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Abstract: The Medium domination number of a graph was introduced by Duygu Vargor etal., in [1].

Motivated by the above in [5], Mahadevan, Vijayalakshmi and Sivagnanam introduced the concept of
extended medium domination number of a graph. This concept has lot of application in computer
communication networks. edom(u,v) is sum of number of u-v paths of length one, two and three. The

total number of vertices that dominate every pair of vertices ETDV(G) = Zedom (u,v) for

u, v€ V(G). In any simple graph G of p number of vertices, the extended medium domination number
ETDV(G)

. In this paper, we investigate the extended medium domination

of G is defined as EMD(G)=

2
number for some special types of graphs.
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1. Introduction

In graph theory a graph G is denoted by G = (V,E) where V is a vertex set and E is
a edge set of G. Path graph is denoted by P, where n is the total number of vertices in P,.
C, is a cycle graph with n vertices. The Bistar is a graph joining the root vertex of K, to
end vertices of K, and is denoted by B(n, n). In this paper we investigate the general result
for the extended medium domination number of the graphs bistar, jellyfish graph and
C,OK,-

Definition 1.1:[5] Let G = (V,E) be a graph, V , E be the vertex set and edge set respectively.

edom(u,v) is sum of number of u-v paths of length one, two and three.

Definition 1.2:[5] Let G be the graph. The total number of vertices that dominate every pair
of vertices ETDV(G) = Z edom(u,V) for u,v € V(G).
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Definition 1.3:[5] The extended medium domination number of G is defined as EMD(G)=
ETDV(G)

p
2

where p is the total number of vertices in G.

Example 1.4:

N @

Figure 1.1
From the above figure, we have edom(1, 2) = 2; edom(1, 3) = 3; edom(1, 4) = 1; edom(1, 5)
=2;edom(1, 6) = 3; edom(2, 3) = 2; edom(2, 4) = 2; edom(2, 5) = 2; edom(2, 6) = 2; edom(3,
4) = 1; edom(3, 5) = 3; edom(3, 6) = 2; edom(4, 5) = 1; edom(4, 6) = 2; edom(5, 6) = 3; .

ETDV(G) = 31; EMD(G) = 3L,
15

n(n+1)

Observationl.5 [5] ETDV(K,,) = 2

Observation 1.6 [5] ETDV(C,) =3m
Observation 1.7 [5] ETDV(P,) = 3m-6

Definition 1.8: The peacock head graph is obtained by joining n pendent edges to any one
vertex of the cycle C,, and it is denoted by PC(n, m).

Definition 1.9: Let G = (V, E) be a ladder graph L, such that V={A,, A,,....... A, B,
B,.....B},E=E UE, UE,, where E,= {(A, A..), 1< i< k-1}, E, = {(B, B,,),
1<i<k-1}, E;={(A, B),1<i<k}.

Definition 1.10: A uniform t-ply graph is a graph obtained from t distinct P,,S > 3 paths
by merging all the initial vertices to a vertex u and all the terminal vertices to a vertex v. The

uniform t-ply graph is denoted by P,(u,v).

Notation 1.11: P (K, ) is a graph obtained by attaching the root vertex of K, to the end

vertex of the path P .

Notation 1.12: umbrella graph U(n,m) is a collection of vertices V and edges E such that
V[U(n,m)] = {X;,Xp. ..o XV 15250 - -« Vb
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(X, Xy )i1=12,..n-1
E[U(n)m)] = (yi’yi+1);i :1,2, ..... m—l
(X, Yy i1 =12, n

Notation 1.13: S’(B,,) is a graph whose vertices are a, b, ¢, d, x;, y; where 1< i <2k and the
edges are {ab, bc, ad} U {ax, / 1< i <k} U {ay, / 1< 1 <k} U {bx, / k+1< i <2k} U/{by, /
k+1<i <2k} U {cy; / 1< i <k} U {dy, / k+1< i <2k}. Here {ax; / 1< i <k} and {bx; / k+1< i
<2k} are the pendent edges.

Notation 1.14: P @ K is a graph obtained by attaching the root vertex of star K,, toall

the vertices of the path P .

Definition 1.15: Let P, be a path on n vertices denoted by (1,1), (1,2),...(1,n) with n-1 edges
denoted by e, e,,....e,, where e, is the edge joining the vertices (1,i) and (1,i+1) on each
edge e; = i, where 1 <i < n-1. We erect a ladder with n-(i-1) steps including the edge e;. The
graph obtained is called a step ladder graph and is denoted by S(T,) where n denotes the

number of vertices in base.

Definition 1.16: Let G be a graph. Let G’ be a copy of G. The mirror graph M(G) of G is
defined as the disjoint union of G and G’ with additional edges joining each vertex of G to

its corresponding vertex in G’.

2. Main Result :

In this section, we discuss the Medium domination number for step ladder graph,

mirror graph of path and Extended Medium domination number of some special type of
graphs like P (K 1l ), peacock head graph, Ladder graph, Umbrella graph, PmG)Krf ,
S’ (By,), uniform t-play graph and ladder graph.

