International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 8, No. 1, January – March 2017, pp. 1 - 16

Complementary Tree Nil Domination Number of a Graph

S. Muthammai and *G. Ananthavalli

Government Arts College for Women (Autonomous), Pudukkottai-622001, India E.Mail: muthammai.sivakami@gmail.com, *dv.ananthavalli@gmail.com

Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V-D is adjacent to some vertex in D. The domination number γ (G) of G is the minimum cardinality of a dominating set. A dominating set D of a connected graph G is called a complementary tree nil dominating set if the induced sub graph $\langle V-D \rangle$ is a tree and V-D is not a dominating set. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of G and is denoted by $\gamma_{\text{ctnd}}(G)$. In this paper, bounds for $\gamma_{\text{ctnd}}(G)$ and its exact values for some particular classes of graphs are found. Some results on complementary tree nil domination number are also established.

Key words: complementary tree domination number, complementary tree nil domination number.

1. Introduction

Graphs discussed in this paper are finite, undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. For $v \in V(G)$, the neighborhood N(v) of v is the set of all vertices adjacent to v in G. N[v] = N(v) \cup {v} is called the closed neighborhood of v. A vertex $v \in V(G)$ is called a support if it is adjacent to a pendant vertex. (That is, a vertex of degree one). The concept of domination in graphs was introduced by Ore[7]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) - D is adjacent to some vertex in D. A minimum dominating set in a graph G is a dominating set of minimum cardinality. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(G)$. Some domination parameters are defined by imposing additional constraint on the complement of a dominating set. Such parameters are called codomination parameters. Based on these, the concept of nonsplit domination in graphs was introduced by Kulli and Janakiram [3]. A dominating set D of a connected graph G is a nonsplit dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit domination number $\gamma_{ns}(G)$ of G is the minimum cardinality of a nonsplit dominating set. Another new parameter called complementary nil domination number of a graph was defined and studied by T. Tamil Chelvam and S. Robinson Chellathurai [8]. A set D C V is said to be a complementary nil dominating set (cnd-set) of a graph G if it is a dominating set and its complement V - D is not a dominating set for G. The minimum cardinality of a cnd-set is called the complementary nil domination number of G and is denoted by $\gamma_{end}(G)$. Muthammai, Bhanumathi and Vidhya[4] introduced the concept of complementary tree dominating set.

Received: 11 August, 2016; Revised: 09 January, 2017; Accepted: 18 March, 2017

^{*}Corresponding Author

A dominating set $D \subseteq V(G)$ is said to be complementary tree dominating set (ctd-set) if the induced subgraph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

We call a set of vertices, a γ – set if it is a dominating set with cardinality $\gamma(G)$. Similarly, a γ_{ns} -set, γ_{cnd} – set and γ_{ctd} - set are defined. The Corona $G_1 \circ G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 of order p_1 and p_1 copies of G_2 and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 . Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be any two graphs. The join of G_1 and G_2 is the graph $G = G_1 + G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$. Any undefined terms in this paper may be found in Harary[1]. Here, G is a connected graph with p vertices and q edges.

In this paper, bounds for $\gamma_{ctnd}(G)$ and its exact values for some particular classes of graphs are found. Also, the graphs for which $\gamma_{ctnd}(G) = 2$, p, p – 1 or p – 2 are characterized. **Theorem1.1**:[4] For any connected graph (p, q) graph G with $\delta(G) \ge 2$, $\gamma_{ctnd}(G) \ge 3p - 2q - 2$.

Theorem1.2:[4] For any connected graph G, $\gamma(G) \leq \gamma_{ctd}(G)$.

Theorem.1.3: [8] For any noncomplete connected graph G, $\gamma(G) < \gamma_{cnd}(G)$.

Theorem.1.4: [7] For any graph, $\gamma(G) \leq p - \Delta(G)$

Theorem 1.5: [7] A dominating set D of a graph G = (V, E) is a minimal dominating set if and only if for each vertex v in D, one of the following two conditions holds.

- (a) v is an isolated vertex of D.
- (b) There exists a vertex u in V-D such that $N(u) \cap D = \{v\}$.

2. Main Results

In this section, a new parameter called complementary tree nil domination number is defined, minimal complementary tree nil dominating sets are characterized, bounds and exact values of this parameter are found.

