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Abstract:  The Medium domination number of a graph was introduced by Duygu Vargor  et,al., in [1]. 
Motivated by the above in [5],  Mahadevan, Vijayalakshmi and Sivagnanam introduced the concept of 
extended medium domination number of a graph. This concept has lot of application in computer 
communication networks. edom(u,v) is sum of number of u-v paths of length one, two and three. The 

total number of vertices that dominate every pair of vertices ETDV(G) =  ),( vuedom for                  

u, vV(G). In any simple graph G of p number of vertices, the  extended medium domination number 

of G is defined as EMD(G)=









2

p

)G(ETDV
. In this paper, we investigate the extended medium domination 

number for some special types of graphs.  
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1. Introduction 

In graph theory a graph G is denoted by G = (V,E) where V is a vertex set and E is 
a edge set of G. Path graph is denoted by Pn where n is the total number of vertices in Pn. 
Cn is a cycle graph with n vertices.  The Bistar is a graph joining the root vertex of K1,n to 
end vertices of K2 and is denoted by B(n, n).  In this paper we investigate  the general result 
for the extended medium domination number of the graphs bistar, jellyfish graph and         
CmKn 

c. 
 

Definition 1.1:[5] Let G = (V,E) be a graph, V , E be the vertex set and edge set  respectively. 
edom(u,v) is sum of number of u-v paths of length one, two and three. 
                                                                                       
Definition 1.2:[5] Let G be the graph. The total number of vertices that dominate every pair 

of vertices ETDV(G) =  ),( vuedom for u,vV(G).                                                                 
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Definition 1.3:[5]  The extended medium domination number of G is defined as EMD(G)=









2

p

)G(ETDV
where p is the total number of vertices in G.   

Example 1.4: 
 
 
 
 

 
Figure 1.1 

From the above figure, we have edom(1, 2) = 2; edom(1, 3) = 3; edom(1, 4) = 1;  edom(1, 5) 
= 2; edom(1, 6) = 3;  edom(2, 3) = 2; edom(2, 4) = 2; edom(2, 5) = 2; edom(2, 6) = 2; edom(3, 
4) = 1; edom(3, 5) = 3; edom(3, 6) = 2;  edom(4, 5) = 1; edom(4, 6) = 2; edom(5, 6) = 3;  . 
ETDV(G) = 31; EMD(G) = 

15

31. 

Observation1.5 [5]     ETDV(K1,n)  =   
2

)1( nn
 

Observation 1.6  [5]    ETDV(Cm) = 3m 
 
Observation 1.7  [5]    ETDV(Pm) = 3m-6 
 
Definition 1.8: The peacock head graph is obtained by joining n pendent edges to any one 
vertex of the cycle Cm and it is denoted by PC(n, m).  
                                                                                                                      
Definition 1.9: Let G = (V, E) be a ladder graph Lk such that V={A1 , A2,…….Ak, B1, 

B2,……Bk}, 321 EEEE  , where 1E = {(Ai, Ai+1),          1≤ i≤ k-1}, 2E = {(Bi, Bi+1), 

1≤ i≤ k-1},  3E ={(Ai, Bi),1≤i≤k}.  
 
Definition 1.10: A uniform t-ply graph is a graph obtained from t distinct 3, sPs  paths 
by merging all the initial vertices to a vertex u and all the terminal vertices to a vertex v. The 
uniform t-ply graph is denoted by Pt(u,v).   
 
Notation 1.11: P m (K l,1 ) is a graph obtained by attaching the root vertex of K l,1 to the end 

vertex of the path P m . 
 
Notation 1.12: umbrella graph  U(n,m) is a collection of vertices V and edges E such that 
V[U(n,m)] = {x1,x2,…..xn,y1,y2,……ym};  
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E[U(n,m)] = 
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Notation 1.13: S’(Bk,k) is a graph  whose vertices are a, b, c, d, xi, yi where 1≤ i ≤2k and the 
edges are {ab, bc, ad}   {axi / 1≤ i ≤k}   {ayi / 1≤ i ≤k}   {bxi / k+1≤ i ≤2k} {byi / 
k+1≤ i ≤2k}   {cyi / 1≤ i ≤k}   {dyi / k+1≤ i ≤2k}. Here {axi / 1≤ i ≤k} and {bxi / k+1≤ i 
≤2k} are the pendent edges. 
 
Notation 1.14: P m K c

n  is a graph obtained by attaching the root vertex of star K n,1  to all 

the vertices of the path P m . 
 
Definition 1.15: Let Pn be a path on n vertices denoted by (1,1), (1,2),…(1,n) with n-1 edges 
denoted by e1, e2,….en-1 where ei is the edge joining the vertices (1,i) and (1,i+1) on each 
edge ei = i, where 1 ≤ i ≤ n-1. We erect a ladder with n-(i-1) steps including the edge ei. The 
graph obtained is called a step ladder graph and is denoted by S(Tn) where n denotes the 
number of vertices in base. 
 
Definition 1.16:  Let G be a graph. Let G’ be a copy of G. The mirror graph M(G) of G is 
defined as the disjoint union of G and G’ with additional edges joining each vertex of G to 
its corresponding vertex in G’. 
 

2.  Main Result :  
In this section, we discuss the Medium domination number for step ladder graph, 

mirror graph of path and Extended Medium domination number of some special type of 

graphs like P m (K l,1 ), peacock head graph, Ladder graph, Umbrella graph, c
nm KP  , 

S’(Bk,k), uniform t-play graph and ladder graph. 
2. Medium domination number 

Theorem 2.1: If G = S(Tn) then MD(G) = 





















2
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i
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nn
where  n ≥ 3. 