2. Medium domination number

4n®* —n-6
Theorem 2.1: If G = S(T,) then MD(G) = —nwhere n = 3.
N+
i=2
2

Proof: Consider the step ladder graph. Let the vertices of P, be (1,1), (1,2),...(1,n). The step
ladder graph S(T,) has vertices denoted by (1,1), (1,2),...(1,n), (2,1), (2,2),...(2,n), (3,1),
(3,2),...(3n-1),......... (n,1), (n,2). In the ordered pair (i, j) i denotes the row (bottom to top)
j denotes the column (left to right) respectively. TDV(G)= z dom(u,V) for u,ve V(G).

TDV(P,) = 2n -3.
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In the step ladder graph there are n paths in row wise which has the vertices n, n, n-1, n-2,
....2 respectively. Therefore total dominating vertices of the above n paths is

_ (2n-3)+(2n-3)+(2(n-1)-3)+....... +1 _ (2n-3)+(2n-3)+(2(n-1)-3)+....... +(4-3)
_ (2n-3)+{2[n+(n-1)+...... +2]}-(n-1)3 _ (2n-3)+ {2[n+(n-1)+...... +2+1-1]}-(n-1)3

( n(n+ 1)] ,
— (2n-3)+2 T -2-3n-6 _ n*-2.

Similarly column wise n*-2.
2

Step ladder graph has ( J squares which has the vertices (i, j), (i, j+1), (i+1, j), (i+1,

j+1)

2
n°“—n
dom((i, j),(i+1, j+1))=2 and dom((i+1, j),(i, j+1))=2. Therefore 4[ > ] =2n*-2n.

dom((i, j),(i+1, j-1)) = 1 for i = 2 to n; j = 3 to n; i+j=n+2;Therefore Z dom((i, j),(i+1, j-
1)) =n-2 fori=2ton;j =3 ton; i+j = n+2.
Therefore TDV(G) = 2(n*-2)+2n?-2n+n-2 = 4n*-n-6.

TDV(G) 4n*-n-6

(2] _ n+iZn2:i

Example 2.2 for the graph S(T,),

MD(G) =

(4,1) (4,2)

(31)
(2,4)
(2,)
w (1.2) 13 @4
Figure 2.1
From the the above figure 2.1, we have dom((1,1),(1,2)) = 1; dom((1,1),(1,3)) = 1;
dom((1,2),(1,3)) = 1; dom((1,2),(1,4)) = 1; dom((1,3),(1,4)) = 1; dom((2,1),(2,2)) = 1;
dom((2,1),(2,3)) = 1; dom((2,2),(2,3)) = 1; dom((2,2),(2,4)) = 1; dom((2,3),(2,4)) = 1;
dom((3,1),(3,2)) = 1; dom((3,1),(3,3)) = 1; dom((3,2),(3,3)) = 1; dom((4,1),(4,2)) = 1;
dom((1,1),(2,1)) = 1; dom((1,1),(3,1)) = 1; dom((2,1),(3,1)) = 1; dom((2,1),(4,1)) = 1;
dom((3,1),(4,1)) = 1; dom((1,2),(2,2)) = 1; dom((1,2),(3,2)) = 1;dom((2,2),(3,2)) = 1;
dom((2,2),(4,2)) = 1; dom((3,2),(4,2)) = 1; dom((1,3),(2,3)) = 1;dom((1,3),(3,3)) = 1;
dom((2,3),(3,3)) = 1; dom((1,4),(2,4)) = 1; dom((2,4),(3,3)) = 1; dom((3,3),(4,2)) = 1;
dom((1,1),(2,2)) = 2; dom((1,2),(2,1)) = 2; dom((1,2),(2,3)) = 2; dom((1,3),(2,2)) = 2;
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dom((1,3),(2,4)) = 2; dom((1,4),(2,3)) = 2; dom((2,1),(3,2)) = 2; dom((2,2),(3,1)) = 2;
dom((2,2),(3,3)) = 2; dom((2,3),(3,2)) = 2; dom((3,1),(4,2)) = 2; dom((3,2),(4,1)) = 2.

TDV(G) = 54; MD(G) = %
- 78"

TDV(G) = 4n*-n-6 = 4(16) - 4 - 6 = 54.
4n*-n-6 54 54

= N = 1 = —,
n+Zi ( 3J 8
= 2

2

MD(G)

9n-10

——— wheren = 3.
2n

Proof: Consider the mirror graph of a path P,. Let the vertices of P are A ,A,,...... A, and
the vertices of P, are B, B,,.... B,. Now join A, to B;for i = 1 to n. For any path P, TDV(P,,)

Theorem 2.3: If G = M (P,) then MD(G) =

= 2n-3 for any n. we have two paths P,

n
dom(A;,B,) =1 fori =1 to n; therefore Z dom(A,;,B;) = n;
i=1
n-1
dom(A;,B;,,) =2 for i = 1 to n-1; therefore Z dom(A,B,,;) = 2(n-1);

i=1

n

dom(A,B, ) = 2 for i = 2 to n; therefore Z dom(A;,B, ) = 2(n-1).
i=2

TDV(G) = 2(2n-3) + n + 4(n-1) = 9n-10.