Definition 2.1:

A dominating set $D \subseteq V$ of a connected graph G = (V, E) is said to be a complementary tree nil dominating set (ctnd – set) of G, if the induced subgraph $\langle V-D \rangle$ is a tree and V – D is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of G and is denoted by $\gamma_{ctnd}(G)$. A set corresponding to the complementary tree nil dominating number is called a γ_{ctnd} -set of G.

A complementary tree nil dominating set D of G is minimal if no proper subset of D is a complementary tree nil dominating set of G. By a ctnd-set, we mean a complementary tree nil dominating set. Here after, we assume that G is a connected graph.

In the following minimal complementary tree nil dominating sets are characterized. **Theorem 2.1:**

A complementary tree nil dominating set D of a connected graph G is minimal if and only if for each vertex v in D, one of the following conditions holds.

- (a) v is an isolated vertex of D
- (b) There exists a vertex u in V-D such that $N(u) \cap D = \{v\}$.
- (c) V- (D $\{v\}$) is a dominating set of G.
- (d) V $(D \{v\})$ either contains cycle or disconnected.

Proof:

Suppose D is a minimal ctnd-set. On the contrary, if there exists a vertex $v \in D$ such that v does not satisfy any of the given conditions. Then by (a) and (b), $D' = D - \{v\}$ is a dominating set of G; by (c), V - D' is connected and is a dominating set. By (d), $\langle V - D' \rangle$ is a tree. This implies that D' is a complementary tree nil dominating set of G, which is a contradiction. Therefore, D satisfies one of the conditions (a), (b), (c) and (d).

Conversely, suppose D is a ctnd-set, and for each vertex v in D, one of the four stated conditions holds. Now we prove that D is a minimal ctnd-set. Suppose D is not a minimal ctnd-set. Then there exists a vertex v in D, such that $D - \{v\}$ is a ctnd-set. Thus, v is adjacent to atleast one vertex in D - $\{v\}$. Therefore, condition (a) does not hold.

Also if D - $\{v\}$ is a dominating set, then every vertex in V- (D - $\{v\}$) is adjacent to atleast one vertex in D - $\{v\}$. Therefore, (b) does not hold. Since, D - $\{v\}$ is a ctnd-set,

 $\langle V - (D - \{v\}\rangle)$ is a tree, which contradicts conditions (c) and (d). Therefore, there exists a vertex v in D not satisfying conditions (a), (b), (c) and (d), a contradiction to the assumption. Therefore, D is a minimal ctnd-set of G.

Bounds and some exact values of complementary tree nil domination number

Observation 2.1.

Since every ctnd-set is a cnd-set as well as a ctd-set, $\gamma_{cnd}(G) \leq \gamma_{ctnd}(G)$ and $\gamma_{ctd}(G) \leq \gamma_{ctnd}(G)$. But, $\gamma(G) < \gamma_{cnd}(G)$. Therefore, $\gamma(G) < \gamma_{cnd}(G) \leq \gamma_{ctnd}(G)$ **Example 2.1:** For the graph G₁ given in Figure 2.1., $\gamma_{ctd}(G_1) < \gamma_{ctnd}(G_1)$

For this graph G_1 , $\{v_2, v_4\}$ is a γ_{ctd} -set, $\{v_2, v_4, v_5, v_6\}$ is a γ_{ctnd} -set. Therefore, $\gamma_{ctd}(G_1) = 2$, $\gamma_{ctnd}(G_1) = 4$. Hence, $\gamma_{ctd}(G_1) < \gamma_{ctnd}(G_1)$.

Example 2.2: For the graph G₂ given in Figure 2.2., $\gamma_{ctd}(G_2) = \gamma_{ctnd}(G_2)$

For this graph G₂, {v₁, v₂, v₆} is a γ_{ctd} -set as well as a γ_{ctnd} -set. Therefore, $\gamma_{ctd}(G_2) = 3 = \gamma_{ctnd}(G_2)$. Hence, $\gamma_{ctd}(G_2) = \gamma_{ctnd}(G_2)$

Example 2.3: For the graph G₃ given in Figure 2.3., $\gamma_{cnd}(G_3) < \gamma_{ctnd}(G_3)$

For this graph G₃, {v₁, v₂} is a γ_{cnd} -set, {v₁, v₂, v₆, v₇} is a γ_{ctnd} - set. Therefore, $\gamma_{cnd}(G_3) = 2$ and $\gamma_{ctnd}(G_3) = 4$ and hence $\gamma_{cnd}(G_3) < \gamma_{ctnd}(G_3)$

Example 2.4: For the graph G_4 given in Figure 2.4., $\gamma_{cnd}(G_4) = \gamma_{ctnd}(G_4)$

Figure 2.4.