Proof: Consider the step ladder graph. Let the vertices of Pn be (1,1), (1,2),…(1,n). The step 
ladder graph S(Tn) has vertices denoted by (1,1), (1,2),…(1,n), (2,1), (2,2),…(2,n), (3,1), 
(3,2),…(3,n-1),………(n,1), (n,2). In the ordered pair (i, j) i denotes the row (bottom to top)  

j denotes the column (left to right) respectively. TDV(G)=  ),( vudom for u,vV(G). 

TDV(Pn) = 2n -3. 
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In the step ladder graph there are n paths in row wise which has the vertices n, n, n-1, n-2, 
….2 respectively. Therefore total dominating vertices of the above n paths is 

= (2n-3)+(2n-3)+(2(n-1)-3)+…….+1 =  (2n-3)+(2n-3)+(2(n-1)-3)+…….+(4-3) 

= (2n-3)+{2[n+(n-1)+……+2]}-(n-1)3 =  (2n-3)+ {2[n+(n-1)+……+2+1-1]}-(n-1)3 

= (2n-3)+2 





 

2

)1(nn
-2-3n-6 =  n

2-2. 

Similarly column wise n2-2. 

Step ladder graph has 






 
2

2 nn
 squares which has the vertices (i, j), (i, j+1), (i+1, j), (i+1, 

j+1) 

dom((i, j),(i+1, j+1))=2 and dom((i+1, j),(i, j+1))=2. Therefore 4 






 
2

2 nn
 = 2n2-2n. 

dom((i, j),(i+1, j-1)) = 1 for i = 2 to n; j = 3 to n; i+j=n+2;Therefore  dom((i, j),(i+1, j-

1)) = n-2 for i = 2 to n; j = 3 to n; i+j = n+2.   
Therefore TDV(G) = 2(n2-2)+2n2-2n+n-2 = 4n2-n-6. 

MD(G) =
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p

GTDV
 =
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Example 2.2 for the graph S(T4), 
 
 
 
 
 

 
 

Figure 2.1 
From the the above figure 2.1, we have dom((1,1),(1,2)) = 1; dom((1,1),(1,3)) = 1; 
dom((1,2),(1,3)) = 1; dom((1,2),(1,4)) = 1; dom((1,3),(1,4)) = 1; dom((2,1),(2,2)) = 1; 
dom((2,1),(2,3)) = 1; dom((2,2),(2,3)) = 1; dom((2,2),(2,4)) = 1; dom((2,3),(2,4)) = 1; 
dom((3,1),(3,2)) = 1; dom((3,1),(3,3)) = 1; dom((3,2),(3,3)) = 1; dom((4,1),(4,2)) = 1; 
dom((1,1),(2,1)) = 1; dom((1,1),(3,1)) = 1; dom((2,1),(3,1)) = 1; dom((2,1),(4,1)) = 1; 
dom((3,1),(4,1)) = 1; dom((1,2),(2,2)) = 1; dom((1,2),(3,2)) = 1;dom((2,2),(3,2)) = 1; 
dom((2,2),(4,2)) = 1; dom((3,2),(4,2)) = 1; dom((1,3),(2,3)) = 1;dom((1,3),(3,3)) = 1; 
dom((2,3),(3,3)) = 1; dom((1,4),(2,4)) = 1; dom((2,4),(3,3)) = 1; dom((3,3),(4,2)) = 1; 
dom((1,1),(2,2)) = 2; dom((1,2),(2,1)) = 2; dom((1,2),(2,3)) = 2; dom((1,3),(2,2)) = 2; 

(4,2)(4,1)

(3,3)(3,2)

(3,1)

(2,4)(2,3)(2,2)

(2,1)

(1,4)(1,3)(1,2)(1,1)
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dom((1,3),(2,4)) = 2; dom((1,4),(2,3)) = 2; dom((2,1),(3,2)) = 2; dom((2,2),(3,1)) = 2; 
dom((2,2),(3,3)) = 2; dom((2,3),(3,2)) = 2; dom((3,1),(4,2)) = 2; dom((3,2),(4,1)) = 2. 

TDV(G) = 54; MD(G) = 
78

54
. 

TDV(G) = 4n2-n-6 = 4(16) – 4 – 6 = 54. 

MD(G) =
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 = 









2

13
54

= 
78

54
. 

Theorem 2.3: If G = M (Pn) then MD(G) = 











2

2
109

n
n

where n ≥ 3. 

Proof: Consider the mirror graph of a path Pn. Let the vertices of Pn are A1,A2,……An and 
the vertices of Pn’ are B1, B2,…. Bn. Now join Ai to Bi for i = 1 to n. For any path Pn,TDV(Pm) 
= 2n-3 for any n. we have two paths Pn.                                      

 
dom(Ai,Bi) = 1 for i = 1 to n; therefore



n

i 1

dom(Ai,Bi) = n; 

dom(Ai,Bi+1) = 2 for i = 1 to n-1; therefore




1

1

n

i

dom(Ai,Bi+1) = 2(n-1); 

dom(Ai,Bi-1) = 2 for i = 2 to n; therefore


n

i 2

dom(Ai,Bi-1) = 2(n-1). 

TDV(G) = 2(2n-3) + n + 4(n-1)  =  9n-10. 