TDV(G)  9n-10

U

Example 2.4 consider the graph M(P5),

MD(G)=

Aq A, As B, B, B3
Figure 2.2
From the above figure 2.2, we have dom(A,,B,) = 1; dom(A,,B,) = 1;dom(A;,B;)=
1; dom(Ath) =2 dom(AZ)Bl) =2 dom(Az,Bs) = 2;dom(A3,B2) =2 dom(AhAz) =1
dom(A,A;) = 1; dom(A,A;) = 1; dom(B;,B,) = 1; dom(B;,B;) = 1; dom(B,,B;) = 1.

TDV(G) = 17; MD(G) = 7
- 15
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@:15

3. Extended Medium domination number

TDV(G) = 9n-10 =9(3) - 10 = 17. MD(G) =

Authors obtained the medium domination number of some different types of
graphs. Each result plays an vital role in some real life situations. But still lot of some new
types of graphs are available in the literature and it needs to investigate it Extended medium
domination number. Therefore, in this section, we obtain the Extended medium

domination number of some special types of graphs.

Theorem 3.1: Let G be the peacock head graph PC(n, m) where n > 2 and m > 3, then
n(n+9)+6m

"2

Proof: Let (a,, a,,.....a;,....a,,) be the vertices of the cycle C,.. (b}, b,,....b,) be the pendent

EMD(G) is

vertices of the star K, . Now attach the root vertex of the star K, , to any vertex of the cycle

C,, say (a;). ETDV(G)= Z edom(u, V) for u, ve V(G). For any cycle C,, ETDV(C,,)) = 3m,

n(n+1)
for any m. For any strar K, , ETDV(K, ) = T
n
edom(a,, b;) = 1 for i = 1 to n; therefore Z edom(a, b;) = n;
i=1
n
edom(a;, b;) = 1 for i = 1 to n; therefore Z edom(as;, b;) =n;

i=1
n
edom(a,,, b;) = 1 for i = 1 to n; therefore Z edom(a,, b)) =n;
i=1
n
edom(a,, ;, b)) =1fori=1ton; thereforez edom(a,, ;, b;) =n.
i=1
ETDV(G) = ETDV(C,)) + ETDV(K,,) + 4n

n(n+1)
=3m+T+4n=[6m+n2+n+8n]/2
_ n’+49n+6m  n(n+9)+6m
- 2 - 2

ETDV(G) n(n+9)-+6m

EMD(G) = =
p [nm
2 2

Example 3.2, for the graph PC(5,6)
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Figure 3.1

From the above figure 3.1, we have, edom(l, 2) = 1; edom(1, 3) = 1; edom(1, 4)
edom(1l, 5) = 1; edom(1l, 6) = 1; edom(l, 7) = 1; edom(1l, 8) = 1; edom(l, 9)
edom(1, 10) = 1; edom(1, 11) = 1; edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5)
edom(2, 6) = 1; edom(2, 7) = 1; edom(2, 8) = 1; edom(2, 9) = 1; edom(2, 10)
edom(2, 11) = 1; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 2; edom(3, 7)
edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(4, 5) =
edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 10)
edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9)
edom(5, 10) = 1; edom(5, 11) = 1; edom(6, 7) = 1; edom(6, 8) = 1; edom(6, 9)
edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) = 1; edom(7, 9) = 1; edom(7, 10)
edom(7, 11) = 1; edom(8, 9) = 1; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) =

Pt e e e e e = N = DN

53
edom(9, 11) = 1; edom(10, 11) = 1. ETDV(G) = 53; MD(G) = —.

55
n(n+9)+6m  5(14)+36
ETDV(G) = 5 = 5 =53
ETDV (G) 53 53
EMD(G)= =

HIEH

K% 416k —22
Theorem 3.3: Let G be a ladder graph L, where k > 4 then EMD(G) is ————~——

2k
2
Proof: Let (A}, A,,...... Ay and (B, B,,....B,) be the vertices of two distinct paths with k

vertices. Now join the vertices Ai to Bi for i = 1 to k. ETDV(G) = Zedom(u,v) for u, v

€ V(G). For any path P, ETDV(P,) = 3k-6 for any k. we have two paths P,.
k-1

edom(A,, B;) = 3 for i = 2 to k-1; therefore Z edom(A,;, B, = (k-2)3;
i=2
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edom(A,, B,) = 2 for i = 1 and k; therefore Z edom(A;, B)) = 4;

i=1,k
k-1
edom(A;, A,,,) =1 fori=1 to k-1; therefore edom(A;, B,,) =k-1;
i=1
k-1
edom(B,, B,,;) = 1 fori =1 to k-1; therefore edom(A,, B,,;) =k-1;
i=1
k-1
edom(A,, B,,,) = 2 for i = 2 to k-1; therefore edom(A,, B,,) = 4(k-2);

~ -
NN

edom(A,, B,,,) = 2 for i = 3 to k-2; therefore Z edom(A,;, B,,,) = 6(k-4);
i=3
edom(A,, B,) = 2; edom(A,, B, ;) =2; edom(A,, B;) = 3; edom(A,, B,) = 3; edom(A,, B,,) =
3; edom(A, |, B, ;) = 3.
ETDV(G) = 2(3k-6)+3(k-2)+2(k-1)+4(k-2)+6(k-6) + 20
= 6k-12+3k-6+2k-2 4k 8+ 6k-24+20
= 21k - 32.

