International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 8, No. 2, April – June 2017, pp. 55 - 74

Further Results of Extended Medium Domination Number of Some Special Types of Graphs

*G. Mahadevan¹, V. Vijayalakshmi² and C. Sivagnanam³

^{1,2}Department of Mathematics, Gandhigram Rural Institute- Deemed University,

Gandhigram- 624302.

³Department of General Requirements, College of Applied Sciences-Ibri, Sultanate of Oman. Email: *drgmaha2014@gmail.com, victoryviji7@gmail.com², choshi71@gmail.com³

Abstract: The Medium domination number of a graph was introduced by Duygu Vargor et,al., in [1]. Motivated by the above in [5], Mahadevan, Vijayalakshmi and Sivagnanam introduced the concept of extended medium domination number of a graph. This concept has lot of application in computer communication networks. edom(u,v) is sum of number of u-v paths of length one, two and three. The total number of vertices that dominate every pair of vertices $ETDV(G) = \sum edom(u,v)$ for $u, v \in V(G)$. In any simple graph G of p number of vertices, the extended medium domination number of G is defined as $EMD(G) = \frac{ETDV(G)}{\binom{p}{2}}$. In this paper, we investigate the extended medium domination

number for some special types of graphs.

Key Words: *Extended medium domination Number of a graph.* AMS Subject Classification: 05C69

1. Introduction

In graph theory a graph G is denoted by G = (V,E) where V is a vertex set and E is a edge set of G. Path graph is denoted by P_n where n is the total number of vertices in P_n . C_n is a cycle graph with n vertices. The Bistar is a graph joining the root vertex of $K_{1,n}$ to end vertices of K_2 and is denoted by B(n, n). In this paper we investigate the general result for the extended medium domination number of the graphs bistar, jellyfish graph and $C_m \Theta K_n$ ^c.

Definition 1.1:[5] Let G = (V,E) be a graph, V, E be the vertex set and edge set respectively. edom(u,v) is sum of number of u-v paths of length one, two and three.

Definition 1.2:[5] Let G be the graph. The total number of vertices that dominate every pair of vertices $ETDV(G) = \sum edom(u, v)$ for $u, v \in V(G)$.

Received: 09 November, 2016; Revised: 27 January, 2017; Accepted: 03 March, 2017

^{*}Corresponding Author

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Definition 1.3:[5] The extended medium domination number of G is defined as EMD(G)= ETDV(G)

$$\begin{array}{c} \hline p \\ 2 \end{array}$$
 where p is the total number of vertices in

G.

From the above figure, we have edom(1, 2) = 2; edom(1, 3) = 3; edom(1, 4) = 1; edom(1, 5) = 2; edom(1, 6) = 3; edom(2, 3) = 2; edom(2, 4) = 2; edom(2, 5) = 2; edom(2, 6) = 2; edom(3, 4) = 1; edom(3, 5) = 3; edom(3, 6) = 2; edom(4, 5) = 1; edom(4, 6) = 2; edom(5, 6) = 3; . ETDV(G) = 31; EMD(G) = $\frac{31}{15}$.

Observation 1.5 [5] ETDV(K_{1,n}) = $\frac{n(n+1)}{2}$

Observation 1.6 [5] $ETDV(C_m) = 3m$

Observation 1.7 [5] $ETDV(P_m) = 3m-6$

Definition 1.8: The peacock head graph is obtained by joining n pendent edges to any one vertex of the cycle C_m and it is denoted by PC(n, m).

Definition 1.9: Let G = (V, E) be a ladder graph L_k such that V={A₁, A₂,...,A_k, B₁, B₂,...,B_k}, $E = E_1 \cup E_2 \cup E_3$, where $E_1 = \{(A_i, A_{i+1}), 1 \le i \le k-1\}, E_2 = \{(B_i, B_{i+1}), 1 \le i \le k-1\}, E_3 = \{(A_i, B_i), 1 \le i \le k\}.$

Definition 1.10: A uniform t-ply graph is a graph obtained from t distinct P_s , $s \ge 3$ paths by merging all the initial vertices to a vertex u and all the terminal vertices to a vertex v. The uniform t-ply graph is denoted by $P_t(u,v)$.

Notation 1.11: $P_m(K_{1,l})$ is a graph obtained by attaching the root vertex of $K_{1,l}$ to the end vertex of the path P_m .

Notation 1.12: umbrella graph U(n,m) is a collection of vertices V and edges E such that $V[U(n,m)] = \{x_1,x_2,...,x_n,y_1,y_2,...,y_m\};$

$$E[U(n,m)] = \begin{cases} (x_i, x_{i+1}); i = 1, 2, \dots, n-1\\ (y_i, y_{i+1}); i = 1, 2, \dots, m-1\\ (x_i, y_1); i = 1, 2, \dots, m-1 \end{cases}$$

Notation 1.13: S'(B_{k,k}) is a graph whose vertices are a, b, c, d, x_i, y_i where $1 \le i \le 2k$ and the edges are {ab, bc, ad} \cup {ax_i / $1 \le i \le k$ } \cup {ay_i / $1 \le i \le k$ } \cup {bx_i / $k+1 \le i \le 2k$ } \cup {by_i / $k+1 \le i \le 2k$ } \cup {cy_i / $1 \le i \le k$ } \cup {dy_i / $k+1 \le i \le 2k$ }. Here {ax_i / $1 \le i \le k$ } and {bx_i / $k+1 \le i \le 2k$ } are the pendent edges.

Notation 1.14: $P_m \Theta K_n^c$ is a graph obtained by attaching the root vertex of star $K_{1,n}$ to all the vertices of the path P_m .

Definition 1.15: Let P_n be a path on n vertices denoted by (1,1), (1,2),...(1,n) with n-1 edges denoted by e_1 , e_2 ,..., e_{n-1} where e_i is the edge joining the vertices (1,i) and (1,i+1) on each edge $e_i = i$, where $1 \le i \le n-1$. We erect a ladder with n-(i-1) steps including the edge e_i . The graph obtained is called a step ladder graph and is denoted by $S(T_n)$ where n denotes the number of vertices in base.

Definition 1.16: Let G be a graph. Let G' be a copy of G. The mirror graph M(G) of G is defined as the disjoint union of G and G' with additional edges joining each vertex of G to its corresponding vertex in G'.

2. Main Result :

In this section, we discuss the Medium domination number for step ladder graph, mirror graph of path and Extended Medium domination number of some special type of graphs like P_m (K_{1,l}), peacock head graph, Ladder graph, Umbrella graph, $P_m \Theta K_n^c$, S'(B_{k,k}), uniform t-play graph and ladder graph.

2. Medium domination number

Theorem 2.1: If G = S(T_n) then MD(G) =
$$\frac{4n^2 - n - 6}{\left(n + \sum_{i=2}^{n} i\right)}$$
 where $n \ge 3$.