MD(G)=  
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   =   
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Example 2.4 consider the graph M(P3), 
 
 
 

 
Figure 2.2 

 From the above figure 2.2, we have dom(A1,B1) = 1; dom(A2,B2) = 1;dom(A3,B3)= 
1; dom(A1,B2) = 2; dom(A2,B1) = 2; dom(A2,B3) = 2;dom(A3,B2) = 2; dom(A1,A2) = 1; 
dom(A1,A3) = 1; dom(A2,A3) = 1; dom(B1,B2) = 1; dom(B1,B3) = 1; dom(B2,B3) = 1.       

TDV(G) = 17; MD(G) = 
15

17
 

B3 B2B1A3A2A1 
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TDV(G) = 9n-10 = 9(3) – 10 = 17. MD(G) = 











2

2
109

n
n

=
15

17
 

3. Extended Medium domination number  
Authors obtained the medium domination number of some different types of 

graphs. Each result plays an vital role in some real life situations. But still lot of some new 
types of graphs are available in the literature and it needs to investigate it Extended medium 
domination number. Therefore, in this section, we obtain the Extended medium 
domination number  of some special types of graphs. 

 
Theorem 3.1: Let G be the peacock head graph PC(n, m) where n > 2 and m > 3, then 

EMD(G) is 








 


2
2

6)9(
mn

mnn
 

Proof: Let (a1, a2,…..ai,….am) be the vertices of the cycle Cm. (b1, b2,….bn) be the pendent 
vertices of the star K1,n.  Now attach the root vertex of the star K1,n to any vertex of the cycle 

Cm say (a1). ETDV(G)= ),( vuedom for u, vV(G).  For any cycle Cm, ETDV(Cm) = 3m, 

for any m.  For any strar K1,n ETDV(K1,n)  =   
2

)1( nn
. 

edom(a2, bi) = 1 for i = 1 to n; therefore


n

i 1

 edom(a2, bi)  = n; 

edom(a3, bi) = 1 for i = 1 to n; therefore


n

i 1

 edom(a3, bi)  = n; 

edom(am, bi) = 1 for i = 1 to n; therefore


n

i 1

 edom(am, bi)  = n; 

edom(am-1, bi) = 1 for i = 1 to n; therefore


n

i 1

 edom(am-1, bi)  = n. 

ETDV(G) =  ETDV(Cm) + ETDV(K1,n) + 4n                                  

                =  3m + 
2

)1( nn
 + 4n = [ 6m + n2 + n + 8n]/2 

                =   
2

692 mnn 

   
=   

2

6)9( mnn 

 

EMD(G)  =  
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Example 3.2, for the graph PC(5,6)  
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Figure 3.1 
 

From the above figure 3.1, we have, edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 2;      
edom(1, 5) = 1; edom(1, 6) = 1; edom(1, 7) = 1; edom(1, 8) = 1; edom(1, 9) = 1;               
edom(1, 10) = 1; edom(1, 11) = 1; edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 2;          
edom(2, 6) = 1; edom(2, 7) = 1; edom(2, 8) = 1; edom(2, 9) = 1; edom(2, 10) = 1;            
edom(2, 11) = 1; edom(3, 4) = 1; edom(3, 5)  = 1;  edom(3, 6) = 2; edom(3, 7) = 1;          
edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(4, 5) = 1;         
edom(4, 6) = 1;  edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 10) = 1;           
edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9) = 1;            
edom(5, 10) = 1; edom(5, 11) = 1; edom(6, 7) = 1; edom(6, 8) = 1; edom(6, 9) = 1;          
edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) = 1;  edom(7, 9) = 1; edom(7, 10) = 1;      
edom(7, 11) = 1; edom(8, 9) = 1; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) = 1;     

edom(9, 11) = 1; edom(10, 11) = 1.  ETDV(G) = 53; MD(G) = 
55

53
. 

ETDV(G) = 
2

6)9( mnn 
 = 

2

36)14(5 
 = 53.  

EMD(G)=  
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Theorem 3.3: Let G be a ladder graph Lk where k > 4 then EMD(G) is 
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Proof: Let (A1, A2,……Ak) and (B1, B2,….Bk) be the vertices of two distinct paths with k                           

vertices. Now join the vertices Ai to Bi for i = 1 to k. ETDV(G) = ),( vuedom
 
for u, v

V(G). For any path Pk, ETDV(Pk) = 3k-6 for any k. we have two paths Pk.  

edom(Ai, Bi) = 3 for i = 2 to k-1; therefore




1

2

k

i

 edom(Ai, Bi) = (k-2)3; 
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edom(Ai, Bi) = 2 for i = 1 and k; therefore
 ki ,1

 edom(Ai, Bi) = 4; 

edom(Ai, Ai+1) = 1 for i = 1 to k-1; therefore




1

1

k

i

 edom(Ai, Bi+1) = k-1; 

edom(Bi, Bi+1) = 1 for i = 1 to k-1; therefore




1

1

k

i

 edom(Ai, Bi+1) = k-1; 

edom(Ai, Bi±1) = 2 for i = 2 to k-1; therefore




1

2

k

i

 edom(Ai, Bi±1) = 4(k-2); 

edom(Ai, Bi±2) = 2 for i = 3 to k-2; therefore




2

3

k

i

 edom(Ai, Bi±2) = 6(k-4); 

edom(A1, B2) = 2; edom(An, Bn-1) = 2; edom(A1, B3) = 3; edom(A2, B4) = 3; edom(An, Bn-2)  = 
3; edom(An-1, Bn-3) = 3.  
ETDV(G) = 2(3k-6)+3(k-2)+2(k-1)+4(k-2)+6(k-6)  + 20  
                =  6k–12+3k–6+2k–2 4k 8+ 6k–24+20  
                 =  21k – 32. 