ETDV(G)  21k-32
EMDG) = —————— = ————

W

Example 3.4, consider the graph L
2 4 6
1 3 5 7

Figure 3.2
From the above figure 3.2, we have edom(1, 2) = 2; edom(1, 3) = 1; edom(1, 4) = 1
edom(1, 8) = 2; edom(l, 9) = 2; edom(l, 10) = 3; edom(2, 3) = 2; edom(2, 4) = 1
edom(2, 5) = 1; edom(2, 8) = 2; edom(2, 9) = 3; edom(2, 10) = 2; edom(2, 11) = 3
edom(3, 4) = 2; edom(3, 5) = 1; edom(3, 6) = 1; edom(3, 8) = 3; edom(3, 9) = 2
edom(3, 10) = 3; edom(3, 11) = 2; edom(3, 12) = 3; edom(4, 5) = 2; edom(4, 6) = 1
edom(4, 7) = 1; edom(4, 9) = 3; edom(4, 10) = 2; edom(4, 11) = 3; edom(4, 12) = 2;
edom(4, 13) = 3; edom(5, 6) = 2; edom(5, 7) = 1; edom(5, 10) = 3; edom(5, 11) = 2
edom(5, 12) = 3; edom(5, 13) = 2; edom(5, 14) = 3; edom(6, 7) = 2; edom(6, 11) = 3
edom(6, 12) = 2; edom(6, 13) = 3; edom(6, 14) = 2; edom(7, 12) = 3; edom(7, 13) = 2
edom(7, 14) = 2; edom(8, 9) = 2; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) = 2
edom(9, 11) = 1; edom(9, 12) = 1; edom(10, 11) = 2; edom(10, 12)= 1; edom(10, 13)=1
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edom(11, 12)= 2; edom(11, 13)= 1; edom(11, 14)= 1; edom(12, 13)= 2; edom(12, 14) = 1;
edom(13, 14) = 2.
115
ETDV(G) = 115; EMD(G) = ——.
91
ETDV(G) 115 115

P 14) 01
HEY
Theorem 3.5: Let G be a graph P (K 1l ) where Im > 2, then EMD(QG) is
(1 +5) + 6(m—2)

%)

Proof: Let P (K;,) be a graph obtained by attaching the root vertex of K, to the end

ETDV(G) = 21k-32 = 21(7)-32 = 115; EMD(G)=

vertex of the path P . Let K, be a star with | pendent vertices and one root vertex, P |
be a path with m vertices. Let (a;,a,,....... a ) be the vertices of the path P and (b;, b
g reeenens b ) be the pendent vertices of the star K, . Attach the pendent vertex a; of the path
P . to the root vertex of K, .
ETDV(G)= Y_edom(u, V) for u,v € V(G).
11 +1)
2

For any path P,, ETDV(P,,) = 3m-6 for any m. For any strar K;; ETDV(K,;) =

I
edom(ayb,;) = 1 for i =1 to I; therefore, Z edom(a,b;) =1;
i=1
[
edom(a,,b;) = 1 for i = 1 to L;itherefore, z edom(as,b;) = 1;
i=1
1(1 +1)
ETDV(G) = (3m-6)+ T +21
=(6m-12+1%+1+41) /2
= [1(14+5) + 6(m-2)] / 2

ey - ETOV@) _ 10+5)+6(m-2)

SR

Example 3.6 Consider the graph P¢(K, ),
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Figure 3.3

From the above figure 3.3, we have edom(1, 2) = 1; edom(l, 3) = 1; edom(1, 4) = 1
edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(3, 4) = 1; edom(3, 5) = 1
edom(3, 6) = 1; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 8) =1
edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1;
1
1
1

>
>

>

edom(5, 8) = 1; edom(5, 9) = 1; edom(5, 10) = 1; edom(5, 11) = 1; edom(6, 7) =
edom(6, 8) = 1; edom(6, 9) = 1; edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) =
edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(8, 9) = 1; edom(8, 10) =
edom(8, 11) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(10, 11) = LETDV(G) = 37,

37
EMD(G) = —.
55

ETDV(G) = [1(I45) + 6(m-2)] /2 = [5(10)+6(4)] /2 = 37.
ETDV(G) 37 37

EMD(G) = = = —
p 11 55
2 2

Theorem 3.7: Let G be a graph U(n,m) where n > 2 and m > 6, then EMD(G) is
3m+29n-67

)

Proof: Let (a;, a,,....... a, ) be the vertices of the path P and (b;, b, ,....... b,) be the

pendent vertices of the star K;,. Now attach the root vertex of K, to end vertex (say) a, of
the path P, Now join b; to b,,, for i = 1 to n-1. This graph is known as umbrella graph m+n
vertices.