Proof: Consider the step ladder graph. Let the vertices of P_n be (1,1), (1,2),...(1,n). The step ladder graph $S(T_n)$ has vertices denoted by (1,1), (1,2),...(1,n), (2,1), (2,2),...(2,n), (3,1), (3,2),...(3,n-1),....(n,1), (n,2). In the ordered pair (i, j) i denotes the row (bottom to top) j denotes the column (left to right) respectively. TDV(G)= $\sum dom(u, v)$ for $u, v \in V(G)$. TDV(P_n) = 2n -3.

In the step ladder graph there are n paths in row wise which has the vertices n, n, n-1, n-2,2 respectively. Therefore total dominating vertices of the above n paths is

- $= (2n-3)+(2n-3)+(2(n-1)-3)+\dots+1 = (2n-3)+(2n-3)+(2(n-1)-3)+\dots+(4-3)$
- $= (2n-3) + \{2[n+(n-1)+\dots+2]\} (n-1)3 = (2n-3) + \{2[n+(n-1)+\dots+2+1-1]\} (n-1)3 = (2n-3) + (2$

 $= (2n-3)+2\left(\frac{n(n+1)}{2}\right)-2-3n-6 = n^2-2.$

Similarly column wise n²-2.

Step ladder graph has $\left(\frac{n^2 - n}{2}\right)$ squares which has the vertices (i, j), (i, j+1), (i+1, j), (i+1, j+1)

dom((i, j),(i+1, j+1))=2 and dom((i+1, j),(i, j+1))=2. Therefore $4\left(\frac{n^2 - n}{2}\right) = 2n^2 - 2n$. dom((i, j),(i+1, j-1)) = 1 for i = 2 to n; j = 3 to n; i+j=n+2; Therefore $\sum dom((i, j),(i+1, j-1)) = n-2$ for i = 2 to n; j = 3 to n; i+j = n+2.

Therefore TDV(G) =
$$2(n^2-2)+2n^2-2n+n-2 = 4n^2-n-6$$
.

$$MD(G) = \frac{TDV(G)}{\binom{p}{2}} = \frac{4n^2 - n - 6}{\binom{n + \sum_{i=2}^{n} i}{2}}$$

Example 2.2 for the graph $S(T_4)$,

From the the above figure 2.1, we have dom((1,1),(1,2)) = 1; dom((1,1),(1,3)) = 1; dom((1,2),(1,3)) = 1; dom((1,2),(1,4)) = 1; dom((1,3),(1,4)) = 1; dom((2,1),(2,2)) = 1; dom((2,1),(2,3)) = 1; dom((2,2),(2,3)) = 1; dom((2,2),(2,4)) = 1; dom((2,3),(2,4)) = 1; dom((3,1),(3,2)) = 1; dom((3,1),(3,3)) = 1; dom((3,2),(3,3)) = 1; dom((4,1),(4,2)) = 1; dom((1,1),(2,1)) = 1; dom((1,1),(3,1)) = 1; dom((2,1),(3,1)) = 1; dom((2,1),(4,1)) = 1; dom((3,1),(4,1)) = 1; dom((1,2),(2,2)) = 1; dom((1,2),(3,2)) = 1; dom((2,2),(3,2)) = 1; dom((2,2),(4,2)) = 1; dom((3,2),(4,2)) = 1; dom((1,3),(2,3)) = 1; dom((1,3),(3,3)) = 1; dom((2,3),(3,3)) = 1; dom((1,4),(2,4)) = 1; dom((2,4),(3,3)) = 1; dom((3,3),(4,2)) = 1; dom((1,1),(2,2)) = 2; dom((1,2),(2,1)) = 2; dom((1,2),(2,3)) = 2; dom((1,3),(2,2)) = 2;

TDV(G) = 54; MD(G) =
$$\frac{54}{78}$$
.
TDV(G) = 4n²-n-6 = 4(16) - 4 - 6 = 54.
MD(G) = $\frac{4n^2 - n - 6}{\left(n + \sum_{i=2}^{n} i\right)} = \frac{54}{\left(\frac{13}{2}\right)} = \frac{54}{78}$.

Theorem 2.3: If G = M (P_n) then MD(G) = $\frac{9n-10}{\binom{2n}{2}}$ where n ≥ 3.

Proof: Consider the mirror graph of a path P_n . Let the vertices of P_n are A_1, A_2, \dots, A_n and the vertices of P_n ' are B_1, B_2, \dots, B_n . Now join A_i to B_i for i = 1 to n. For any path P_n , TDV(P_m) = 2n-3 for any n. we have two paths P_n .

$$dom(A_{i},B_{i}) = 1 \text{ for } i = 1 \text{ to } n; \text{ therefore } \sum_{i=1}^{n} dom(A_{i},B_{i}) = n;$$

$$dom(A_{i},B_{i+1}) = 2 \text{ for } i = 1 \text{ to } n-1; \text{ therefore } \sum_{i=1}^{n-1} dom(A_{i},B_{i+1}) = 2(n-1);$$

$$dom(A_{i},B_{i-1}) = 2 \text{ for } i = 2 \text{ to } n; \text{ therefore } \sum_{i=2}^{n} dom(A_{i},B_{i-1}) = 2(n-1).$$

$$TDV(G) = 2(2n-3) + n + 4(n-1) = 9n-10.$$

$$MD(G) = \frac{TDV(G)}{\binom{p}{2}} = \frac{9n-10}{\binom{2n}{2}}$$

Example 2.4 consider the graph $M(P_3)$,

Figure 2.2

From the above figure 2.2, we have $dom(A_1,B_1) = 1$; $dom(A_2,B_2) = 1$; $dom(A_3,B_3) = 1$; $dom(A_1,B_2) = 2$; $dom(A_2,B_1) = 2$; $dom(A_2,B_3) = 2$; $dom(A_3,B_2) = 2$; $dom(A_1,A_2) = 1$; $dom(A_1,A_3) = 1$; $dom(A_2,A_3) = 1$; $dom(B_1,B_2) = 1$; $dom(B_1,B_3) = 1$; $dom(B_2,B_3) = 1$. TDV(G) = 17; MD(G) = $\frac{17}{15}$

TDV(G) = 9n-10 = 9(3) - 10 = 17. MD(G) =
$$\frac{9n-10}{\binom{2n}{2}} = \frac{17}{15}$$

3. Extended Medium domination number

Authors obtained the medium domination number of some different types of graphs. Each result plays an vital role in some real life situations. But still lot of some new types of graphs are available in the literature and it needs to investigate it Extended medium domination number. Therefore, in this section, we obtain the Extended medium domination number of some special types of graphs.