For this graph G_4 , $\{v_3, v_4, v_5\}$ is a γ_{cnd} -set as well as a γ_{ctnd} -set. Therefore, $\gamma_{cnd}(G_4) = 3 = \gamma_{ctnd}(G_4)$. Hence, $\gamma_{cnd}(G_4) = \gamma_{ctnd}(G_4)$

In the following, complementary tree nil domination number for some graphs are given.

Observation:

- 2.2. For any path P_p on p vertices, $\gamma_{ctnd} (P_p) = p 2, p \ge 5$. $\gamma_{ctnd} (P_3) = 2$ and $\gamma_{ctnd} (P_4) = 3$
- 2.3. For any cycle C_p on p vertices, $\gamma_{ctnd} (C_p) = p 2$, $p \ge 5$ and $\gamma_{ctnd} (C_3) = \gamma_{ctnd} (C_4) = 3$. If u, v be any two adjacent vertices of degree 2 in $P_p(\text{or } C_p)$, then $V(P_p) - \{u, v\}$ (or $V(C_p) - \{u, v\}$) is a γ_{ctnd} - set of $P_p(\text{or } C_p)$.
- 2.4. For any star $K_{1, p-1}$, γ_{ctnd} ($K_{1, p-1}$) = p-1, $p \ge 3$. The set consisting of p-2 pendant vertices and the central vertex forms a γ_{ctnd} -set of $K_{1, p-1}$.
- 2.5. For any complete bipartite graph $K_{m,n}$, $\gamma_{ctnd} (K_{m,n}) = m + n 1$.
- 2.6. $\gamma_{ctnd}(\overline{mK_2}) = 2m 1, \ m \ge 2$.
- 2.7. For the graph K_p e, γ_{ctnd} (K_p e) = p -1, where e is an edge in K_p .
- 2.8. For the graph $K_{m, n}$ e, $\gamma_{ctnd} (K_{m, n} e) = \gamma_{ctnd} (\overline{K}_{m, n} e) = m + n 2$, where e is an edge in $K_{m, n}$.
- 2.9. $\gamma_{ctnd} (P_p \circ K_1) = \gamma_{ctnd} (C_p \circ K_1) = p+1$. The set consisting of p pendant vertices and a vertex of C_p (or P_p) forms a γ_{ctnd} -set.

2.10:

If G is a connected graph and H is any connected spanning subgraph G, then the inequality $\gamma_{ctnd}(G) \leq \gamma_{ctnd}(H)$ is not true in general. This is illustrated by the following examples.

Example 2.5:

In the graphs given in Figure 2.5., H is a spanning subgraph of G and $\gamma_{ctnd}(G) < \gamma_{ctnd}(H)$

Figure 2.5.

For the graph G, $\{v_2, v_3\}$ is a γ_{ctnd} -set of G and hence γ_{ctnd} (G) = 2. H is a spanning subgraph of G, $\{v_1, v_2, v_3, v_5\}$ is a γ_{ctnd} -set of H and γ_{ctnd} (H) = 4. Therefore, γ_{ctnd} (G) $< \gamma_{ctnd}$ (H).

Example 2.6:

Figure 2.6

For the graph G, {v₁, v₂, v₃, v₄, v₅, v₆} is a γ_{ctnd} -set of G and hence γ_{ctnd} (G) = 6. H is a spanning subgraph of G, {v₁, v₂, v₃, v₄} is a γ_{ctnd} -set of H and γ_{ctnd} (H) = 4. Therefore, γ_{ctnd} (G) > γ_{ctnd} (H).

Observation 2.11:

If G is a connected graph and H is a connected induced subgraph G, then inequality $\gamma_{ctnd}(G) \leq \gamma_{ctnd}(H)$ is also not true in general. This is illustrated by the following examples.

Example 2.7:

In the graphs given in Figure 2.7., H is an induced subgraph of G and $\gamma_{ctnd}(G) < \gamma_{ctnd}(H)$.

Figure 2.7.

For the graph G, $\{v_1,\,v_2,\,v_3\}$ is a $\,\gamma_{{\it ctnd}}$ -set of G and hence

 γ_{ctnd} (G) = 3. H is a connected induced subgraph of G, {v₁, v₃, v₄, v₆} is a γ_{ctnd} -set of H and γ_{ctnd} (H) = 4. Therefore, γ_{ctnd} (G) $< \gamma_{ctnd}$ (H).