ETDV(G)= Z edom(U,V) for all wvE V(G). edom(a,, b;) = 5 for i = 3 to n-2;

n-2 n-1
Therefore, Z edom(a,, b;) = 5(n-4); edom(a,, b;) = 3 for i = 2 to n-1; Therefore, Z
i-3 i—2

n

edom(a,, b;) = 3(n-2); edom(a,, b)) = 1 for i = 1 to n; Therefore, Z edom(a;, b)) =n;
i=1

edom(a,, b)) = 4 fori = 2 and n-1; Therefore, z edom(a,;, b;) = 8;
i=2,n-1
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edom(a,, b)) = 3 fori = 1 and n; Therefore, z edom(a,, b;) = 6;

i=1,n

edom(a,, b)) = 2 fori = 1 and n; Therefore, z edom(a,, b;) = 4;
i=1,n
n-2
edom(b, by,,) = 4 for i = 2 to n-2; Therefore, ), edom(b, by,) = 4(n-3);
i=2

edom(b;, b;,;) = 3 for i = 1 and n-1 ; Therefore, Z edom(b;, by,,) = 6;
i=1,n-1

w

me
edom(b;, b;,,) = 6 for i = 2 to m-3 ; Therefore, z edom(b;, b;,,) = 6(n-4);
i=2
m-4
edom(b;, b;,3) = 5 for i = 2 to n-4; Therefore, Z edom(b,, b;,;) = 5(n-5);
i=2
edom(b;, b;) =5 fori=2ton-5 j=6ton-l,j-i>3; Therefore,z edom(b;, b)) = 5(n-6 )
fori=2ton-5, j=6ton-1,j-i>3;
edom(b,, b;) = edom(b,,, b,) = 5; edom(b,, b,) = edom(b, ;, b,) = 4; edom(b,, b;) =
edom(b, ,, b,) = 3; edom(b,, b, ;) = edom(b,, b,) = 3; edom(b,, b,) = 2.
ETDV(G) = 3m-6 + 5(n-4) + 3(n-2) + n + 4(n-3) + 6(n-4) + 5(n-5) + 5(n-6) + 56.
= 3m+5n+3n+n+4n+6n+5n+5n+56-123 =3m + 29n - 67

ETDV(G)  3m+29n-67

o

Example 3.8 for the graph U(7,4)

EMD(G)

Figure3.4
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from the above figure 3.4, we have edom(l, 2) = 1; edom(1, 3) = 1; edom(1, 4)
edom(1l, 5) = 3; edom(l, 6) = 4; edom(l, 7) = 5; edom(1l, 8) = 5; edom(l, 9)
edom(1, 10) = 4; edom(1, 11) = 3; edom(2, 3) = 1; edom(2, 4) = 4; edom(2, 5)
edom(2, 6) = 3; edom(2, 7) = 3; edom(2, 8) = 3; edom(2, 9) = 3; edom(2, 10)
edom(2, 11) = 2; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1; edom(3, 7)
edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(5, 6) =
edom(5, 7) = 5; edom(5, 8) = 4; edom(5, 9) = 3; edom(5, 10) = 3; edom(5, 11) =
edom(6, 7) = 4; edom(6, 8) = 6; edom(6, 9) = 5; edom(6, 10) = 5; edom(6, 11) =
edom(7, 8) = 4; edom(7, 9) = 6; edom(7, 10) = 5; edom(6, 11) = 3; edom(8, 9) =
edom(8, 10) = 6; edom(8, 11) = 4; edom(9, 10) = 4; edom(9, 11) = 5; edom(10, 11) = 3.

1l
U ST SRR N

ETDV(G) = 148, EMD(G) = % ETDV(G) = 3m + 29n - 67 = 3(4) + 29 (7) - 67 = 148

ETDV(G) 148 148
EMDG)= ————2 - —— - =
p 11 55
2 2
, 17k* + 25k +6
Theorem 3.9: Let G be the graph S’(B,,), then EMD(G) = ——————<— wherek>2.

4k +1)
¥y

Proof: Let G be the graph S’(B,,) construct by the vertices a, b, ¢, d, x;, y; where 1< i <2k
and the edges {ab, bc, ad} U {ax; / 1<i <k} U {ay, / 1<i <k} U {bx, / k+1<i <2k} U
{by; / k+1< i <2k} U {cy, / 1< i <k} U {dy; / k+1< i <2k}. Here {ax; / 1< i <k} and {bx; /
k+1< i <2k} are the pendent edges.
edom(a,b) = 2k+1; edom(a,c) = k+1; edom(a,d) = k+1;

2k
edom(a,x;) = 1 fori=1 to 2k; therefore Z edom(a, x;) = 2k;

i=1

k

edom(a,y;) = k+1 for i = 1 to k; therefore Z edom(a, y;) = k(k+1);

i=1

2k
edom(a,y;) = 2 for i = k+1 to 2k; therefore Z edom(a, y;) = 2k;
i=k+1

edom(b,c) = k+1; edom(b,d) = k+1;