Theorem 3.1: Let G be the peacock head graph PC(n, m) where n > 2 and m > 3, then EMD(G) is $\frac{n(n+9) + 6m}{(n+m)}$

$$\frac{2\binom{n+m}{2}}{2\binom{n+m}{2}}$$

Proof: Let $(a_1, a_2, \dots, a_p, \dots, a_m)$ be the vertices of the cycle C_m . (b_1, b_2, \dots, b_n) be the pendent vertices of the star $K_{1,n}$. Now attach the root vertex of the star $K_{1,n}$ to any vertex of the cycle C_m say (a_1) . ETDV $(G) = \sum edom(u, v)$ for $u, v \in V(G)$. For any cycle C_m , ETDV $(C_m) = 3m$, for any m. For any strar $K_{1,n}$ ETDV $(K_{1,n}) = \frac{n(n+1)}{2}$. edom $(a_2, b_i) = 1$ for i = 1 to n; therefore $\sum_{i=1}^{n}$ edom $(a_2, b_i) = n$; edom $(a_3, b_i) = 1$ for i = 1 to n; therefore $\sum_{i=1}^{n}$ edom $(a_3, b_i) = n$; edom $(a_m, b_i) = 1$ for i = 1 to n; therefore $\sum_{i=1}^{n}$ edom $(a_m, b_i) = n$; edom $(a_{m-1}, b_i) = 1$ for i = 1 to n; therefore $\sum_{i=1}^{n}$ edom $(a_{m-1}, b_i) = n$. ETDV $(G) = ETDV(C_m) + ETDV(K_{1,n}) + 4n$ $= 3m + \frac{n(n+1)}{2} + 4n = [6m + n^2 + n + 8n]/2$ $= \frac{n^2 + 9n + 6m}{2} = \frac{n(n+9) + 6m}{2}$ EMD $(G) = \frac{ETDV(G)}{\binom{p}{2}} = \frac{n(n+9) + 6m}{2\binom{n+m}{2}}$

Example 3.2, for the graph PC(5,6)

From the above figure 3.1, we have, edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 2; edom(1, 5) = 1; edom(1, 6) = 1; edom(1, 7) = 1; edom(1, 8) = 1; edom(1, 9) = 1; edom(1, 10) = 1; edom(1, 11) = 1; edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 2; edom(2, 6) = 1; edom(2, 7) = 1; edom(2, 8) = 1; edom(2, 9) = 1; edom(2, 10) = 1; edom(2, 11) = 1; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 2; edom(3, 7) = 1; edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 6) = 2; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(5, 7) = 1; edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(6, 8) = 1; edom(5, 9) = 1; edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) = 1; edom(7, 9) = 1; edom(6, 9) = 1; edom(7, 11) = 1; edom(6, 11) = 1; edom(7, 8) = 1; edom(7, 9) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(10, 11) = 1. ETDV(G) = 53; $MD(G) = \frac{53}{55}$. $ETDV(G) = \frac{n(n+9)+6m}{2} = \frac{5(14)+36}{2} = 53$. $EMD(G) = \frac{ETDV(G)}{\binom{p}{2}} = \frac{53}{\binom{11}{2}} = \frac{53}{55}$.

Theorem 3.3: Let G be a ladder graph L_k where k > 4 then EMD(G) is $\frac{k^2 + 16k - 22}{\binom{2k}{2}}$

Proof: Let (A_1, A_2, \dots, A_k) and (B_1, B_2, \dots, B_k) be the vertices of two distinct paths with k vertices. Now join the vertices Ai to Bi for i = 1 to k. ETDV $(G) = \sum edom(u, v)$ for u, $v \in V(G)$. For any path P_{k} , ETDV $(P_k) = 3k-6$ for any k. we have two paths P_k .

 $edom(A_i, B_i) = 3 \text{ for } i = 2 \text{ to } k-1; \text{ therefore } \sum_{i=2}^{k-1} edom(A_i, B_i) = (k-2)3;$

$$\begin{split} & \text{edom}(A_{i}, B_{i}) = 2 \text{ for } i = 1 \text{ and } k; \text{ therefore } \sum_{i=l,k} \text{ edom}(A_{i}, B_{i}) = 4; \\ & \text{edom}(A_{i}, A_{i+1}) = 1 \text{ for } i = 1 \text{ to } k-1; \text{ therefore } \sum_{i=l}^{k-1} \text{ edom}(A_{p}, B_{i+1}) = k-1; \\ & \text{edom}(B_{p}, B_{i+1}) = 1 \text{ for } i = 1 \text{ to } k-1; \text{ therefore } \sum_{i=l}^{k-1} \text{ edom}(A_{i}, B_{i+1}) = k-1; \\ & \text{edom}(A_{i}, B_{i+1}) = 2 \text{ for } i = 2 \text{ to } k-1; \text{ therefore } \sum_{i=2}^{k-1} \text{ edom}(A_{p}, B_{i+1}) = 4(k-2); \\ & \text{edom}(A_{i}, B_{i+2}) = 2 \text{ for } i = 3 \text{ to } k-2; \text{ therefore } \sum_{i=3}^{k-2} \text{ edom}(A_{p}, B_{i+2}) = 6(k-4); \\ & \text{edom}(A_{1}, B_{2}) = 2; \text{ edom}(A_{n}, B_{n-1}) = 2; \text{ edom}(A_{1}, B_{3}) = 3; \text{ edom}(A_{2}, B_{4}) = 3; \text{ edom}(A_{n}, B_{n-2}) = 3; \text{ edom}(A_{n-1}, B_{n-3}) = 3. \\ & \text{ETDV}(G) = 2(3k-6)+3(k-2)+2(k-1)+4(k-2)+6(k-6) + 20 \\ & = 6k-12+3k-6+2k-2 \text{ 4k } 8+6k-24+20 \\ & = 21k-32. \\ & \text{EMD}(G) = \frac{ETDV(G)}{\binom{p}{2}} = \frac{21k-32}{\binom{2k}{2}} \end{split}$$

Example 3.4, consider the graph L

Figure 3.2

From the above figure 3.2, we have edom(1, 2) = 2; edom(1, 3) = 1; edom(1, 4) = 1; edom(1, 8) = 2; edom(1, 9) = 2; edom(1, 10) = 3; edom(2, 3) = 2; edom(2, 4) = 1; edom(2, 5) = 1; edom(2, 8) = 2; edom(2, 9) = 3; edom(2, 10) = 2; edom(2, 11) = 3; edom(3, 4) = 2; edom(3, 5) = 1; edom(3, 6) = 1; edom(3, 8) = 3; edom(3, 9) = 2; edom(3, 10) = 3; edom(3, 11) = 2; edom(3, 12) = 3; edom(4, 5) = 2; edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 9) = 3; edom(4, 10) = 2; edom(4, 11) = 3; edom(4, 12) = 2; edom(4, 13) = 3; edom(5, 6) = 2; edom(5, 7) = 1; edom(5, 10) = 3; edom(5, 11) = 2; edom(6, 12) = 3; edom(6, 13) = 3; edom(6, 14) = 2; edom(7, 12) = 3; edom(7, 13) = 2; edom(7, 14) = 2; edom(8, 9) = 2; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) = 2; edom(9, 11) = 1; edom(9, 12) = 1; edom(10, 11) = 2; edom(10, 12) = 1; edom(10, 13) = 1; edom(11, 12)= 2; edom(11, 13)= 1; edom(11, 14)= 1; edom(12, 13)= 2; edom(12, 14)= 1; edom(13, 14)= 2.

