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Abstract: A detour dominating set	ܵin a connected graph ܩis called a minimal detour dominating set 
of ܩ	if no proper subset of ܵ is a detour dominating set of ܩ. The upper detour domination 
number	ߛௗାሺܩሻ of ܩis the maximum cardinality of a minimal detour dominating set of ܩ. Some general 
properties satisfied by this concept are studied. For a connected graph ܩ	of order p with upper detour 
domination number p is characterized. It is shown that for every two positive integers ܽ and ܾ, with 
2	  	ܽ	  	ܾ, there exists a connected graph ܩ	with 	ߛௗሺܩሻ 		ൌ 	ܽ and	ߛௗାሺܩሻ 	ൌ 	ܾ. 
 
Keywords: detour set, detour dominating set, upper detour dominating set.  
 
Mathematical subject classification 05C12 
 

1. Introduction 
For a graph G ൌ ሺV, Eሻ, we mean a finite undirected graph without loops or 

multiple edges. The order and size of ܩ are denoted by  and ݍ respectively. We consider 
connected graphs with at least two vertices. For basic definitions and terminologies we refer 
to [1,4]. 
         For vertices ݑ and ݒ in a connected graph G, the detour distance Dሺݑ,  ሻ is the lengthݒ
of the longest ݑ െ ݑ A	.ܩ path in ݒ െ ,ݑሺܦ path of length ݒ ݑ ሻ  is called aݒ െ  detour. It ݒ
is known that the detour distance is a metric on the vertex set ܸሺܩሻ. The detour 

eccentricity	݁(ݒ) of a  vertex ݒ in ܩ is the maximum detour distance form ݒ to a vertex of 
 is the minimum detour eccentricity among the vertices ܩ	݂	ܩ݀ܽݎ ,The detour radius.ܩ
of ܩ, while the detour diameter, ݀݅ܽ݉ܩ	݂	ܩ is the maximum detour eccentricity among 
the vertices of ܩ.	These concept were studied by Chartrand et al.[2].  
A vertex ݔ is said to lie on a ݑ െ  is a vertex of u-v detour path P including ݔ detour P if ݒ
the vertices ݑ and ݒ. A set ܵ ⊆ ܸ is called a detour set if every vertex v in ܩ lies on a detour 
joining a pair of vertices of S. The detour number dnሺܩሻ of ܩ is the minimum order of a 
detour set and any detour set of order ݀݊ሺܩሻ is called a minimum detour set of ܩ. These 



 
  

     

25 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

concepts were studied by G. Chartrand et al.[3].Let ܩ ൌ ሺܸ,  ሻ be a connected graph withܧ
at least two vertices. A set ܵ ⊆ ܸሺܩሻ is called a dominating set of ܩif every vertex in       
V(G)-S is adjacent to some vertex in S. The domination number γሺܩሻ of ܩ is the minimum 
order of its dominating sets and any dominating set of order γሺܩሻ is called γ - set of ܩ 
 
The following theorem is used in the sequel. 
Theorem 1.1: [5] Every end vertex of ܩ belongs to every detour dominating set of ܩ. 
 
Theorem 1.2: [5] For a non trivial tree, ߛௗሺܩሻ ൌ ݇, where ݇ is the number of end vertices 
of ܩ. 
 
Definition 2.1:  
Let ܩ ൌ ሺܸ,  ܵ ሻ be a connected graph with at least two vertices .A detour dominating setܧ

in a connected graph ܩ is called a minimal detour dominating set of  ܩ if no proper subset 
of ܵ is a detour dominating set of ܩ.The upper detour dominating number ߛௗ

ାሺܩሻ  of ܩ is 
the maximum cardinality of a minimal detour dominating set of ܩ. 

  
Example 2.2: 
For the graph ܩ given in Figure 2.1, ଵܵ ൌ ሼݒଵ, ,ଶሽݒ ܵଶ ൌ ሼݒଵ, ,ଷሽݒ ܵଷ ൌ ሼݒଵ, ,ସሽݒ ܵସ ൌ
ሼݒଵ, ,ହሽݒ ܵହ ൌ ሼݒଶ, ,ଷሽݒ ܵ ൌ ሼݒଶ, ସሽ, and  Sݒ ൌ ሼvଶ, vହሽ are the only seven detour  
dominating sets of ܩ so that γୢሺGሻ ൌ 2.Also S଼ ൌ ሼvଷ, vସ, vହሽ is a  upper detour 
dominating set of of ܩ.Since no proper subset of S଼ is a detour dominating set of ܩ, S଼  is 
a minimal set of ܩso that γୢ

ାሺGሻ  3. It is easily verified that no four elements subset of ܩ 
is a detour dominating set of ܩand so ߛௗ

ାሺܩሻ ൌ 3. 
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Remark 2.3: 
Every minimum detour dominating set of ܩ is a minimal detour dominating set of ܩ, but 
the converse need not be true. For the graph ܩ given in Figure 2.1, S଼ ൌ ሼvଷ, vସ, vହሽis a 
minimal detour dominating set of ܩ  but not a minimum detour dominating set of ܩ. 
 
