton set {x} is closed.  Since finite union of closed set is 
closed, therefore every finite subset of X is  closed. 

(iii)   (ii) 
Since  {x} is finite.  by (iii)  {x} is closed. 
(ii)   (i) 
Let  x   y in X.  Since Singleton sets are closed.  k*(x) = {x},  

k*(y) = {y} therefore x k*({y})  and y k*({x}).  Then  (X, I, k*) is T1. 
 
Definition 4.12: 
 An Ideal Closure space (X, I, k*) is said to be Hausdorff or T2-space if every 
distinct points x y  and there exists disjoint open sets G and H such that xG and  
yH. 
 
Example 4.13: 
          X ={a,b,c} I =  {X,  ,{a}, {b}, {a,b}}  I   =   { , {a,b}}.  Ideal closure space is 
defined by  k*(a) = {a,c} ; k* (b) = {b,c}; k*(c) = {c}; 
 k*{a,b} = {a,b};  k*{b,c} = {b,c};  k* {c,a} = {a,c} ;   
 k*(X) = X ;   k* ( )  =   . 
Closed sets are X,  , {a,b}, {b,c}, {c,a}, {c}. 
Open sets are X,  , {a,b}, {a}, {b}, {c}. 
Let a,b X.  Then there is a open set U = {a} and V = {b} such that a U, b V and  
U   V =  . 
Let b,c X.  Then there is a open set U = {b} and V = {c} such that b U, c V and  
U   V =  . 
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Let c,a X.  Then there is a open set U = {c} and V = {a} such that c U, a V and  
U   V =  . 
Then (X, I, k*) is T2-space. 
 
Theorem 4.14: 
 If the space (X, I, I*) is Hausdorff then the Ideal closure space (X, I, k*) is also 
Hausdorff. 
Proof:  Let (X, I, k*) be a Ideal topological space. Then for any two points  
x y, there exists I* –open U and V of x and y such that UV  =  .  Since each  
I*- neighbourhood in(X, I, I*) is also k*- neighbourhood in (X, I, k*).  Therefore, there 
exists U and V are k*-neighbourhood of x and y in (X, I, k*) such that UV  = . 
 
Definition 4.15: 
          An ideal closure space (X, I, k*) is said to be Semi-Hausdorff if for every x y 
either there exists open sets x U and y  k*(U) or there exists open set V such that 
y V and x  k*(V). 
 
Example 4.16: 
              X = {a,b,c}   I =  {X,  ,{a}, {b}, {a,b}}   I   =   { , {a,b}}.  Ideal closure space is 
defined by   k*(a) = {a,c}; k* (b) = {b,c};k*(c) = {c}; 
k*{a,b} = {a,b}; k*{b,c} = {b,c}; k* {c,a} = {a,c}; k*(X) = X ;  k* ( ) =   . 
Closed sets are X,  , {a,b}, {b,c}, {c,a}, {c}. 
Open sets are X,  , {a,b}, {a}, {b}, {c}. 
Let a,b X.  Then there exists open set U = {a} and V= {b} then  
k*(U) = {a}, k*(V) = {b,c} such that a  U, b   k*(U) or b  V, a   k*(V) 
Let b,c X.  Then there exists open set U = {b} and V= {c} then   
k*(U) = {b,c}, k*(V)  = {c} such that b   U, c   k*(U) orc  V, b  k*(V) 
Let c,a X.  Then there exists open set U = {c} and V= {a,b} then   
k*(U) = {c}, k*(V)  = {a,b} such that c  U, a   k*(U) or a  V, c   k*(V) 
Therefore (X, I, k*) is Semi-Hausdorff space. 
 
Definition 4.17: 
          An ideal closure space  (X, I, k*) is said to be Pseudo-Hausdorff if for every x y 
either there exists open sets x U and y  k*(U) and there exists open set V such that  
y V and x  k*(V). 
 
