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Abstract:  The concept of Complementary connected perfect domination number was introduced by 
G.Mahadevan et.alc., in [5]. A subset S of V of a non trivial graph G is said to be complementary 
connected perfect dominating set if S is a dominating  and <V S> is connected and has a perfect 
matching. The minimum cardinality taken over all complementary connected perfect dominating sets 
in G (CCPD-set) is called the complementary connected perfect domination number of G and is 
denoted by ccp . In [6, the authors already characterized the extremal graphs whose sum of 

complementary connected domination number and chromatic number upto 2n-5.  Since the 
characterization of extremal graphs whose sum of complementary connected domination number and 
chromatic number equals to 2n-6 for any n > 3 
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1. Introduction 
By a graph G = (V, E) simple undirected connected graph. The concept of 
Complementary connected perfect domination number was introduced by G. Mahadevan 
et.al., in [5]. The A subset S of V of a non trivial graph G is said to be complementary 
connected perfect dominating set if S is a dominating  set and <V S> has a perfect 
matching and connected. The minimum cardinality taken over all Complementary 
connected perfect dominating sets in G (CCPD-set) is called the complementary 
connected perfect domination number of G and is denoted by ccp . The minimum 

number of colours required to colour all the vertices in such a way that the adjacent 
vertices do not receive the same colour is called the chromatic number and is denoted by 
 .  
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We use the following notations in our further discussions.  
Notation 1.1: Let H be a regular graph.  
a) H (mPk) is a graph obtained from H by attaching m times an end vertex of Pk to a 
vertex of H. 
b) H (m1,m2,…,mn) is a graph obtained from H by attaching mi pendant edges to the 
vertex vi, ni 1 . 
c) H (m1Pk1,m2Pk2,…,mnPkn) is a graph obtained from H by attaching mi times  an end 
vertex of a  path Pki on ki vertices to the vertex vi, ni 1 . 
d) H (u(Pn, Pm), m2Pk2,m3Pk3, . . .,mnPkn)  is the graph obtained from H by attaching an end 
vertex of Pn and  an end vertex of Pm to a vertex u=v1 of H  and attaching the mi times an 
end vertex  of Pki to  the vertex vi, ni 2 .   
Notation 1.2: Pk (u(Pn, Pm)) is the graph obtained from Pk by attaching an end vertex of Pn 
and  an end vertex of Pm to an end  vertex u of  Pk.  
Notation 1.3: Pk(mPr, , nPs,) is the graph obtained from Pk by attaching m times an end 
vertex of Pr to an  end vertex of Pn  and by attaching n times an end vertex of Ps to the 
other end vertex of Pk 
Notation 1.4:  Pn( Cr, Cs)  is the graph by attaching one vertex of Cr  and one vertex  of Cs 
to the end vertices of Pn 
Notation 1.5: Pn (mPk, Cr) is the graph by attaching m times of Pk to an end vertex of Pn 
and attaching a  vertex of Cr to other end vertex of Pn. 
 
Theorem 1.6:[5] For  any graph G, ccp (G)  =  n  if  and  only  if  G is a star. 
 
Theorem 1.7:[6] Let G be a  connected graph with ccp = n  2 and   =  n  4. Then   

ccp    = 2 n  6, for any n > 3. if and only if G is isomorphic to Gi = { C4(P3), C5(C3) 

P6, C6, P3(u(P2,P3),0), C4(P2,P2,0,0),C3(P5), P3(C3,0,C3), C4(2P2), P2(2P2,2P2), P4(2P2), 
C3(u(P4,P2),0,0), C3(P4,P2,0),P3(3P3),P3(u(P2,P3),0), C3(u(P3,2P2),0,0), C3(u(P3,P2),0,0), 
C3(P3,P2,P2), P3(2P2), P2(3P2,C3), P3(3P2,C3), K4(4,0,0,0), K4(3,1,0,0), K4(2,2,0,0), K4(1,1,1,1), 
K3(4,0,0), K3(2,2,0), K3(3,1,0) and  any one of the  following figure 1.1} 
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Figure 1.1 
 
2. Main Result 

In [6], It has been already characterized the extremal graphs whose sum of 
complementary connected domination number and chromatic number upto 2n-5. Since 
the characterization of graphs whose sum of complementary connected perfect 
domination number and chromatic number is equal to 2n-6  
 
Theorem: 2.1  Let G be a  connected graph with ccp = n  4 and   =  n  2. Then   

ccp    = 2 n  6, for any n >3 if and only if G is isomorphic to K6(2P2), 

K6(1,1,0,0,0,0), K5(2P2), K5(1,1,0,0,0), K4(P3), Gi and any of the following graphs in figure 
1.2. 
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Figure 1.2 
 
Proof:  Let ccp (G) + )(G  = 2n 6, then   ccp    = 2 n  6 for any  n > 3.  Then  

all   the possible cases   are   (i) ccp  = n and   = n 6  (ii) ccp = n 1 and  = n 5 ,  

(iii) ccp = n 2 and   = n 4, (iv) ccp = n 3 and   = n 3, (v) ccp = n 4 and   = 

n 2, (vi) ccp = n 5 and   = n 1, (vii) ccp = n 6 and   = n.  
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 The cases, (ii), (iv), (vi) < V –S > has odd number of vertices.  Hence, it not 
possible to form a perfect matching. Hence in the all these cases, no graph exists.  For the 
remaining cases, the graph exists. The case, (iii) already proved in [6]. 
 