EMD(G)  =  
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Example 3.4, consider the graph L7, 

 
 
 
 
 

 
 

Figure 3.2 
From the above figure 3.2, we have edom(1, 2) = 2; edom(1, 3) = 1; edom(1, 4) = 1;       
edom(1, 8) = 2;  edom(1, 9) = 2; edom(1, 10) = 3; edom(2, 3) = 2; edom(2, 4) = 1;           
edom(2, 5) = 1; edom(2, 8) = 2;  edom(2, 9) = 3; edom(2, 10) = 2; edom(2, 11) = 3;         
edom(3, 4) = 2; edom(3, 5) = 1; edom(3, 6) = 1;  edom(3, 8) = 3;  edom(3, 9) = 2;             
edom(3, 10) = 3; edom(3, 11) = 2; edom(3, 12) = 3; edom(4, 5) = 2; edom(4, 6) = 1;       
edom(4, 7) = 1;  edom(4, 9) = 3;  edom(4, 10) = 2; edom(4, 11) = 3; edom(4, 12) = 2;     
edom(4, 13) = 3; edom(5, 6) = 2; edom(5, 7) = 1; edom(5, 10) = 3;  edom(5, 11) = 2;      
edom(5, 12) = 3; edom(5, 13) = 2; edom(5, 14) = 3; edom(6, 7) = 2; edom(6, 11) = 3;      
edom(6, 12) = 2; edom(6, 13) = 3; edom(6, 14) = 2; edom(7, 12) = 3; edom(7, 13) = 2; 
edom(7, 14) = 2; edom(8, 9) = 2; edom(8, 10) = 1; edom(8, 11) = 1; edom(9, 10) = 2;     
edom(9, 11) = 1; edom(9, 12) = 1; edom(10, 11) = 2; edom(10, 12)= 1; edom(10, 13)= 1; 

11

11
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3
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edom(11, 12)= 2; edom(11, 13)= 1; edom(11, 14)= 1; edom(12, 13)= 2; edom(12, 14) = 1; 
edom(13, 14) = 2.  

ETDV(G) = 115; EMD(G) = 
91

115
. 

ETDV(G) = 21k-32 = 21(7)-32 = 115; EMD(G)=  
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Theorem 3.5: Let G be a graph P m (K l,1 ) where  l,m > 2, then EMD(G) is 
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Proof: Let P m (K l,1 ) be a graph obtained by attaching the root vertex of K l,1 to the end 

vertex of the path    P m . Let K l,1  be a star with l pendent vertices and one root vertex, P m  

be a path with m vertices. Let    (a 1 , a 2 ,…….a m ) be the vertices of the path P m  and (b1 , b

2 ,…….b l ) be the pendent vertices of the star K l,1 . Attach the pendent vertex a 1 of the path 

P m  to the root vertex of  K l,1 .  

ETDV(G)=  ),( vuedom for u,vV(G).    

For any path Pm, ETDV(Pm) = 3m-6 for any m. For any strar K1,l,  ETDV(K1,l)  =   
2

)1( ll
 

edom(a2,bi) = 1 for i = 1 to l; therefore, 


l

i 1

 edom(a2,bi) = l; 

edom(a3,bi) = 1 for i = 1 to l;therefore, 


l

i 1

 edom(a3,bi) = l; 

ETDV(G) = (3m-6)+ 
2

)1( ll
 +2l  

               = (6m - 12 + l 2 + l +4l ) / 2   
               =   [l(l+5) + 6(m-2)] / 2 

EMD(G) = 
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Example 3.6 Consider the graph P6(K1,5), 
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Figure 3.3 
 

From the above figure 3.3, we have edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 1;       
edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(3, 4) = 1; edom(3, 5) = 1;               
edom(3, 6) = 1; edom(4, 5) = 1; edom(4, 6) = 1; edom(4, 7) = 1; edom(4, 8) = 1;               
edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(5, 6) = 1; edom(5, 7) = 1;          
edom(5, 8) = 1; edom(5, 9) = 1; edom(5, 10) = 1; edom(5, 11) = 1; edom(6, 7) = 1;          
edom(6, 8) = 1; edom(6, 9) = 1; edom(6, 10) = 1; edom(6, 11) = 1; edom(7, 8) = 1;          
edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(8, 9) = 1; edom(8, 10) = 1;       
edom(8, 11) = 1; edom(9, 10) = 1; edom(9, 11) = 1; edom(10, 11) = 1;ETDV(G) = 37, 

EMD(G) = 
55

37
. 

ETDV(G) = [l(l+5) + 6(m-2)] /2    =  [5(10)+6(4)] / 2   =   37.  

EMD(G)     =   
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Theorem 3.7: Let G be a graph U(n,m) where n > 2 and m > 6, then EMD(G) is








 


2

67293
nm
nm

           

 

Proof: Let (a 1 , a 2 ,…….a m ) be the vertices of the path P m  and (b 1 , b 2 ,…….b l ) be the  
pendent vertices of the star K1,l. Now attach the root vertex of K1,l to end vertex (say) a1 of 
the path Pm. Now join bi to bi+1 for i = 1 to n-1. This graph is known as umbrella graph m+n 
vertices. 