ETDV(G) = 115; EMD(G) =
$$\frac{115}{91}$$
.
ETDV(G) = 21k-32 = 21(7)-32 = 115; EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}} = \frac{115}{\binom{14}{2}} = \frac{115}{91}$

Theorem 3.5: Let G be a graph P_m (K_{1,l}) where l,m > 2, then EMD(G) is $\frac{l(l+5)+6(m-2)}{2\binom{l+m}{2}}$

Proof: Let
$$P_m(K_{1,l})$$
 be a graph obtained by attaching the root vertex of $K_{1,l}$ to the end vertex of the path P_m . Let $K_{1,l}$ be a star with l pendent vertices and one root vertex, P_m be a path with m vertices. Let (a_1, a_2, \dots, a_m) be the vertices of the path P_m and (b_1, b_2, \dots, b_l) be the pendent vertices of the star $K_{1,l}$. Attach the pendent vertex a_1 of the path P_m to the root vertex of $K_{1,l}$.
ETDV(G)= $\sum edom(u, v)$ for $u, v \in V(G)$.

For any path P_{m} , ETDV(P_{m}) = 3m-6 for any m. For any strar $K_{1,l}$, ETDV($K_{1,l}$) = $\frac{l(l+1)}{2}$

$$\begin{aligned} \text{edom}(a_{2},b_{i}) &= 1 \text{ for } i = 1 \text{ to } l; \text{ therefore, } \sum_{i=1}^{l} \text{ edom}(a_{2},b_{i}) = l; \\ \text{edom}(a_{3},b_{i}) &= 1 \text{ for } i = 1 \text{ to } l; \text{therefore, } \sum_{i=1}^{l} \text{ edom}(a_{3},b_{i}) = l; \\ \text{ETDV}(G) &= (3\text{m-}6) + \frac{l(l+1)}{2} + 2l \\ &= (6\text{m} - 12 + 1^{2} + 1 + 4l) / 2 \\ &= [l(l+5) + 6(\text{m-}2)] / 2 \\ \text{EMD}(G) &= \frac{ETDV(G)}{\binom{p}{2}} = \frac{l(l+5) + 6(m-2)}{2\binom{l+m}{2}} \end{aligned}$$

Example 3.6 Consider the graph $P_6(K_{1,5})$,

From the above figure 3.3, we have edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 1; edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9) = 1; edom(5, 10) = 1; edom(5, 11) = 1; edom(6, 7) = 1; edom(6, 8) = 1; edom(6, 9) = 1; edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) = 1; edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(8, 9) = 1; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(10, 11) = 1; ETDV(G) = 37, 37

EMD(G) =
$$\frac{57}{55}$$
.
ETDV(G) = $[l(l+5) + 6(m-2)]/2$ = $[5(10)+6(4)]/2$ = 37.
EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}}$ = $\frac{37}{\binom{11}{2}}$ = $\frac{37}{55}$

Theorem 3.7: Let G be a graph U(n,m) where n > 2 and m > 6, then EMD(G) is 3m + 29n - 67

$$\binom{m+n}{2}$$

Proof: Let (a_1, a_2, \dots, a_m) be the vertices of the path P_m and (b_1, b_2, \dots, b_l) be the pendent vertices of the star $K_{1,l}$. Now attach the root vertex of $K_{1,l}$ to end vertex (say) a_1 of the path P_m . Now join b_i to b_{i+1} for i = 1 to n-1. This graph is known as umbrella graph m+n vertices.

$$\begin{aligned} &\text{ETDV}(G) = \sum_{i=3}^{n-2} edom(u, v) \text{ for all } u, v \in V(G). edom(a_1, b_i) = 5 \text{ for } i = 3 \text{ to } n-2; \\ &\text{Therefore, } \sum_{i=3}^{n-2} edom(a_1, b_i) = 5(n-4); edom(a_2, b_i) = 3 \text{ for } i = 2 \text{ to } n-1; \text{ Therefore, } \sum_{i=2}^{n-1} edom(a_2, b_i) = 3(n-2); edom(a_3, b_i) = 1 \text{ for } i = 1 \text{ to } n; \text{ Therefore, } \sum_{i=1}^{n} edom(a_3, b_i) = n; \end{aligned}$$

 $edom(a_1, b_i) = 4 \text{ for } i = 2 \text{ and } n-1; Therefore, \sum_{i=2,n-1} edom(a_1, b_i) = 8;$

$$\begin{array}{ll} edom(a_{1}, b_{i}) = 3 \ for \ i = 1 \ and \ n; \ Therefore, \sum_{i=1,n} & edom(a_{1}, b_{i}) = 6; \\ edom(a_{2}, b_{i}) = 2 \ for \ i = 1 \ and \ n; \ Therefore, \sum_{i=1,n} & edom(a_{2}, b_{i}) = 4; \\ edom(b_{2}, b_{i+1}) = 4 \ for \ i = 2 \ to \ n-2; \ Therefore, \sum_{i=2}^{n-2} & edom(b_{2}, b_{i+1}) = 4(n-3); \\ edom(b_{2}, b_{i+1}) = 3 \ for \ i = 1 \ and \ n-1 \ ; \ Therefore, \sum_{i=2}^{n-2} & edom(b_{2}, b_{i+1}) = 4(n-3); \\ edom(b_{2}, b_{i+2}) = 6 \ for \ i = 2 \ to \ m-3 \ ; \ Therefore, \sum_{i=2}^{m-3} & edom(b_{2}, b_{i+2}) = 6(n-4); \\ edom(b_{2}, b_{1+3}) = 5 \ for \ i = 2 \ to \ n-4; \ Therefore, \sum_{i=2}^{m-4} & edom(b_{2}, b_{i+3}) = 5(n-5); \\ edom(b_{2}, b_{3}) = 5 \ for \ i = 2 \ to \ n-5, \ j = 6 \ to \ n-1, \ j-i>3 \ ; \ Therefore, \sum_{i=2}^{m-4} & edom(b_{2}, b_{1+3}) = 5(n-5); \\ edom(b_{1}, b_{3}) = edom(b_{n-2}, b_{n}) = 5; \ edom(b_{1}, b_{4}) = edom(b_{n-3}, b_{n}) = 4; \ edom(b_{1}, b_{5}) = \\ edom(b_{n-4}, b_{n}) = 3; \ edom(b_{1}, b_{n-1}) = edom(b_{2}, b_{n}) = 3; \ edom(b_{1}, b_{n}) = 2. \\ ETDV(G) = 3m-6 + 5(n-4) + 3(n-2) + n + 4(n-3) + 6(n-4) + 5(n-5) + 5(n-6) + 56. \\ = 3m+5n+3n+n+4n+6n+5n+56-123 \ = 3m+29n - 67 \end{array}$$

$$\text{EMD}(G) = \frac{ETDV(G)}{\begin{pmatrix} p \\ 2 \end{pmatrix}} = \frac{3m + 29n - 67}{\begin{pmatrix} m+n \\ 2 \end{pmatrix}}$$