2k
edom(b,x;) = 1 for i =1 to 2k; therefore Z edom(b, x;) = 2k;

i=1

k

edom(b,y;) = 2 for i = 1 to k; therefore edom(b, y;) = 2k;
i=1
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2k
edom(b,y;) = k+1 for i = k+1 to 2k; therefore Z edom(b, y;) = k(k+1); edom(c, d) =
i=k+1
2k+1;
k
edom(c,x;) = 2 for i = 1 to k; therefore Z edom(c, x;) = 2k;
i=1
2k
edom(c,x;) = 1 for i = k+1 to 2k; therefore Z edom(c, x;) = k;
i=k+1
k
edom(c,y;) = k+1 fori=1tok; therefore Z edom(c, y;) = k(k+1);
i=1

2k
edom(c,y;) = 1 for i = k+1 to 2k; therefore Z edom(c, y) = k;
i=k+1
k
edom(d,x;) = 1 for i = 1 to k; therefore edom(d, x;) = k;
i=1
2k
edom(d,x;) = 2 for i = k+1 to 2k; therefore Z edom(d, x;) = 2k;

i=k+1
k
edom(d,y;) = 1 for i = 1 to k; therefore z edom(d, y) = k;
i=1
2k
edom(d,y;) = k+1 for i = k+1 to 2k; therefore z edom(d, y;) = k(k+1);
i=k+1

edom(xi,xj) =1fori=1tok;j=k+1 to 2k; therefore Z edom(x,, Xx;) = kK> fori=1tok;
j =k+1 to 2k;
edom(xi,yj) =1 for i,j = 1 to k; therefore z edom(x,, V) = k* for i,j=1to k;
edom(xi,yj) =2fori=1tok;j=k+1 to 2k; therefore Z edom(x;, yj) =2k’ fori=1to
k; j = k+1 to 2k;
edom(x,y;) = 1 for i,j = k+1 to 2k; therefore Z edom(x;, y;) = K’ for i,j = k+1 to 2k;
edom(x,y;) = 2 for j = 1 to k; i = k+1 to 2k; therefore Z edom(x;, y;) = 2k forj=1to
k; i =k+1 to 2k;
edom(y,y;) = 3 fori=1to k;j = k+1 to 2k; therefore Z edom(y;, y;)) = 3k* fori=1to
k; j = k+1 to 2k;

k(k-1)

edom(x;x;) = 1 for i,j = 1 to k; i # j; therefore Z edom(x;, x;) = T forij=1to

k;i#j;
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k(k —1)

edom(xi,xj) =1 for i,j = k+1 to 2k; i # j; therefore Z edom(x;, x;) =

; for i,j =

k+1 to 2k; i # j;

k(k -1
edom(y,y;) = 2 for i,j = 1 to k; i # j; therefore Z edom(y;, y;) = 2(%} for i,j =
l1toksi#j;

N L k(k-1)
edom(y,y;) = 2 for i,j = k+1 to 2k; i # j; therefore Z edom(y, y) = 2 T for

i,j = k+1 to 2k; i # j;
ETDV(G) = 6 + 28k + 14K* + 3k(k-1) = 17k + 25k +6
ETDV(G) ~ 17k? + 25k + 6

B

Example 3.10, For the graph S’(B; ),

EMD(G) =

9 10 11 12 13 14
1 2
3 <> 8
15 16
Figure 3.5

From the above figure 3.5, We have edom(1, 2) = 7; edom(1, 3) = 2; edom(l1, 4)
edom(1l, 5) = 2; edom(1l, 6) = 2; edom(l, 7) = 2; edom(1l, 8) = 2; edom(l, 9)
edom(1, 10) = 2; dom(1, 11) = 2; edom(1, 12) = 2; edom(1, 13) = 2; edom(1, 14)
edom(1, 15) = 4; edom(1, 16) = 4; edom(2, 3) = 2; dom(2, 4) = 2; edom(2, 5)
edom(2, 6) = 2; edom(2, 7) = 2; edom(2, 8) =2; edom(2, 9) = 1; edom(2, 10)
edom(2, 11) = 1; edom(2, 12) = 1; edom(2, 13) = 1; edom(2, 14) = 1; edom(2, 15)
edom(2, 16) = 4; edom(3, 4) = 2; edom(3, 5) = 2; edom(3, 6) = 3; edom(3, 7)
edom(3, 8) =3; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(3, 12)
edom(3, 13) = 2; edom(3, 14) = 2; edom(3, 15) = 1; edom(3, 16) = 1; edom(4, 5)
edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(4, 15) = 1; edom(4, 16) =
edom(5, 9) = 1; edom(5, 10) = 1; edom(5, 11) = 1; edom(5, 15) = 1; edom(5, 16) = 1; ;
edom(6, 7) = 2; edom(6, 8) = 2; edom(6, 12) = 1; edom(6, 13) = 1; edom(6, 14) = 1;
edom(6, 15) = 1; edom(6, 16) = 1; edom(7, 8) = 2; edom(7, 12) = 1; edom(7, 13) = 1;
edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 12) = 1; edom(8, 13) = 1;
edom(8, 14) = 1; edom(8, 15) = 2; edom(8, 16) = 1; edom(9, 10) = 1; edom(9, 11) = 1;