ETDV(G)= ),( vuedom for all u,vV(G). edom(a1, bi) = 5 for i = 3 to n-2; 

Therefore, 




2

3

n

i

edom(a1, bi) = 5(n-4); edom(a2, bi) = 3 for i = 2 to n-1; Therefore,




1

2

n

i

edom(a2, bi) = 3(n-2);  edom(a3, bi) = 1 for i = 1 to n; Therefore,


n

i 1

edom(a3, bi) = n ;                                              

edom(a1, bi) = 4 for i =  2 and n-1; Therefore, 
 1,2 ni

 edom(a1, bi) = 8;                                                                    
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edom(a1, bi) = 3 for i =  1 and n; Therefore,
 ni ,1

 edom(a1, bi) = 6;                                                                    

edom(a2, bi) = 2 for i =  1 and n; Therefore,
 ni ,1

 edom(a2, bi) = 4;                                                                              

edom(bi, bi+1) = 4 for i = 2 to n-2; Therefore,




2

2

n

i

edom(bi, bi+1) = 4(n-3);                                                         

edom(bi, bi+1) = 3 for i = 1 and n-1 ; Therefore,
 


 1,1 ni

 edom(bi, bi+1) = 6;  

edom(bi, bi+2) = 6 for i = 2 to m-3 ; Therefore,




3

2

m

i

edom(bi, bi+2 ) = 6(n-4);                                                               

edom(bi, bi+3) = 5 for i = 2 to n-4; Therefore,




4

2

m

i

edom(bi, bi+3 ) = 5(n-5);    

edom(bi, bj) = 5 for i = 2 to n-5,  j = 6 to n-1, j-i>3 ; Therefore, edom(bi, bj) = 5(n-6 ) 

for i = 2 to n-5,  j = 6 to n-1, j-i>3;   
edom(b1, b3) = edom(bn-2, bn) = 5; edom(b1, b4) = edom(bn-3, bn) = 4; edom(b1, b5) = 
edom(bn-4, bn) = 3; edom(b1, bn-1) = edom(b2, bn) = 3; edom(b1, bn) = 2. 
ETDV(G) = 3m-6 + 5(n-4) + 3(n-2) + n + 4(n-3) + 6(n-4) + 5(n-5) + 5(n-6) + 56. 
                = 3m+5n+3n+n+4n+6n+5n+5n+56-123   = 3m + 29n - 67 
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Example 3.8 for the graph U(7,4)        
                                                                                                                                                                                   
 
 
 
 
 
 
  

 
 
 

Figure3.4 
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from the above figure 3.4, we have edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 4;        
edom(1, 5) = 3; edom(1, 6) = 4; edom(1, 7) = 5; edom(1, 8) = 5; edom(1, 9) = 5;               
edom(1, 10) = 4; edom(1, 11) = 3; edom(2, 3) = 1; edom(2, 4) = 4; edom(2, 5) = 2;          
edom(2, 6) = 3; edom(2, 7) = 3; edom(2, 8) = 3; edom(2, 9) = 3; edom(2, 10) = 3;            
edom(2, 11) = 2; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1; edom(3, 7) = 1;            
edom(3, 8) = 1; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(5, 6) = 3;          
edom(5, 7) = 5; edom(5, 8) = 4; edom(5, 9) = 3; edom(5, 10) = 3; edom(5, 11) = 2;          
edom(6, 7) = 4; edom(6, 8) = 6; edom(6, 9) = 5; edom(6, 10) = 5; edom(6, 11) = 3;          
edom(7, 8) = 4; edom(7, 9) = 6; edom(7, 10) = 5; edom(6, 11) = 3; edom(8, 9) = 4;          
edom(8, 10) = 6; edom(8, 11) = 4; edom(9, 10) = 4; edom(9, 11) = 5; edom(10, 11) = 3. 

ETDV(G) = 148, EMD(G) = 
55

148
. ETDV(G) = 3m + 29n - 67 = 3(4) + 29 (7) - 67 = 148 
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Theorem 3.9: Let G be the graph S’(Bk,k), then EMD(G) = 








 


2

)1(4
62517 2

k
kk

 

where k ≥ 2 .

 
Proof: Let G be the graph S’(Bk,k) construct by the vertices a, b, c, d, xi, yi where 1≤ i ≤2k 
and the edges        {ab, bc, ad}   {axi / 1≤ i ≤k}   {ayi / 1≤ i ≤k}   {bxi / k+1≤ i ≤2k} 
{byi / k+1≤ i ≤2k}   {cyi / 1≤ i ≤k}   {dyi / k+1≤ i ≤2k}. Here {axi / 1≤ i ≤k} and {bxi / 
k+1≤ i ≤2k} are the pendent edges. 
edom(a,b) = 2k+1; edom(a,c) = k+1;  edom(a,d) = k+1;  

edom(a,xi) = 1 for i = 1 to 2k;  therefore 


k

i

2

1

 edom(a, xi) = 2k; 

edom(a,yi) = k+1 for i = 1 to k; therefore 


k

i 1

 edom(a, yi) = k(k+1); 

edom(a,yi) = 2 for i = k+1 to 2k;  therefore 


k

ki

2

1

 edom(a, yi) = 2k; 

edom(b,c) = k+1; edom(b,d) = k+1; 

edom(b,xi) = 1 for i = 1 to 2k;  therefore 


k

i

2

1

 edom(b, xi) = 2k; 

edom(b,yi) = 2 for i = 1 to k; therefore 


k

i 1

 edom(b, yi) = 2k;  
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edom(b,yi) = k+1 for i = k+1 to 2k; therefore 


k

ki

2

1

 edom(b, yi) = k(k+1); edom(c, d) = 

2k+1; 

edom(c,xi) = 2 for i = 1 to k; therefore  


k

i 1

edom(c, xi) = 2k; 

edom(c,xi) = 1 for i = k+1 to 2k; therefore 


k

ki

2

1

 edom(c, xi) = k; 

edom(c,yi) = k+1 for i = 1 to k;  therefore 


k

i 1

 edom(c, yi) = k(k+1); 