Example 2.8:

In the graphs given in Figure 2.8., H is an induced subgraph of G and $\gamma_{ctnd}(G) > \gamma_{ctnd}(H)$

Figure 2.8.

For the graph G, {v₁, v₂, v₃, v₄} is a γ_{ctnd} -set of G and hence γ_{ctnd} (G) = 4. H is a connected induced subgraph of G, {v₁, v₂, v₃} is a γ_{ctnd} -set of H and γ_{ctnd} (H) = 3. Therefore, γ_{ctnd} (G) > γ_{ctnd} (H).

Theorem 2.2:

For any connected graph G with p vertices, $2 \le \gamma_{ctnd}(G) \le p$, where $p \ge 2$.

Proof:

Let D be γ_{ctnd} -set of G such that |D| = 1. Then induced subgraph $\langle V-D \rangle$ is a tree and V-D is not a dominating set. But this is not possible, since the vertex in D is adjacent to all the vertices of $\langle V-D \rangle$. Therefore, $\gamma_{ctnd}(G) \ge 2$. Since all the p vertices of G forms a ctnd-set, $\gamma_{ctnd}(G) \le p$.

Theorem 2.3:

For any connected graph G, $\delta(G) + 1 \leq \gamma_{ctrd}(G)$.

Proof:

Let D be a γ_{ctnd} -set of G. Since induced subgraph $\langle V - D \rangle$ is a tree and V-D is not a dominating set, there exists a vertex $v \in D$ which is not adjacent to any of the vertices in V-D. Therefore N[v] \subseteq D. Therefore, |N[v]| \leq |D|. That is, deg_G(v) + 1 \leq |D|. Therefore, $\delta(G) + 1 \leq \gamma_{ctnd}(G)$.

Equality holds, if $G \cong K_{p.} p \ge 3$.

Theorem 2.4:

Let D be a γ_{ctd} -set of a connected graph G, and S be the set of all pendant vertices in $\langle V - D \rangle$. If there exists a vertex $v \in D$ such that $N(v) \cap (V-D) \subseteq S$, then $\gamma_{ctnd}(G) \leq \gamma_{ctd}(G) + m$, where $m = |N(v) \cap (V - D)|$.

Proof:

The set $D \cup (N(v) \cap (V - D))$ is a ctnd-set of G. Therefore, $\gamma_{ctrd}(G) \leq |D| + |N(v) \cap (V - D)| \leq \gamma_{ctd}(G) + m.$

Theorem 2.5:

Let T be a tree on p vertices $(p \ge 3)$ and be not a star. If n and e be respectively the number of cut vertices and the number of end vertices in T, then $\gamma_{ctnd}(T) \ge e+1$ or $\gamma_{ctnd}(T) \ge p - n + 1$.

Proof:

Let T be a tree on p vertices $(p \ge 3)$ and be not a star.

Let S be the set of all end vertices of T. Then $|S| = e \ge 2$ and for any support $u \in T$, S $\cup \{u\}$ is a ctnd-set of T. Therefore, $\gamma_{ctnd}(T) \ge |S| + 1 = e + 1$. If n is the number of cutvertices of T, then e = p - n. Therefore, $\gamma_{ctnd}(T) \ge p - n + 1$.

Equality holds, if T is a tree in which each vertex is a support.

Remark 2.1:

Let D be a γ_{ctd} -set of G. If V-D is not a dominating set of G, then D is a ctnd-set. Therefore γ_{ctnd} (G) $\leq \gamma_{ctd}$ (G). But, γ_{ctd} (G) $\leq \gamma_{ctnd}$ d(G). Hence γ_{ctnd} (G)= γ_{ctd} (G).

In the following, the connected graphs G for which γ_{ctnd} (G) = 2 are found.

Theorem 2.6:

Let G be a connected graph with p vertices. Then γ_{ctnd} (G) = 2 if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree p-1 of T + K₁, where T is a tree on (p-1) vertices.

Proof:

Let γ_{ctnd} (G) = 2. Then there exists a ctnd-set D = {u, v} containing two vertices. Since V-D is not a dominating set, there exists a vertex $u \in D$ such that N(u) \subseteq D. Hence u is a pendant vertex in D and also deg_G(u) = 1. Therefore all the vertices of V-D are adjacent to v only. Since $\langle V-D \rangle$ is a tree, G is a graph obtained by attaching a pendant edge at a vertex of degree p-1 of T+K₁ where T is a tree on (p-1) vertices.