>

M

>

2
2
2
2
1
4:
3
2
2
1

>
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edom(9, 16) = 1; edom(10, 11) = 1; edom(10, 16) = 1; edom(12, 13) = 1; edom(12, 14) = 1;
edom(12, 15) = 1; edom(13, 14) = 1; edom(13, 15) = 1; edom(14, 15) = 1.
234
ETDV(G) = 234; EMD(G) = —— .
120
ETDV(G) 234 234

G

3t(s+t-1)
Theorem 3.11: Let G be the uniform t-ply graph P,(u,v) then EMD(G) = ﬁ where

ETDV(G) = 17K + 25k +6 = 153 + 75 + 6 = 234.EMD(G) =

2

s>4,t>2
Proof: Let (a;;,a;,.....a;) be the vertices of the i path P, for i = 1 to t. Join the initial vertices

(a;>25p5-+-..2,) to the vertex u and the terminal vertices (a;,a,........a,) to the vertex v.
ETDV(G) = _edom(u,V) for u, v€ V(G).
For any path P, ETDV(P,) = 3s-6 for any s. we have t copies of P;

t(t+1)
we have two stars K, .
For any star K, , ETDV(K,,) = 2 ’

edom(u, x) = 1 for x = a;;, 3,33 i = 1 to t; therefore Z edom(u, a;) =2tforx=a;,a;i=1
to t;
edom(v, x) = 1 for x = a}, a;,.;); i = 1 to t; therefore z edom(v, a;;) = 2t for x = a;, a;);

i=1tot
t
edom(a,;, a;,) = 1 for i = 2 to t; therefore Z edom(a,, a,) = t-1;
i=2
t
edom(a,,, a,,) = 1 for i = 3 to t; therefore Z edom(a,;, a,) = t-2;....... edom(a ., ap) = 1;
i=3
t
edom(a,,, a;;) = 1 for i = 2 to t; therefore Z edom(a,,, a;) = t-1;
i=2
t
edom(a,,, a;;) = 1 for i = 3 to t; therefore Z edom(a,,, a;,) = t-2;....... edom(ag ), ay) = 1;
i=3
t
edom(a,, a, ) = 1 for i = 2 to t; therefore Z edom(a,, ay, ) = t-1;
i=2
t
edom(ay, ay, ) = 1 for i = 3 to t; therefore Z edom(ay;, ay ) = t-25....... edom(a ), A
i=3
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MH

edom(a, ), a;,) = 1 for i = 2 to t; therefore edom(a, ) a;) = t-1;

i=2
t
edom(ayp @) =1 fori=3tot; thereforez edom(ay, ) a;) = t-2;5....... edom(a. .1
i=3
a,) = 1.
t(t+1)
ETDV(G) =t(3s - 6) + 2 > + 4t + 4 [1+2+....... +(t-1)]
t(t-1
=3st-6t+t2+t+4t+4( ( > )j

= 3st—t+t*+ 2t - 2t = 3>+ 3st - 3t = 3t(t + s -1)
ETDV(G) t(s+t-1)

EMDO) = 777N T T stz
2 2

Example 3.12, consider the graph P;(u, v),

1 2 3 4
® ®
° ° ® ® v
5 6 7 8
° °
9 10 11 12

Figure 3.6

From the above figure 2.6, we have edom(u, 1) = 1; edom(u, 2) = 1; edom(u, 5) =

edom(u, 6) = 1; edom(u, 9) = 1; edom(u, 10) = 1; edom(u, 3) = 1; edom(u, 7)
edom(u, 11) = 1; edom(v, 4) = 1; edom(v, 8) = 1; edom(v, 12) = 1; edom(v, 3)
edom(v, 7) = 1; edom(v, 11) = 1; edom(v, 2) = 1; edom(v, 6) = 1; edom(v, 10)
edom(1, 2) = 1; edom(1l, 3) = 1; edom(1, 4) = 1; edom(1l, 5) = 1; edom(1, 9)
edom(1, 6) = 1; edom(1, 10) = 1; edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5)
edom(2, 9) = 1; edom(3, 4) = 1; edom(3, 8) = 1; edom(3, 12) = 1; edom(4, 8)
edom(4, 12) = 1; edom(4, 7) = 1; edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7)
edom(5, 8) 1; edom(5, 9) = 1; edom(5, 10) = 1; edom(6, 7) = 1; edom(6, 8)
edom(6, 9) = 1; edom(7, 8) = 1; edom(7, 12) = 1; edom(8, 11) = 1; edom(8, 12)

edom(9, 10) = 1; edom(9, 11) = 1; edom(9, 12) = 1; edom(10, 11) = 1; edom(10, 12)=1;

edom(11, 12) = 1; ETDV(G) = 54; EMD(G) = %

M

M

>

>

>

1
1
1
1
1
1:
1
1
1
1
1
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ETDV(G) 54 54
ETDV(G) = 3t(s+t-1) = 9(6) = 54. EMD(G) = ———~—— = —C =

p 14) ~ 91
2 2
Theorem  3.13: If G be a graph P _ OK: , then EMD(G) =
2 2
m(3n° +9n+6)—(2n° +12n+12) where