Case (i) : ccp  = n and   = n 6 

 
Let ccp = n, by theorem 1.3, G is a star.  But for star  = 2 so that n = 8. Hence  G = K1,7. 

 
Case (ii): ccp = n 4 and   = n 2 

Since  = n  2, G contains a clique K on n  2 or does not contain a clique K 

on n  2 vertices.. Let G contains a clique on K= Kn-2 vertices and let S={v1, v2}V(G)-

V(K). Then the induced sub graph<S> = 2K , K2 

Sub case 1: <S> = 2K                                               

 Let v1 and v2 be the vertices of 2K  (i) If    v1 or v2 is mapped to a single vertex 
say ui of Kn-2.(ii) If v1 and v2 is mapped to different vertices of Kn-2.  

a) Suppose   K =  Kn-2  has  even number of vertices, then{v1,v2,uj,uk} forms a ccp  

set of G. Since 2 nccp  so that n = 8 and hence K = K6 . In this case the possible 

graphs are  K4(2,0,0,0,0,0),  K4(1,1,0,0,0,0).  If d(v1) > 1, then  we get a contradiction to the 
hypothesis. 

b) Suppose K= Kn-2  has  odd number of vertices {v1,v2 ,uj} forms a ccp set of G. 

Since   2 nccp so that n = 7 and   hence K= K5 . Let ui adjacent to v1 of K3 then the 

possible graphs are  K5(2P2),  K3(P2,P2,0,0,0). If  v1 and v2   is  adjacent to u1   d(v1) =2 and  
d(v2) = 1 , then  G   G1. If d(v1) = 3 and  d(v2) = 1 , then  G   G2. If d(v1) = 4 and  d(v2) 
= 1 , then  G   G3.   If  v1 is  adjacent to u1 and   v2 is  adjacent to u2 d(v1) =  d(v2) = 
1,then  G   G4. If d(v1) = d(v2) = 2,then  G   G4.  

 
Sub case2:  <S> = K2 
               Let v1 and v2 be the vertices of  K2  (i) If    v1 or v2 is mapped to a single vertex 
say ui of Kn-2. (or) (ii) If v1 and v2 is mapped to different vertices of Kn-2.   

a) Suppose K =  Kn-2  has  even number of vertices, then{v1,uj} forms a ccp -set of 

G. Since 2 nccp  , we have  n = 6 and hence K = K4 . In  case (i) the possible graphs 

are K4(P3), and if  v1 is  adjacent to u1   and d(v1) = 3, d(v2)  = 1 , then  G   G5. If  d(v1) = 
4, d(v2)  = 1 ,then    G   G6. If  v1 and v2 is  adjacent to u1   and if d(v1) = d(v2)  = 2 then  
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G   G7. If d(v1) = 3, d(v2)  = 2 , then  G   G8. If  d(v1) = 4, d(v2)  = 2 ,then    G   G9. 
If  v1 is  adjacent to u1  and v2 is  adjacent to u2  d(v1) = d(v2)  = 2 ,then  G   G10. If d(v1) = 
3, d(v2)  = 2 , then  G   G11. If  d(v1) = 4, d(v2)  = 2 ,then    G   G12. If d(v1) = d(v2)  = 
3, then  G   G13. If  d(v1) = 4, d(v2)  = 3 ,then    G   G14. 

b) Suppose K= Kn-2  has  odd number of vertices, then  {v1,uj,uk} forms a ccp  -set 

of G. Since 2 nccp , we have n = 7 and hence K= K5 . Let u1 be adjacent to v1 of K5 

then the possible graph is K5(P3). If  v1 is  adjacent to u1   and d(v1) = 3, then  G   G15. If  
d(v1) = 4, then    G   G16. If  d(v1) = 5, then    G   G17. If  v1 is  adjacent to u1 and u2  

and d(v1) = d(v2) = 2 , then  G   G18.   If  v1 is  adjacent to u1 and   v2 is  adjacent to u2 
and d(v1) = d(v2) = 2,then  G   G19. If  d(v1) =3 d(v2) = 2,then  G   G20. If d(v1) = 4 
d(v2) = 2,then  G   G21.  If d(v1) = d(v2) = 3,then  G   G22.  
Case (iii): ccp = n 6 and   = n 

Since   = n, G is a complete graph. If n is even then ccp  = 2 which gives n = 8 and 
hence G = K8. If n is odd then ccp  = 1 which gives n = 7 and hence G = K7. The converse 
is obvious. 
 
3. Conclusion 
In this paper, we characterized the concept of complementary connected perfect   
domination number and chromatic number equals to 2n-6 for any n > 3 of a graph. The 
authors are also characterized the sum of complementary connected perfect domination 
number and chromatic number equals to 2p-7, 2p-8 which will be report in the 
subsequent papers. 
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