Example 3.8 for the graph U(7,4)

from the above figure 3.4, we have edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 4; edom(1, 5) = 3; edom(1, 6) = 4; edom(1, 7) = 5; edom(1, 8) = 5; edom(1, 9) = 5; edom(1, 10) = 4; edom(1, 11) = 3; edom(2, 3) = 1; edom(2, 4) = 4; edom(2, 5) = 2; edom(2, 6) = 3; edom(2, 7) = 3; edom(2, 8) = 3; edom(2, 9) = 3; edom(2, 10) = 3; edom(2, 11) = 2; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1; edom(3, 7) = 1; edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(5, 6) = 3; edom(5, 7) = 5; edom(5, 8) = 4; edom(5, 9) = 3; edom(5, 10) = 3; edom(5, 11) = 2; edom(6, 7) = 4; edom(6, 8) = 6; edom(6, 9) = 5; edom(6, 10) = 5; edom(6, 11) = 3; edom(7, 8) = 4; edom(7, 9) = 6; edom(7, 10) = 5; edom(6, 11) = 3; edom(8, 9) = 4; edom(8, 10) = 6; edom(8, 11) = 4; edom(9, 10) = 4; edom(9, 11) = 5; edom(10, 11) = 3.

ETDV(G) = 148, EMD(G) =
$$\frac{148}{55}$$
. ETDV(G) = 3m + 29n - 67 = 3(4) + 29 (7) - 67 = 148

EMD(G) =
$$\frac{ETDV(G)}{\binom{p}{2}} = \frac{148}{\binom{11}{2}} = \frac{148}{55}$$

Theorem 3.9: Let G be the graph S'(B_{k,k}), then EMD(G) = $\frac{17k^2 + 25k + 6}{\binom{4(k+1)}{2}}$ where $k \ge 2$.

Proof: Let G be the graph S'(B_{k,k}) construct by the vertices a, b, c, d, x_i, y_i where $1 \le i \le 2k$ and the edges {ab, bc, ad} $\cup \{ax_i / 1 \le i \le k\} \cup \{ay_i / 1 \le i \le k\} \cup \{bx_i / k+1 \le i \le 2k\} \cup \{by_i / k+1 \le i \le 2k\} \cup \{cy_i / 1 \le i \le k\} \cup \{dy_i / k+1 \le i \le 2k\}$. Here $\{ax_i / 1 \le i \le k\}$ and $\{bx_i / k+1 \le i \le 2k\}$ are the pendent edges.

 γl

edom(a,b) = 2k+1; edom(a,c) = k+1; edom(a,d) = k+1;

$$edom(a, x_i) = 1 \text{ for } i = 1 \text{ to } 2k; \text{ therefore } \sum_{i=1}^{2k} edom(a, x_i) = 2k;$$
$$edom(a, y_i) = k+1 \text{ for } i = 1 \text{ to } k; \text{ therefore } \sum_{i=1}^{k} edom(a, y_i) = k(k+1);$$
$$edom(a, y_i) = 2 \text{ for } i = k+1 \text{ to } 2k; \text{ therefore } \sum_{i=k+1}^{2k} edom(a, y_i) = 2k;$$
$$edom(b, c) = k+1; edom(b, d) = k+1;$$

 $edom(b,x_i) = 1 \text{ for } i = 1 \text{ to } 2k; \text{ therefore } \sum_{i=1}^{2k} edom(b, x_i) = 2k;$ $edom(b,y_i) = 2 \text{ for } i = 1 \text{ to } k; \text{ therefore } \sum_{i=1}^{k} edom(b, y_i) = 2k;$

edom(b,y_i) = k+1 for i = k+1 to 2k; therefore $\sum_{i=k+1}^{2k}$ edom(b, y_i) = k(k+1); edom(c, d) = 2k+1;

$$edom(c, x_i) = 2 \text{ for } i = 1 \text{ to } k; \text{ therefore } \sum_{i=1}^{k} edom(c, x_i) = 2k;$$
$$edom(c, x_i) = 1 \text{ for } i = k+1 \text{ to } 2k; \text{ therefore } \sum_{i=k+1}^{2k} edom(c, x_i) = k;$$
$$edom(c, y_i) = k+1 \text{ for } i = 1 \text{ to } k; \text{ therefore } \sum_{i=1}^{k} edom(c, y_i) = k(k+1);$$

edom(c,y_i) = 1 for i = k+1 to 2k; therefore
$$\sum_{i=k+1}^{2k}$$
 edom(c, y_i) = k;

 $edom(d,x_i) = 1$ for i = 1 to k; therefore $\sum_{i=1}^{k} edom(d, x_i) = k;$ $edom(d,x_i) = 2$ for i = k+1 to 2k; therefore $\sum_{i=1}^{2k} edom(d, x_i) = 2k;$

edom(d,y_i) = 1 for i = 1 to k; therefore
$$\sum_{i=1}^{k}$$
 edom(d, y_i) = k;

$$edom(d,y_i) = k+1$$
 for i = k+1 to 2k; therefore $\sum_{i=k+1}^{2n} edom(d, y_i) = k(k+1);$

 $edom(x_i, x_j) = 1$ for i = 1 to k; j = k+1 to 2k; therefore $\sum edom(x_i, x_j) = k^2$ for i = 1 to k; j = k+1 to 2k;

$$\begin{split} & edom(x_i,y_j) = 1 \text{ for } i,j = 1 \text{ to } k; \text{ therefore } \sum edom(x_i,y_j) = k^2 \text{ for } i,j = 1 \text{ to } k; \\ & edom(x_i,y_j) = 2 \text{ for } i = 1 \text{ to } k; j = k+1 \text{ to } 2k; \text{ therefore } \sum edom(x_i,y_j) = 2k^2 \text{ for } i = 1 \text{ to } k; \\ & i = k+1 \text{ to } 2k; \\ & edom(x_i,y_j) = 1 \text{ for } i,j = k+1 \text{ to } 2k; \text{ therefore } \sum edom(x_i,y_j) = k^2 \text{ for } i,j = k+1 \text{ to } 2k; \end{split}$$