                                                                                                                                                                                   

edom(c,yi) = 1 for i = k+1 to 2k; therefore 


k

ki

2

1

 edom(c, yi) = k; 

edom(d,xi) = 1 for i = 1 to k; therefore 


k

i 1

 edom(d, xi) = k; 

edom(d,xi) = 2 for i = k+1 to 2k; therefore 


k

ki

2

1

 edom(d, xi) = 2k; 

edom(d,yi) = 1 for i = 1 to k; therefore 


k

i 1

 edom(d, yi) = k; 

edom(d,yi) = k+1 for i = k+1 to 2k; therefore 


k

ki

2

1

 edom(d, yi) = k(k+1); 

edom(xi,xj) = 1 for i = 1 to k; j = k+1 to 2k; therefore   edom(xi, xj) = k2 for i = 1 to k; 

j = k+1 to 2k; 

edom(xi,yj) = 1 for i,j = 1 to k; therefore   edom(xi, yj) = k2 for i,j = 1 to k;  

edom(xi,yj) = 2 for i = 1 to k; j = k+1 to 2k; therefore   edom(xi, yj) = 2k2 for i = 1 to 

k; j = k+1 to 2k; 

edom(xi,yj) = 1 for i,j = k+1 to 2k; therefore   edom(xi, yj) = k2 for i,j = k+1 to 2k;  

edom(xi,yj) = 2 for j = 1 to k; i = k+1 to 2k; therefore   edom(xi, yj) = 2k2 for j = 1 to 

k; i = k+1 to 2k; 

edom(yi,yj) = 3 for i = 1 to k; j = k+1 to 2k;   therefore   edom(yi, yj) = 3k2 for i = 1 to 

k; j = k+1 to 2k; 

edom(xi,xj) = 1 for i,j = 1 to k; i ≠ j; therefore   edom(xi, xj) = 
2

)1( kk
  for i,j = 1 to 

k; i ≠ j;   
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edom(xi,xj) = 1 for i,j = k+1 to 2k; i ≠ j;  therefore   edom(xi, xj) = 
2

)1( kk
  for i,j = 

k+1 to 2k; i ≠ j;   

edom(yi,yj) = 2 for i,j = 1 to k; i ≠ j; therefore   edom(yi, yj) = 





 

2

)1(
2

kk
  for i,j = 

1 to k; i ≠ j;   

edom(yi,yj) = 2 for i,j = k+1 to 2k; i ≠ j; therefore   edom(yi, yj) = 
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)1(
2

kk
  for 

i,j = k+1 to 2k; i ≠ j;   
ETDV(G) = 6 + 28k + 14k2 + 3k(k-1) = 17k2 + 25k +6 

EMD(G) = 
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Example 3.10, For the graph S’(B3,3), 
 
 
 
 
 

 
 
 

Figure 3.5 
 

From the above figure 3.5, We have edom(1, 2) = 7; edom(1, 3) = 2; edom(1, 4) = 2;    
edom(1, 5) = 2; edom(1, 6) = 2; edom(1, 7) = 2; edom(1, 8) = 2; edom(1, 9) = 2;               
edom(1, 10) = 2; dom(1, 11) = 2; edom(1, 12) = 2; edom(1, 13) = 2; edom(1, 14) = 2;      
edom(1, 15) = 4; edom(1, 16) = 4; edom(2, 3) = 2; dom(2, 4) = 2; edom(2, 5) = 2;            
edom(2, 6) = 2; edom(2, 7) = 2; edom(2, 8) =2;  edom(2, 9) = 1; edom(2, 10) = 1;            
edom(2, 11) = 1; edom(2, 12) = 1; edom(2, 13) = 1; edom(2, 14) = 1; edom(2, 15) = 4; 
edom(2, 16) = 4; edom(3, 4) = 2; edom(3, 5) = 2; edom(3, 6) = 3; edom(3, 7) = 3;            
edom(3, 8) =3; edom(3, 9) = 1; edom(3, 10) = 1; edom(3, 11) = 1; edom(3, 12) = 2;        
edom(3, 13) = 2; edom(3, 14) = 2; edom(3, 15) = 1; edom(3, 16) = 1; edom(4, 5) = 2;     
edom(4, 9) = 1; edom(4, 10) = 1; edom(4, 11) = 1; edom(4, 15) = 1; edom(4, 16) = 1;     
edom(5, 9) = 1; edom(5, 10) = 1; edom(5, 11) = 1; edom(5, 15) = 1; edom(5, 16) = 1; ; 
edom(6, 7) = 2; edom(6, 8) = 2; edom(6, 12) = 1; edom(6, 13) = 1; edom(6, 14) = 1;       
edom(6, 15) = 1; edom(6, 16) = 1; edom(7, 8) = 2; edom(7, 12) = 1; edom(7, 13) = 1;     
edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 12) = 1; edom(8, 13) = 1; 
edom(8, 14) = 1; edom(8, 15) = 2; edom(8, 16) = 1; edom(9, 10) = 1; edom(9, 11) = 1; 
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edom(9, 16) = 1; edom(10, 11) = 1; edom(10, 16) = 1; edom(12, 13) = 1; edom(12, 14) = 1; 
edom(12, 15) = 1;   edom(13, 14) = 1; edom(13, 15) = 1; edom(14, 15) = 1. 