Theorem 2.4: 
 For a connected graph ܩ, 2  ሻܩௗሺߛ  ௗߛ

ାሺܩሻ   .
Proof: A detour dominating sets needs at least two vertices so that ߛௗሺܩሻ  2.		Since every 
minimal detour dominating set is also a detour dominating set, ߛௗሺܩሻ  ௗߛ

ାሺܩሻ. Since the  
ܸሺܩሻ set is a detour dominating set of ܩ. we have  ߛௗ

ାሺܩሻ  Thus 2.  ሻܩௗሺߛ 
ௗߛ
ାሺܩሻ    .

 
Remark 2.5: 
The bounds in Theorem 2.4 are sharp. For the complete bipartite graph                                    
ܩ ൌ ሻܩௗሺߛ		,ܭ 	ൌ 2   and for the star ൌ ,ଵ,ିଵܭ ሻܩௗሺߛ	 	ൌ ௗߛ

ାሺܩሻ .  Also for          ܩ ൌ
,	ଶܭ ௗߛ

ାሺܩሻ ൌ 2 ൌ  given in ܩ Also the bounds in Theorem 2.4 are strict. For the graph .
Figure 2.2, ሻܩௗሺߛ 	ൌ 3, ௗߛ

ାሺܩሻ ൌ 4  and  ൌ 6. Thus 2 ൏ ሻܩௗሺߛ ൏ ௗߛ
ାሺܩሻ ൏   .

  
 
In the following we determine the upper detour domination number of some standard 
graphs. 
Theorem 2.6: 
For a star ܩ ൌ ,ଵ,ିଵܭ ௗߛ	

ାሺܩሻ ൌ  െ 1. 

Proof: Let  ܩ ൌ  ܵ    , Then by Theorem 1.1.ܩ ଵ,ିଵ.  Let ܵ be the set of all end vertices ofܭ
is a subset of every detour dominating set of ܩ	and so  ߛௗሺܩሻ   െ 1.  It is clear that ܵ is 
a detour dominating set of ܩ so that ߛௗ

ାሺܩሻ ൌ  െ 1. 	
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Theorem 2.7: 

If ܩ is a double star, then ߛௗ
ାሺܩሻ ൌ  െ 2. 

Proof. The proof is similar to that of proof of Theorem 2.6.  
 
Theorem 2.8: 

For the path ܩ ൌ ܲሺ  2ሻ, ௗߛ
ାሺܩሻ ൌ ൞

ቒ
ଶ
ቓ 	݂݅														  5

	݂݅								2 ൌ 4	ݎ	2,3

 

 
Proof: Let ܲ be ݒଵ, ଶݒ  . Ifݒ…… ൌ ,ଵݒthen   ሼ ,4	ݎ	2,3  ሽ is a minimum detourݒ
dominating set of ܩ and it is clear that no proper subset of ܵ is a detour dominating set of 

ௗߛ so that ܩ
ାሺܩሻ ൌ 2. Let   5. Then ܵ ൌ ቒିସ

ଶ
ቓ is a minimum dominating set of ܲିସ 

and   ܵᇱ ൌ ܵ ∪ ሼݒଵ,                       and  so 	ܩ ሽ is a minimal  detour dominating set ofݒ

ௗߛ
ାሺܩሻ  ቒିସ

ଶ
ቓ  2 ൌ ቒ

ଶ
ቓ െ 2  2 ൌ ቒ

ଶ
ቓ . It is easily verified that there is no minimal 

detour dominating set of cardinality  ቒ୮
ଶ
ቓ. Therefore γୢ

ାሺGሻ ൌ ቒ୮
ଶ
ቓ.   

 
Theorem 2.9: 
For the complete graph 	ൌ ሺܭ  2ሻ ,ߛௗ

ାሺܩሻ ൌ 2. 
Proof: Let ݑ, ܵ Then .ܩ be two vertices of ݒ ൌ ሼݑ,  so  ܩ ሽ is a detour dominating set ofݒ
that ߛௗ

ାሺܩሻ  2. We have to show that ߛௗ
ାሺܩሻ ൌ 2.	 Suppose that ߛௗ

ାሺܩሻ  3.Then there 
exists a minimal detour dominating set ܵᇱ of ܩ such that |ܵᇱ|  3. Since ܩ is complete, the  
element of ܵᇱ are adjacent in ܩ. Then it follows that ܵᇱ contains a detour dominating set of 
cardinality two, which is contradiction to ܵᇱ a minimal detour dominating set of ܩ. 
Therefore ߛௗ

ାሺܩሻ 	ൌ 2. 
  
Theorem 2.10: 
For the Complete bipartite graph  

ࡳ		 ൌ ,,ࡷ ࢊࢽ
ାሺࡳሻ ൌ ቐ

						ࢌ	 ൌ  ൌ 
 െ 	ࢌ	 ൌ ,   

	ࢌ						ሽ,ሼ࢞ࢇ    .
  