Example 4.18: 
              X = {a,b,c}   I =  {X,  ,{a}, {b}, {c}, {a,b}, {b,c}, {c,a}}    
I   =   { , {a,b}}.  Ideal closure space is defined by k*(a) = {a}; k* (b) = {b};    k*(c) = {c}; 
k*{a,b} = {a,b};    k*{b,c} = {b,c};    k* {c,a} = {a,c};    
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k*(X) = X ;   k* ( )  =   . 
Closed sets are X,  , {a,b}, {b,c}, {c,a}, {a}, {b}, {c}. 
Open sets are X,  , {a,b}, {b,c}, {c,a}, {a}, {b}, {c}. 
Let a,b X.  Then there exists open set U = {a} and V= {b} then   
k*(U) = {a}, k*(V)  = {b} such that a  U, b   k*(U) and b  V, a   k*(V) 
Let b,c X.  Then there exists open set U = {b} and V= {c} then   
k*(U) = {b}, k*(V)  = {c} such that b  U, c   k*(U) and c  V, b   k*(V) 
Let c,a X.  Then there exists open set U = {c} and V= {a} then   
k*(U) = {c}, k*(V)  = {a} such that c   U, a   k*(U) and a   V, c   k*(V) 
Therefore (X, I, k*) is Pseudo-Hausdorff space. 
 
Theorem 4.19: 
            If the space (X, I, I*) is Pseudo Hausdorff then  (X, I, k*) is also Pseudo 
Hausdorff. 
Proof:  If the space (X, I, I*) is Pseudo Hausdorff.  Let  x y, there exists  
I* –open U  such that x  U and y   I*-cl ({U}) and there exists a open set V such that 
y  V andx   I*-cl (V).   Since k*(A)   I* - cl(A),   A   X. 
Therefore k*(U)   I* - cl(U) and k*(V)   I* - cl(V).  This implies 
y   I*-cl (U)then y k*(U) and x   I*-cl (V) then x k*(V).  Hence the Ideal closure 
space (X, I, k*) is Pseudo Hausdorff. 
 
Theorem 4.20: 
 If  (X, I, k*) is Pseudo Hausdorff then every subspace (Y, I, k*Y) of (X, I, k*) is 
also Pseudo Hausdorff. 
Proof:  If (X, I, k*) is Pseudo Hausdorff.   Let  (Y, I, k*Y) be the subspace of  
(X, I, k*).  Since (X, I, k*)  is Pseudo Hausdorff, then x y, there exists open sets U and V 
such that x  U, y   k*(U)  and yV, xk*(V).  Then  
UY and VY are open sets in Y such that x  UY and y   k*( UY) also  
yVY and x   k*( VY).  Therefore (Y, I, k*Y) is Pseudo Hausdorff. 
 
Definition 4.21: 
          An Ideal closure space (X, I, k*) is said to be Uryshon space if given  x y, there 
exists open sets U and V such that x  U, y  V and k*(U) k*(V) =   .  
 
Theorem 4.22: 
          If  (X, I, I*) is Uryshon space, then the Ideal closure space (X, I, k*) is also Uryshon 
space. 
Proof:  
           Let (X, I, I*) be a Uryshon space.  Then any two points x y, there exists  
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I*– open sets U and V such that x  U, y  V and { I* - cl(U)}{ I* - cl(V)} =   .  
Since each I*- neighbourhood in (X, I, I*) is also k*-neighbourhood in (X, I, k*) of  
x and y in (X, I, k*) such that  k*(U)   k*(V) =   . 
 
Theorem 4.23: 
         If  (X, I, k*) is Uryshon, then every subspace (Y, I, k*Y) of  (X, I, k*) is also Uryshon. 
Proof:  
Let (X, I, k*) be an Ideal closure space.  Let (Y, I, k*Y) be a subspace of   (X, I, k*).  Since 
(X, I, k*) is Uryshon, gives  x y, there exists open sets U and V such that x   U,  
y V and   k*(U)   k*(V) =  .  Now UY and VY are open sets in (Y, I, k*Y) 
such that x  UY, x  VY.  Consider,   
k*Y( UY)   k*Y (VY) = [ k*Y (U) k*Y (V)] Y 
                                             = [ k*(U) k*(V)] Y 
                                             =     Y  
                                             =   . 
Therefore (Y, I, k*Y) is Uryshon space. 
 

5. Conclusion 
         In this paper, basic concepts of Ideal Closure space is introduced. Also the relation 
between separation properties of Ideal Closure space (X, I, k*) and the associated 
topological space (X, I, I*) are discussed. 
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