ETDV(G) = 234; EMD(G) = 
120

234
. 

ETDV(G) = 17k2 + 25k +6 = 153 + 75 + 6 = 234.EMD(G) = 









2

)(
p

GETDV
 = 









2

16
234

 =
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. 

Theorem 3.11: Let G be the uniform t-ply graph Pt(u,v) then EMD(G) =








 


2

2
)1(3

st
tst

where 

s > 4, t > 2 
Proof: Let (ai1,ai2,…..ais) be the vertices of the ith path Ps for i = 1 to t. Join the initial vertices 
(a11,a21,…..at1) to the vertex u and the terminal vertices (a1s,a2s,……..ats) to the vertex v. 

ETDV(G) = ),( vuedom for u, vV(G). 

For any path Ps, ETDV(Ps) = 3s-6 for any s. we have t copies of Ps;  

For any star K1,t, ETDV(K1,t) = 2

)1( tt
;
 we have two stars K1,t. 

edom(u, x) = 1 for x = ai1, ai3; i = 1 to t; therefore  edom(u, ai1) = 2t for x = ai1, ai3; i = 1 

to t; 

edom(v, x) = 1 for x = as1, ai(s-1); i = 1 to t; therefore  edom(v, ai1) = 2t for x = as1, ai(s-1); 

i = 1 to t; 

edom(a11, ai2) = 1 for i = 2 to t; therefore


t

i 2

 edom(a11, ai2) = t-1; 

edom(a21, ai2) = 1 for i = 3 to t; therefore


t

i 3

 edom(a21, ai2) = t-2;……. edom(a(t-1)1, at2) = 1; 

edom(a12, ai1) = 1 for i = 2 to t; therefore


t

i 2

 edom(a12, ai1) = t-1; 

edom(a22, ai1) = 1 for i = 3 to t; therefore


t

i 3

 edom(a22, ai1) = t-2;……. edom(a(t-1)2, at1) = 1; 

edom(a1s, ai(s-1)) = 1 for i = 2 to t; therefore


t

i 2

 edom(a1s, ai(s-1)) = t-1; 

edom(a2s, ai(s-1)) = 1 for i = 3 to t; therefore


t

i 3

 edom(as1, ai(s-1)) = t-2;……. edom(a(t-1)s, at(s-

1)) = 1; 
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edom(a1(s-1), ais) = 1 for i = 2 to t; therefore


t

i 2

 edom(a1(s-1), ais) = t-1; 

edom(a2(s-1), ais) = 1 for i = 3 to t; therefore


t

i 3

 edom(a2(s-1), ais) = t-2;……. edom(a(t-1)(s-1), 

ats) = 1. 

ETDV(G) = t(3s - 6) + 2 





 

2

)1(tt
+ 4t + 4 [1+2+…….+(t-1)]   

                = 3st - 6t + t2 + t + 4t + 4 





 

2

)1(tt
                                  

                =  3st – t + t2 + 2t2 - 2t = 3t2 + 3st - 3t = 3t(t + s -1) 

EMD(G)  =  
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Example 3.12, consider the graph P3(u, v), 
 
 
 
 
 

 
 

Figure 3.6 
 

     From the above figure 2.6, we have  edom(u, 1) = 1; edom(u, 2) = 1; edom(u, 5) = 1; 
edom(u, 6) = 1; edom(u, 9) = 1; edom(u, 10) = 1;  edom(u, 3) = 1; edom(u, 7) = 1;         
edom(u, 11) = 1; edom(v, 4) = 1; edom(v, 8) = 1; edom(v, 12) = 1; edom(v, 3) = 1;          
edom(v, 7) = 1; edom(v, 11) = 1; edom(v, 2) = 1; edom(v, 6) = 1; edom(v, 10) = 1;          
edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 1; edom(1, 5) = 1; edom(1, 9) = 1;               
edom(1, 6) = 1; edom(1, 10) = 1; edom(2, 3) = 1; edom(2, 4) = 1;  edom(2, 5) = 1;           
edom(2, 9) = 1; edom(3, 4) = 1; edom(3, 8) = 1; edom(3, 12) = 1; edom(4, 8) = 1;            
edom(4, 12) = 1; edom(4, 7) = 1; edom(4, 11) = 1;  edom(5, 6) = 1;  edom(5, 7) = 1;        
edom(5, 8) = 1; edom(5, 9) = 1; edom(5, 10) = 1; edom(6, 7) = 1; edom(6, 8) = 1;            
edom(6, 9) = 1; edom(7, 8) = 1; edom(7, 12) = 1; edom(8, 11) = 1; edom(8, 12) = 1;       
edom(9, 10) = 1; edom(9, 11) = 1; edom(9, 12) = 1; edom(10, 11) = 1;         edom(10, 12)=1; 

edom(11, 12) = 1; ETDV(G)  =  54; EMD(G)   =  
91

54
. 
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ETDV(G)  =  3t(s + t -1)  =  9(6)  =  54. EMD(G)   =  
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Theorem 3.13:  If G be a graph P m

c
nK , then EMD(G) = 








 


2

)1(
2

)12122()693( 22

nm
nnnnm  where      m ≥ 3, n ≥ 2. 