Proof: If ݉ ൌ ݊ ൌ 1,  then result follows from Theorem 2.6. If ݉ ൌ 1, ݊  2, then the 
result follows from Theorem 2.6. If 2  ݉  ݊, then let ܷ and ܹ be two bipartite sets of 
|ܷ| such that ܩ ൌ ݉ and |ܹ| ൌ ݊. Let ܵ ൌ ܹ. Then ܵ is a detour dominating set of ܩ. 
Since no proper subset  of ܵ is a detour dominating set of ܩ, ܵ is a minimal detour 
dominating set of ܩ and so ߛௗ

ାሺܩሻ  ݊. We have to show that ߛௗ
ାሺܩሻ ൌ ݊. Suppose that 

ௗߛ
ାሺܩሻ  ݊  1. Then there exists a detour dominating set ܵᇱ such that |ܵᇱ|  ݊  1. 

Hence it follows that ܵᇱ ⊆ ܷ	 ∪ ܹ. Let  ݔ, ,ݕ ,ݔ ᇱ such thatܵ	߳	ݖ 	ݕ ∈ ܷ and ݖ	 ∈ ܹ. 
Thenܵᇱᇱ ൌ ሼݔ, ,ݕ such that ܵᇱᇱ ܩ ሽ is a detour dominating set ofݖ ⊂ 	 ܵᇱ, which is a 
contradiction to ܵᇱ a minimal detour dominating set of ܩ	 Hence  ߛௗ

ାሺܩሻ ൌ ݊. 	
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In view of Theorem 2.4, we have the following realization result. 
Theorem 2.11: 
For positive integer ܽ  and	ܾ with 2  ܽ  ܾ, there exists a connected graph with  ߛௗሺܩሻ ൌ
ܽ and ߛௗ

ାሺܩሻ ൌ ܾ. 

 
Proof:  
Case (i): If ܽ ൌ ܾ, Let ܩ ൌ ሻܩௗሺߛ ,ଵ,. Then by Theorem 1.2ܭ ൌ ܽ  and by Theorem 2.6,  
ௗߛ
ାሺܩሻ ൌ ܽ. 

Case (ii): 2  ܽ ൏ ܾ. Let ܲ: ,ݔ   be a graph obtained from ܩ be the path of order 2. Let ݕ
by adding ܾ new vertices ݒଵ, ,ଶݒ … , ,ିଵݒ ,ଵݑ ,ଶݑ … , ሺ1ݒ ିାଵ and joining eachݑ  ݅ 
ܽ െ 1ሻ with ݕ	 and joining each ݑሺ1  ݅  ܾ െ ܽ  1ሻ with ݔ	and ݕ. The graph ܩ is 
shown in Figure 2.3. We show that ߛௗሺܩሻ ൌ ܽ.	 Let ܵ ൌ ሼݒଵ, ,ଶݒ … ,  ିଵሽ be the set of allݒ
end vertices of ܩ. Then by Theorem 1.1, ܵ is a subset of every detour dominating set of ܩ 
and so ߛௗሺܩሻ  ܽ. Now ܵᇱ ൌ ܵ	 ∪	ሼݔሽ is a detour dominating set of ܩ so that         
ௗߛ
ାሺܩሻ ൌ ܽ. Next we show that ߛௗ

ାሺܩሻ ൌ ܾ. By Theorem 1.1,  ܵ is a subset of every detour 
dominating set of ܩ. It is clear that ܵ is not a detour dominating set of ܩ. Let ଵܵ ൌ ܵ	 ∪
ሼݑଵ, ,ଶݑ … ,  We show that ଵܵ is a  .ܩ ିାଵሽ. Then ଵܵ is a detour dominating set ofݑ
minimal detour dominating set of ܩ. Suppose that ଵܵ is not a minimal detour dominating 
set of ܩ. Then there exists detour dominating set ܯ such that ܯ	 ⊆ 	 ଵܵ. Therefore there 
exists ݔ ∈ ଵܵ Such that ݔ ∉ ݔ ,By Theorem 1.1 .ܯ ്  (1ݒ	 ݅  ܽ െ 1ሻ Then ݔ ൌ   forݑ
some i	ሺ1  ݅  ܾ െ ܽ  1ሻ  without loss of generality let ݔ ൌ  ଵ is not  adjacentݑ ଵ ,Thenݑ
to any vertex of ܯ. Hence ܯ is not a dominating set of ܩ, which is contradiction. Therefore 

ଵܵ is a minimal detour dominating set of ܩ	and so ߛௗ
ାሺܩሻ  ܾ.We have to prove      

ௗߛ
ାሺܩሻ ൌ ܾ. Suppose that ߛௗ

ାሺܩሻ  ܾ  1. Then there exists a minimal detour dominating 
set ܯଵ such that |ܯଵ|  ܾ  1. By Theorem 1.1, ܯଵ contains each                                     
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ሺ1ݒ  ݅  ܽ െ 1ሻ.Since ܵᇱ is a detour dominating set of ݔ ,ܩ ∉               ଵ. Thereforeܯ
ଵܯ ൌ ଵܵ ∪ ሼݕሽ.  Since ܵ ଵ is a detour dominating set of ܩ, it follows that ܯଵ is not a minimal 
detour dominating set of ܩ, which is a contradiction   Therefore ߛௗ

ାሺܩሻ ൌ ܾ. 
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