 $edom(x_i, y_j) = k \text{ for } i = 1 \text{ to } k; i = k+1 \text{ to } 2k; \text{ therefore } \sum edom(x_i, y_j) = k \text{ for } i = 1 \text{ to } 2k;$ $edom(x_i, y_j) = 2 \text{ for } j = 1 \text{ to } k; i = k+1 \text{ to } 2k; \text{ therefore } \sum edom(x_i, y_j) = 2k^2 \text{ for } j = 1 \text{ to } k;$ i = k+1 to 2k;

 $edom(y_i, y_j) = 3$ for i = 1 to k; j = k+1 to 2k; therefore $\sum edom(y_i, y_j) = 3k^2$ for i = 1 to k; j = k+1 to 2k;

 $edom(x_i, x_j) = 1 \text{ for } i, j = 1 \text{ to } k; i \neq j; \text{ therefore } \sum edom(x_i, x_j) = \frac{k(k-1)}{2} \text{ for } i, j = 1 \text{ to } k; i \neq j;$

 $\begin{aligned} \operatorname{edom}(\mathbf{x}_{i},\mathbf{x}_{j}) &= 1 \text{ for } \mathbf{i}, \mathbf{j} = \mathbf{k}+1 \text{ to } 2\mathbf{k}; \mathbf{i} \neq \mathbf{j}; \text{ therefore } \sum \operatorname{edom}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{k(k-1)}{2} \text{ for } \mathbf{i}, \mathbf{j} = \\ \mathbf{k}+1 \text{ to } 2\mathbf{k}; \mathbf{i} \neq \mathbf{j}; \\ \operatorname{edom}(\mathbf{y}_{i},\mathbf{y}_{j}) &= 2 \text{ for } \mathbf{i}, \mathbf{j} = 1 \text{ to } \mathbf{k}; \mathbf{i} \neq \mathbf{j}; \text{ therefore } \sum \operatorname{edom}(\mathbf{y}_{i}, \mathbf{y}_{j}) = 2 \left(\frac{k(k-1)}{2}\right) \text{ for } \mathbf{i}, \mathbf{j} = \\ 1 \text{ to } \mathbf{k}; \mathbf{i} \neq \mathbf{j}; \\ \operatorname{edom}(\mathbf{y}_{i},\mathbf{y}_{j}) &= 2 \text{ for } \mathbf{i}, \mathbf{j} = \mathbf{k}+1 \text{ to } 2\mathbf{k}; \mathbf{i} \neq \mathbf{j}; \text{ therefore } \sum \operatorname{edom}(\mathbf{y}_{i}, \mathbf{y}_{j}) = 2 \left(\frac{k(k-1)}{2}\right) \text{ for } \mathbf{i}, \mathbf{j} = \\ \mathbf{i}, \mathbf{j} &= \mathbf{k}+1 \text{ to } 2\mathbf{k}; \mathbf{i} \neq \mathbf{j}; \\ \operatorname{ETDV}(\mathbf{G}) &= 6 + 28\mathbf{k} + 14\mathbf{k}^{2} + 3\mathbf{k}(\mathbf{k}-1) = 17\mathbf{k}^{2} + 25\mathbf{k} + 6 \\ \operatorname{EMD}(\mathbf{G}) &= \frac{ETDV(\mathbf{G})}{\left(\frac{p}{2}\right)} = \frac{17k^{2} + 25k + 6}{\left(\frac{4(k+1)}{2}\right)} \\ \operatorname{Example 3.10, For the graph S'(\mathbf{B}_{3,3}), \end{aligned}$

Figure 3.5

From the above figure 3.5, We have edom(1, 2) = 7; edom(1, 3) = 2; edom(1, 4) = 2; edom(1, 5) = 2; edom(1, 6) = 2; edom(1, 7) = 2; edom(1, 8) = 2; edom(1, 9) = 2; edom(1, 10) = 2; dom(1, 11) = 2; edom(1, 12) = 2; edom(1, 13) = 2; edom(1, 14) = 2; edom(1, 15) = 4; edom(1, 16) = 4; edom(2, 3) = 2; dom(2, 4) = 2; edom(2, 5) = 2; edom(2, 6) = 2; edom(2, 7) = 2; edom(2, 8) = 2; edom(2, 9) = 1; edom(2, 10) = 1; edom(2, 11) = 1; edom(2, 12) = 1; edom(2, 13) = 1; edom(2, 14) = 1; edom(2, 15) = 4; edom(2, 16) = 4; edom(3, 4) = 2; edom(3, 5) = 2; edom(3, 6) = 3; edom(3, 7) = 3; edom(3, 8) = 3; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(3, 12) = 2; edom(3, 13) = 2; edom(4, 10) = 1; edom(4, 11) = 1; edom(4, 15) = 1; edom(4, 5) = 2; edom(4, 9) = 1; edom(4, 10) = 1; edom(5, 11) = 1; edom(4, 15) = 1; edom(4, 16) = 1; edom(6, 7) = 2; edom(6, 8) = 2; edom(7, 8) = 2; edom(7, 12) = 1; edom(6, 14) = 1; edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 12) = 1; edom(8, 13) = 1; edom(8, 14) = 1; edom(8, 15) = 2; edom(8, 16) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(9, 16) = 1; edom(10, 11) = 1; edom(10, 16) = 1; edom(12, 13) = 1; edom(12, 14) = 1; edom(12, 15) = 1; edom(13, 14) = 1; edom(13, 15) = 1; edom(14, 15) = 1.

ETDV(G) = 234; EMD(G) =
$$\frac{234}{120}$$
.
ETDV(G) = 17k² + 25k +6 = 153 + 75 + 6 = 234.EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}} = \frac{234}{\binom{16}{2}} = \frac{234}{120}$

Theorem 3.11: Let G be the uniform t-ply graph $P_t(u,v)$ then $EMD(G) = \frac{3t(s+t-1)}{\binom{st+2}{2}}$ where

s > 4, t > 2

Proof: Let $(a_{i_1}, a_{i_2}, \dots, a_{i_s})$ be the vertices of the ith path P_s for i = 1 to t. Join the initial vertices $(a_{1_1}, a_{2_1}, \dots, a_{t_1})$ to the vertex u and the terminal vertices $(a_{1_s}, a_{2_s}, \dots, a_{t_s})$ to the vertex v. ETDV(G) = $\sum edom(u, v)$ for u, $v \in V(G)$.