Proof: Let P m
c
nK  be a graph obtained by attaching the root vertex of the star K n,1  to all 

the vertices of the path  P m . Let (a1 , a 2 ,…….a m ) be the vertices of the path P m . Let (b 1 , 

b 2 , …….b n ) be the pendent vertices of the star   S1 , (b 1n , b 2n ,…….b n2 ) be the pendent 

vertices of the star S 2 ,……….(b 1)1(  nm ,…….b mn ) be the pendent vertices of the star S m . 

Now attach the root vertex of  S1  to a1 , S 2  to a 2 ,…….. S m  to a m  respectively.  

ETDV(G)=  ),( vuedom for u,vV(G).
 

For any path Pm, ETDV(Pm) = 3m - 6; For any star K1,n, ETDV(K1,n) = 2

)1( nn
; 

 

edom(bi,bj) = 1 for i = 1 to n; j = n+1 to 2n;  therefore,  edom(bi,bj) = n2 for i = 1 to n; 
j = n+1 to 2n;   
 

edom(bi,bj) = 1 for i = n+1 to 2n; j = 2n+1 to 3n;  therefore,  edom(bi,bj) = n2 for i = 
n+1 to 2n; j = 2n+1 to 3n;  …………. edom(bi,bj) = 1 for i = mn-2n+1 to mn-n; j = mn-n+1 

to mn;  therefore,  edom(bi,bj) = n2 for  
i = mn-2n+1 to mn-n; j = mn-n+1 to mn;    

edom(a1,bi) = 1 for i = n+1 to 3n; therefore, 


n

ni

3

1
edom(a1,bi) = 2n; 

edom(a2,bi) = 1 for i = 1 to n and 2n+1 to 4n; therefore,  edom(a2,bi) = 3n for i = 1 to 
n and 2n+1 to 4n; 

edom(a3,bi) = 1 for i = 1 to 2n and 3n+1 to 5n; therefore,  edom(a3,bi) = 4n for i = 1 to 
2n and 3n+1 to 5n; 

edom(a4,bi) = 1 for i = n+1 to 3n and 4n+1 to 6n; therefore,  edom(a4,bi) = 
4n;…………… 
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edom(am,bi) = 1 for i = (m-3)n+1 to mn-n; therefore,  edom(am,bi) = 2n for i = (m-
3)n+1 to mn-n. 

ETDV(G) = 3m – 6 + m
 






 

2

)1(nn
 + (m-1)n2 + 10n + (m-4)4n 

                  = [6m – 12 + mn2 + mn + 2mn2 -2n2 + 20n + 8mn – 32n]/2 
                  = [2mn2 + mn2 - 2n2 + 9mn + 6m -12n - 12] /2  
                  = [m(3n2 + 9n + 6) – (2n2 +12n + 12)] / 2 

EMD(G)   =   
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Example 3.14 Consider the graph  P4

cK 3 , 
  
 
 
 
 
                       

 
Figure 3.7 

 
From the above figure 3.7, We have, edom(1, 2) = 1; edom(1, 3) = 1; edom(1, 4) = 1;    
edom(1, 5) = 1; edom(1, 6) = 1; edom(1, 13) = 1; edom(1, 14) = 1; edom(1, 15) = 1;      
edom(2, 3) = 1; edom(2, 4) = 1; edom(2, 5) = 1; edom(2, 6) = 1; edom(2, 13) = 1;            
edom(2, 14) = 1; edom(2, 15) = 1; ; edom(3, 4) = 1; edom(3, 5) = 1; edom(3, 6) = 1;        
edom(3, 13) = 1; edom(3, 14) = 1; edom(3, 15) = 1; edom(4, 5) = 1; edom(4, 6) = 1;       
edom(4, 7) = 1; edom(4, 8) = 1; edom(4, 9) = 1; edom(4, 13) = 1; edom(4, 14) = 1;          
edom(4, 15) = 1; edom(5, 6) = 1; edom(5, 7) = 1; edom(5, 8) = 1; edom(5, 9) = 1;            
edom(5, 13) = 1; edom(5, 14) = 1; edom(5, 15) = 1; edom(6, 7) = 1; edom(6, 8) = 1;       
edom(6, 9) = 1; edom(6, 13) = 1; edom(6, 14) = 1; edom(6, 15) = 1; edom(7, 8) = 1;       
edom(7, 9) = 1; edom(7, 10) = 1; edom(7, 11) = 1; edom(7, 12) = 1; edom(7, 13) = 1;     
edom(7, 14) = 1; edom(7, 15) = 1; edom(7, 16) = 1; edom(8, 9) = 1; edom(8, 10) = 1;     
edom(8, 11) = 1; edom(8, 12) = 1; edom(8, 13) = 1; edom(8, 14) = 1; edom(8, 15) = 1; 
edom(8, 16) = 1; edom(9, 10) = 1;edom(9, 11) = 1; edom(9, 12) = 1; edom(9, 13) = 1;    
edom(9, 14) = 1; edom(9, 15) = 1; edom(9, 16) = 1; edom(10, 11) = 1;  edom(10, 12) = 1; 
edom(10, 14) = 1; edom(10, 15) = 1; edom(10, 16) = 1; edom(11, 12) = 1; edom(11, 14) = 1; 
edom(11, 15) = 1; edom(11, 16) = 1; edom(12, 14) = 1; edom(12, 15) = 1; edom(12, 16) = 1. 
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ETDV(G) = 87; MD(G) = 
120

87
  

ETDV(G) = [m(3n 2 + 9n + 6) - (2n2 + 12n + 12)] /2        
                   = [3(27 + 27 + 6) - (18 + 36 + 12)] / 2 = 87 

EMD(G)   =  
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