2(m(n +1)]
2

Proof: Let P, ®K° be a graph obtained by attaching the root vertex of the star K, , toall

m=>3,n2=>2.

the vertices of the path P _.Let (a;,a5,....... a, ) be the vertices of the path P . Let (b,

by,....... b ) be the pendent vertices of the star S, (b, ,;,b b, ) be the pendent

N4 2eceeees

vertices of the star S, ,.......... (b (med)nsdeeeeees b ., ) be the pendent vertices of the star S .
Now attach the root vertex of S; toa;,S, toa,,........ S _toa

ETDV(G)= )_edom(u,V) for uv€ V(G).

respectively.

m m

n(n+1)
For any path P, ETDV(P_) = 3m - 6; For any star K, ,, ETDV(K,,) = 2

edom(bi,bj) =1fori=1ton;j=n+lto2n; therefore, Z edom(bi,bj) =n’fori=1ton;

j=n+l to 2n;

edom(bi,bj) =1 for i = n+l to 2n; j = 2n+1 to 3n; therefore, Z edom(bi,bj) =n?fori=

n+lto2n;j=2n+l1to3n; ............. edom(b;,b)) = 1 for i = mn-2n+1 to mn-n; j = mn-n+1

to mn; therefore, Z edom(b,,b)) = n’ for

i=mn-2n+1 to mn-n; j = mn-n+1 to mn;
3n

edom(a;,b;,) = 1 for i = n+1 to 3n; therefore, — edom(a;,b;) = 2n;

edom(ayb;) = 1 fori=1 to n and 2n+1 to 4n; therefore, Z edom(ayb;,) =3nfori=1to

n and 2n+1 to 4n;

edom(as,b;) =1 for i =1 to 2n and 3n+1 to 5n; therefore, Z edom(a;,b;) =4n fori=1to

2n and 3n+1 to 5n;

edom(a,b) = 1 for i = n+l to 3n and 4n+1 to 6n; therefore, Z edom(a,b;) =
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edom(a,,b,) = 1 for i = (m-3)n+1 to mn-n; therefore, Z edom(a,,b;) = 2n for i = (m-

3)n+1 to mn-n.
n(n-1)
ETDV(G) =3m - 6 + m ( 2 ) + (m-1)n?+ 10n + (m-4)4n
= [6m - 12 + mn* + mn + 2mn?* -2n* + 20n + 8mn - 32n]/2
= [2mn? + mn® - 2n® + 9mn + 6m -12n - 12] /2
=[m(3n®+9n + 6) - 2n* +12n + 12)] / 2

ETDV(G) m(3n*+9n+6)—(2n* +12n+12)
p - ) m(n +1)
: ey

Example 3.14 Consider the graph P,OKj,

13 14 15 16
1% 4//Y % 10%
2 3 5 6 T8 9 11

Figure 3.7

EMD(G) =

From the above figure 3.7, We have, edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) =
edom(1, 5) = 1; edom(1, 6) = 1; edom(1, 13) = 1; edom(1, 14) = 1; edom(1, 15) =
edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(2, 6) = 1; edom(2, 13) =
edom(2, 14) = 1; edom(2, 15) = 1; ; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) =
edom(3, 13) = 1; edom(3, 14) = 1; edom(3, 15) = 1; edom(4, 5) = 1; edom(4, 6) =
edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 13) = 1; edom(4, 14) =
edom(4, 15) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9) =
edom(5, 13) = 1; edom(5, 14) = 1; edom(5, 15) = 1; edom(6, 7) = 1; edom(6, 8) =
edom(6, 9) = 1; edom(6, 13) = 1; edom(6, 14) = 1; edom(6, 15) = 1; edom(7, 8) =
edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(7, 12) = 1; edom(7, 13) =
edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 9) = 1; edom(8, 10) =
edom(8, 11) = 1; edom(8, 12) = 1; edom(8, 13) = 1; edom(8, 14) = 1; edom(8, 15) =
edom(8, 16) = 1; edom(9, 10) = 1;edom(9, 11) = 1; edom(9, 12) = 1; edom(9, 13) =
edom(9, 14) = 1; edom(9, 15) = 1; edom(9, 16) = 1; edom(10, 11) = 1; edom(10, 12) =

1
1
1
1
1
1
1
1:
1
1
1
1
1
1

edom(10, 14) = 1; edom(10, 15) = 1; edom(10, 16) = 1; edom(11, 12) = 1; edom(11, 14) = 1;
edom(11, 15) = 1; edom(11, 16) = 1; edom(12, 14) = 1; edom(12, 15) = 1; edom(12, 16) = 1.
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87
ETDV(G) = 87; MD(G) = ——
120

ETDV(G) = [m(3n” + 9n + 6) - (2n* + 12n + 12)] /2
=[327+27+6)- (18 +36 +12)] /2 =87
ETDV(G) ETDV(G) 87

EMD(G) = = -
) p m(n +1) 120
2 2
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