For any path P_{s} , ETDV(P_{s}) = 3s-6 for any s. we have t copies of P_{s} ;

For any star $K_{1,t}$, ETDV $(K_{1,t}) = \frac{t(t+1)}{2}$; we have two stars $K_{1,t}$. edom(u, x) = 1 for $x = a_{i1}$, a_{i3} ; i = 1 to t; therefore $\sum edom(u, a_{i1}) = 2t$ for $x = a_{i1}$, a_{i3} ; i = 1 to t; to t;

edom(v, x) = 1 for $x = a_{s1}$, $a_{i(s-1)}$; i = 1 to t; therefore $\sum edom(v, a_{i1}) = 2t$ for $x = a_{s1}$, $a_{i(s-1)}$; i = 1 to t;

t

$$\begin{aligned} &\text{edom}(\mathbf{a}_{11}, \mathbf{a}_{i2}) = 1 \text{ for } \mathbf{i} = 2 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=2}^{t} \text{ edom}(\mathbf{a}_{11}, \mathbf{a}_{i2}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{21}, \mathbf{a}_{i2}) = 1 \text{ for } \mathbf{i} = 3 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(\mathbf{a}_{21}, \mathbf{a}_{i2}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)1}, \mathbf{a}_{t2}) = \mathbf{1}; \\ &\text{edom}(\mathbf{a}_{12}, \mathbf{a}_{i1}) = 1 \text{ for } \mathbf{i} = 2 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=2}^{t} \text{ edom}(\mathbf{a}_{12}, \mathbf{a}_{i1}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{22}, \mathbf{a}_{i1}) = 1 \text{ for } \mathbf{i} = 3 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(\mathbf{a}_{22}, \mathbf{a}_{i1}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)2}, \mathbf{a}_{t1}) = \mathbf{1}; \\ &\text{edom}(\mathbf{a}_{1s}, \mathbf{a}_{i(s-1)}) = 1 \text{ for } \mathbf{i} = 2 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=2}^{t} \text{ edom}(\mathbf{a}_{1s}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{2s}, \mathbf{a}_{i(s-1)}) = 1 \text{ for } \mathbf{i} = 3 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{2s}, \mathbf{a}_{i(s-1)}) = 1 \text{ for } \mathbf{i} = 3 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)s}, \mathbf{a}_{t(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{2s}, \mathbf{a}_{i(s-1)}) = 1 \text{ for } \mathbf{i} = 3 \text{ to } \mathbf{i}; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)s}, \mathbf{a}_{t(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)s}, \mathbf{a}_{t(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{2}; \dots \text{ edom}(\mathbf{a}_{(t-1)s}, \mathbf{a}_{t(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)}) = \mathbf{t}-\mathbf{1}; \\ &\text{edom}(\mathbf{a}_{s1}, \mathbf{a}_{i(s-1)})$$

 $\begin{aligned} \text{edom}(a_{1(s-1)}, a_{is}) &= 1 \text{ for } i = 2 \text{ to } t; \text{ therefore } \sum_{i=2}^{t} \text{ edom}(a_{1(s-1)}, a_{is}) = t-1; \\ \text{edom}(a_{2(s-1)}, a_{is}) &= 1 \text{ for } i = 3 \text{ to } t; \text{ therefore } \sum_{i=3}^{t} \text{ edom}(a_{2(s-1)}, a_{is}) = t-2; \dots \text{ edom}(a_{(t-1)(s-1)}, a_{ts}) &= 1. \\ \text{ETDV}(G) &= t(3s-6) + 2\left(\frac{t(t+1)}{2}\right) + 4t + 4\left[1+2+\dots+(t-1)\right] \\ &= 3st-6t+t^2+t+4t+4\left(\frac{t(t-1)}{2}\right) \\ &= 3st-6t+t^2+t+4t+4\left(\frac{t(t-1)}{2}\right) \\ &= 3st-t+t^2+2t^2-2t = 3t^2+3st-3t = 3t(t+s-1) \\ \text{EMD}(G) &= \frac{ETDV(G)}{\binom{p}{2}} = \frac{3t(s+t-1)}{\binom{st+2}{2}} \end{aligned}$

Example 3.12, consider the graph $P_3(u, v)$,

From the above figure 2.6, we have $\operatorname{edom}(u, 1) = 1$; $\operatorname{edom}(u, 2) = 1$; $\operatorname{edom}(u, 5) = 1$; $\operatorname{edom}(u, 6) = 1$; $\operatorname{edom}(u, 9) = 1$; $\operatorname{edom}(u, 10) = 1$; $\operatorname{edom}(u, 3) = 1$; $\operatorname{edom}(u, 7) = 1$; $\operatorname{edom}(u, 11) = 1$; $\operatorname{edom}(v, 4) = 1$; $\operatorname{edom}(v, 8) = 1$; $\operatorname{edom}(v, 12) = 1$; $\operatorname{edom}(v, 3) = 1$; $\operatorname{edom}(v, 7) = 1$; $\operatorname{edom}(v, 11) = 1$; $\operatorname{edom}(v, 2) = 1$; $\operatorname{edom}(v, 6) = 1$; $\operatorname{edom}(v, 10) = 1$; $\operatorname{edom}(1, 2) = 1$; $\operatorname{edom}(1, 3) = 1$; $\operatorname{edom}(1, 4) = 1$; $\operatorname{edom}(1, 5) = 1$; $\operatorname{edom}(1, 9) = 1$; $\operatorname{edom}(1, 6) = 1$; $\operatorname{edom}(1, 10) = 1$; $\operatorname{edom}(2, 3) = 1$; $\operatorname{edom}(2, 4) = 1$; $\operatorname{edom}(2, 5) = 1$; $\operatorname{edom}(2, 9) = 1$; $\operatorname{edom}(3, 4) = 1$; $\operatorname{edom}(3, 8) = 1$; $\operatorname{edom}(3, 12) = 1$; $\operatorname{edom}(4, 8) = 1$; $\operatorname{edom}(4, 12) = 1$; $\operatorname{edom}(5, 9) = 1$; $\operatorname{edom}(5, 10) = 1$; $\operatorname{edom}(5, 6) = 1$; $\operatorname{edom}(5, 7) = 1$; $\operatorname{edom}(6, 9) = 1$; $\operatorname{edom}(7, 8) = 1$; $\operatorname{edom}(7, 12) = 1$; $\operatorname{edom}(8, 11) = 1$; $\operatorname{edom}(8, 12) = 1$; $\operatorname{edom}(9, 10) = 1$; $\operatorname{edom}(9, 11) = 1$; $\operatorname{edom}(9, 12) = 1$; $\operatorname{edom}(10, 11) = 1$; $\operatorname{edom}(10, 12) = 1$; $\operatorname{edom}(11, 12) = 1$; $\operatorname{ETDV}(G) = 54$; $\operatorname{EMD}(G) = \frac{54}{91}$.

