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Abstract: Let G be a graph with p vertices and q edges. Let }qp,...,3,2,1{)G(V:f  be an 

injective function. For a vertex labeling f, the induced edge labeling )uve(f *  is defined by 
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then f is called a super root square mean if 

}qp,...,3,2,1{)}G(Ee/)e(f{)G(V(f  . A graph which admits super root square mean 
labeling is called super root square mean graph. In this paper, we investigate super root square mean 
labeling of some graphs. 
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1.  Introduction 
 All graphs in this paper are finite, simple and undirected. Terms not defined here 
used in the sense of Harary[5]. The symbols V(G) and E(G) will denote the vertex set and 
edge set of a graph. 
 Graph labeling were first introduced in the late 1960’s. A graph labeling is an 
assignment of integers to the vertices or edges or both subject to certain conditions. If the 
domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex 
labeling (or an edge labeling). For a detail survey of graph labeling we refer to Gallian[1]. 
 Mean labeling of graphs was discussed in [3, 4, 6], the concept of k-even mean 
and (k, d)-even mean are introduced and discussed in [2], the concept of root square 
mean labeling was introduced and discussed in [7] and the concept of super root square 
mean labeling was introduced and discussed in [8]. In this paper, we investigate super root 

square mean labeling of 2
nP , slanting ladder, 1KTn  , )( nPVD . 

 

2. Main Results 

Theorem 2.1:  The graph )4n(P 2

n
  is a super root square mean graph. 

Proof: Let }ni1,v{
i

 be the vertices and }2ni1,a,1ni1,e{
ii

 be the 
edges are denoted as in Figure 1.1 
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Figure 1.1: Ordinary labeling of 2

nP  
First we label the vertices as follows 
Define }qp,...,3,2,1{V:f   by 
Case i): n is even 
          6)v(f,1)v(f

31
  

For ni2      3i3)v(f
i

    i is even 

For ni5     2i3)v(f
i

    i is odd 
Then the induced edge labels are: 

For 1ni1      1i3)e(f
i

*    7)a(f
2
  

For 2ni4     i3)a(f
i
    i is even 

For 2ni1     1i3)a(f
i

*     i is odd 
Case ii): n is odd 
               3)v(f,1)v(f
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Then the induced edge labels are: 

      4)a(f
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*      7)a(f
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For 1ni1     1i3)e(f
i

*   

Thus the vertices and edges together get distinct labels. Hence the graph )4n(P 2

n
  is a 

super root square mean graph. 

Super root square mean labeling of 2

6
P  is shown in Figure 1.2  
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Figure 1.2: Super root square mean labeling of 2

6P  
 

Theorem 2.2: The slanting ladder )3n(SL
n

  is a super root square mean graph. 

Proof: Let }ni1,v,u{
ii

 be the vertices and }1ni1,e,b,a{
iii

 be the edges which 

are denoted as in figure 1.3 

 
Figure 1.3: Ordinary labeling of

n
SL  

First we label the vertices as follows 
Define }qp,...,3,2,1{V:f   by   1)u(f

1
  

For ni2      3i5)u(f
i

  

 6)v(f
1
   3)v(f

2
  

For ni3     4i5)v(f
i

  
Then the induced edge labels are: 

For 1ni1    i5)a(f
i

*     4)b(f
1

*   

For 1ni2    2i5)b(f
i

*    2)e(f
1

*   

For 1ni2     1i5)e(f
i

*   

Thus the vertices and edges together get distinct labels. Hence the graph )3n(SL
n

  is 
a super root square mean graph. 
Super root square mean labeling of

6
SL  is shown in Figure 1.4 
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Figure 1.4: Super root square mean labeling of

6
SL  

 
Theorem 2.3: The graph )3n(KT

1n
 is a super root square mean graph. 

Proof: Let }1ni1,v,v,ni1,u,u{ '

ii

'

ii
 be the vertices and 

}1ni1,d,ni1,e,c,b,a{
iiiii

 be the edges which are denoted as in Figure 1.5 

 
Figure 1.5: Ordinary labeling of 1KTn  

 
First we label the vertices as follows 
Define }qp,...,3,2,1{V:f   by 

3)v(f
1
    6)v(f

2
 , For 1ni3     8i9)v(f

i
 , 10)v(f '

1
   11)v(f '

2
 , 

For 1ni3      6i9)v(f '

i
 , 1)u(f

1
   17)u(f

2
  

For ni3     3i9)u(f
i

 , 12)u(f '

1
   15)u(f '

2
 , For ni3     i9)u(f '

i
  

Then the induced edge labels are: 

8)a(f
1

*  ,  For ni2     2i9)a(f
i

*  ,  2)b(f
1

*   

  For ni2      5i9)b(f
i

*  ,  4)c(f
1

*     18)c(f
2

*   

  For ni3      1i9)c(f
i

*   , For ni1      4i9)e(f
i

*   

      7)d(f
1

*      9)d(f
2

*  ,  For 1ni3      7i9)d(f
i

*   
Thus the vertices and edges together get distinct labels. Hence the graph 

)3n(KT
1n

 is a super root square mean graph. 
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Super root square mean labeling of
15

KT  is shown in Figure 1.6 

 
Figure1. 6: Super root square mean labeling of

15
KT  

 
Theorem 2.4: The graph )3n(KQ

1n
 is a super root square mean graph. 

Proof: Let }ni1,w,v,w,v,1ni1,u,u{ '

i

'

iii

'

ii
 be the vertices and 

}1ni1,d,ni1,c,b,a,c,b,a{
i

'

i

'

i

'

iiii
 be the edges which are denoted as in  

Figure 1.7 

 
Figure 1.7: Ordinary labeling of

1n
KQ   

 
First we label the vertices as follows 
Define }qp,...,3,2,1{V:f   by 5)u(f

1
        13)u(f

2
  

 For 1ni3     12i13)u(f
i

  , 9)u(f '

1
   15)u(f '

2
  

 For 1ni3     10i13)u(f '

i
 ,  1)v(f

1
        

For ni2     6i13)v(f
i

 ,  8)v(f
1
        

For ni2     3i13)v(f
i

 ,  3)v(f '

1
       

For ni2     8i13)v(f '

i
 ,  16)w(f '

1
        
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For ni2     i13)v(f '

i
  

Then the induced edge labels are: 

 2)a(f
1

*  , For ni2  , 7i13)a(f
i

*   

12)b(f
1

*  , For ni2  , 2i13)b(f
i

*   

6)c(f
1

*  , For ni2  , 4i13)c(f
i

*   

4)a(f '

1

*  , For ni2  , 9i13)a(f '

i

*   

11)b(f '

1

*  , For ni2  , 1i13)b(f '

i

*   

10)c(f '

1

*  , For ni2  , 5i13)c(f '

i

*   

7)d(f
1

*       14)d(f
2

*  , For 1ni3  , 11i13)d(f
i

*   

Thus the vertices and edges together get distinct labels. Hence the graph 
)3n(KQ

1n
 is a super root square mean graph. 

Super root square mean labeling of
15

KQ   is shown in Figure 1. 8 

 
Figure 1.8: Super root square mean labeling of 

15
KQ   
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