ETDV(G) =
$$3t(s + t - 1) = 9(6) = 54$$
. EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}} = \frac{54}{\binom{14}{2}} = \frac{54}{91}$

Theorem 3.13: If G be a graph $P_m \Theta K_n^c$, then $EMD(G) = \frac{m(3n^2 + 9n + 6) - (2n^2 + 12n + 12)}{2\binom{m(n+1)}{2}}$ where $m \ge 3, n \ge 2$.

Proof: Let $P_m \Theta K_n^c$ be a graph obtained by attaching the root vertex of the star $K_{1,n}$ to all the vertices of the path P_m . Let (a_1, a_2, \dots, a_m) be the vertices of the path P_m . Let (b_1, b_2, \dots, b_n) be the pendent vertices of the star $S_1, (b_{n+1}, b_{n+2}, \dots, b_{2n})$ be the pendent vertices of the star $S_2, \dots, (b_{(m-1)n+1}, \dots, b_{mn})$ be the pendent vertices of the star S_m . Now attach the root vertex of S_1 to a_1, S_2 to a_2, \dots, S_m to a_m respectively. ETDV(G)= $\sum edom(u, v)$ for $u, v \in V(G)$.

For any path P_m, ETDV(P_m) = 3m - 6; For any star K_{1,n}, ETDV(K_{1,n}) = $\frac{n(n+1)}{2}$;

 $edom(b_i,b_j) = 1$ for i = 1 to n; j = n+1 to 2n; therefore, $\sum edom(b_i,b_j) = n^2$ for i = 1 to n; j = n+1 to 2n;

4n;.....

 $edom(a_m,b_i) = 1$ for i = (m-3)n+1 to mn-n; therefore, $\sum edom(a_m,b_i) = 2n$ for i = (m-3)n+1 to mn-n.

ETDV(G) = 3m - 6 + m
$$\left(\frac{n(n-1)}{2}\right)$$
 + (m-1)n² + 10n + (m-4)4n
= [6m - 12 + mn² + mn + 2mn² - 2n² + 20n + 8mn - 32n]/2
= [2mn² + mn² - 2n² + 9mn + 6m - 12n - 12] /2
= [m(3n² + 9n + 6) - (2n² + 12n + 12)] / 2
EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}} = \frac{m(3n^{2} + 9n + 6) - (2n^{2} + 12n + 12)}{2\binom{m(n+1)}{2}}$

Example 3.14 Consider the graph $P_4 \Theta K_3^c$,

Figure 3.7

From the above figure 3.7, We have, edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 1; edom(1, 5) = 1; edom(1, 6) = 1; edom(1, 13) = 1; edom(1, 14) = 1; edom(1, 15) = 1;edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(2, 6) = 1; edom(2, 13) = 1; edom(2, 14) = 1; edom(2, 15) = 1; ; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1;edom(3, 13) = 1; edom(3, 14) = 1; edom(3, 15) = 1; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 13) = 1; edom(4, 14) = 1; edom(4, 15) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9) = 1;edom(5, 13) = 1; edom(5, 14) = 1; edom(5, 15) = 1; edom(6, 7) = 1; edom(6, 8) = 1;edom(6, 9) = 1; edom(6, 13) = 1; edom(6, 14) = 1; edom(6, 15) = 1; edom(7, 8) = 1;edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(7, 12) = 1; edom(7, 13) = 1; edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 9) = 1; edom(8, 10) = 1;edom(8, 11) = 1; edom(8, 12) = 1; edom(8, 13) = 1; edom(8, 14) = 1; edom(8, 15) = 1;edom(8, 16) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(9, 12) = 1; edom(9, 13) = 1;edom(9, 14) = 1; edom(9, 15) = 1; edom(9, 16) = 1; edom(10, 11) = 1; edom(10, 12) = 1;edom(10, 14) = 1; edom(10, 15) = 1; edom(10, 16) = 1; edom(11, 12) = 1; edom(11, 14) = 1;edom(11, 15) = 1; edom(11, 16) = 1; edom(12, 14) = 1; edom(12, 15) = 1; edom(12, 16) = 1.

Further Results of Extended Medium Domination Number of Some Special Types of Graphs

ETDV(G) = 87; MD(G) =
$$\frac{87}{120}$$

ETDV(G) = $[m(3n^2 + 9n + 6) - (2n^2 + 12n + 12)]/2$
= $[3(27 + 27 + 6) - (18 + 36 + 12)]/2 = 87$
EMD(G) = $\frac{ETDV(G)}{\binom{p}{2}} = \frac{ETDV(G)}{\binom{m(n+1)}{2}} = \frac{87}{120}$

Acknowledgement:

This Research work was supported by University Grants Commission, New Delhi under Departmental Special Assistance, GRI-DU.

References:

- D.Vargor, P.Dundar, (2011), The medium domination number of a graph, International Journal of Pure and Applied Mathematics, Vol :70, pp. (297-306).
- [2] M.Ramachandran, N. Parvathi,(2015) The medium domination number of Jahangir graph J $_{m,n}$, Indian Journal of Science Technology, Vol: 8(5), pp.(400-406).
- [3] F. Buckley, F. Harary,(1990), Distance in graphs, Addison Wesley Pub., California.
- [4] DA. Mojdeh, AN. Ghamesholu,(2007), Domination in Jahangir graph J_{2,m}, International Journal of Math Sciences, Vol: 2(24), Page number (1193-9).
- G. Mahadevan, V. Vijayalakshmi, C. Sivagnanam, (2015) Extended Medium domination number of a graph, International Journal of Applied Engineering Research, Vol.10, No.92.

Authors' Profile:

Dr. G. Mahadevan, M.Sc., M.Phil., M.Tech., Ph.D., is having 21 years of teaching experience in various colleges and Universities including Head of the Dept. of Mathematics at Anna University, Tirunelveli, Tirunelveli Region, Tirunelveli. Currently he is working as Asst. Professor in the Dept of Mathematics Gandhigram Rural Institute-Deemed University, Gandhigram. He Published more than 60 research Papers in Various International/National Journals. Three scholars have been awarded their Ph.D., under his guidance and many of them are doing their Ph.D.,

degree under his guidance. Recently he received Best Faculty Award-Senior Category in Mathematics by former UGC Vice Chairman. He also received Dr. Abdul Kalam Award for Scientific Excellence- 2015.

Mrs. V. Vijayalakshmi M.Sc.,B.Ed., M.Phil., completed B.Sc., degree in Mathematics at M.V.M. Government Arts and Science college for women, Dindigul and M.Sc., M.Phil., Fatima college- Autonomous, Madurai. She also did her B.Ed., at St. Justin's College of Education, Madurai. To her credit, she has Published eight papers in Various International/National Journals.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Dr. C. Sivagnanam has two decades of experience in teaching and research. He was working in various colleges and universities in India, Bahrain and Oman. Presently he is working at Ibri College of Applied Sciences, Sur-Sultanate of Oman. He has published more than 70 papers in Various International/National Journals.