Conversely, G is a graph obtained by attaching a pendant edge at a vertex of degree p-1 of T + K_{1,} where T is a tree on p-1 vertices. Let (u, v) be a pendant edge in G. Then D = {u, v} is a ctnd-set of G. Therefore, $\gamma_{ctnd}(G) \leq 2$. But, $\gamma_{ctnd}(G) \geq 2$. Therefore, $\gamma_{ctnd}(G) = 2$.

In the following, the connected graphs G for which γ_{cind} (G) = p are found. Theroem 2.7:

For any connected graph G with p vertices, γ_{ctnd} (G) = p if and only if G \cong K_p, where $p \ge 2$.

Proof:

Assume $\gamma_{ctnd}(G) = p$. Let $u, v \in V(G)$ be two nonadjacent vertices in G. Then $V(G) - \{u\}$ is a ctnd-set of G. Therefore, $\gamma_{ctnd}(G) \leq p - 1$, which is a contradiction. Therefore, each vertex in G is adjacent to remaining (p-1) vertices. Hence, $G \cong K_p$. If $G \cong K_p$, then $\gamma_{ctnd}(G) = p$.

Theorem 2.8:

If G is the corona of a graph H and K₁ and if H is tree or a cycle on p vertices, then

$$\gamma_{ctnd}(G) = \frac{p}{2} + 1.$$

Proof:

Let G be the corona of a graph H and K1 and let G contain p vertices. Then p is even and

H has $\frac{p}{2}$ vertices.

If S is the set of all pendant vertices in H, then $|S| = \frac{p}{2}$

Case (1): H is a tree.

Let v be a pendant vertex in H. Then $S \cup \{v\}$ is a ctnd-set of G and

$$\gamma_{ctnd}$$
 (G) $\leq |S| + 1 = \frac{p}{2} + 1$

Case (2): H is a cycle.

Let $u \in V(H)$. Then $S \cup \{u\}$ is a ctnd-set of G and $\gamma_{ctnd}(G) \leq |S| + 1 = \frac{p}{2} + 1$

But, any ctnd-set D of G contains all the pendant vertices of G. For D to be a nil dominating set, at least one vertex of V-D must be in D. Hence, $\gamma_{\text{ctnd}}(G) \ge \frac{p}{2} + 1$.

Definition 2.2:

The Fan F_p on p vertices is defined as, $F_p = P_{p-1} + K_1$, and the Wheel W_p on p vertices is defined as $W_p = C_{p-1} + K_1$, where $p \ge 4$.

In the following, complementary tree domination numbers of Fan and Wheel are found.

Theorem 2.9:

For the Fan $F_{p,r}$, γ_{ctnd} (F_{p}) = 3, where $p \ge 4$.

Proof:

Let $u, v_1, v_2, ..., v_{p-1}$ be the vertices of $F_{p,n}$ where $u \in V(K_1)$ and $d(v_1) = d(v_{p-1}) = 2$. Then $D = \{v_1, v_2, u\}$ or $\{v_{n-2}, v_{n-1}, u\}$ is a dominating set of F_p and $\langle V - D \rangle \cong P_{p-3}$, a path on (p -3) vertices. Also, D is a ctd-set of F_p and $N(v_1) \cap (V-D) = N(v_{n-1}) \cap (V-D) = \varphi$. Therefore, V-D is not a dominating set of G. Hence, D is a ctnd-set of G and γ_{ctnd} (F_p) $\leq |D| = 3$, where $p \geq 4$. By Theorem 2.7., γ_{ctnd} (F_p) ≥ 3 . Hence, γ_{ctnd} (F_p) = 3, where $p \geq 4$.

Theorem 2.10:

For the Wheel W_p , $\gamma_{ctnd} (W_p) = 4$, where $p \ge 5$.

Proof:

Let u, v₁, v₂, ..., v_{p-1} be the vertices of W_p, where $u \in W_p$ be the central vertex. Let $D_i = \{v_{i-1}, v_i, v_{i+1}, u\}$, i = 1, 2, ..., p - 1. Then D_i is a dominating set and $V(G) - D_i \cong P_{p-4}$ and $N(v_i) \cap (V-D_i) = \mathcal{O}$. Therefore, D_i is a ctnd – set of W_p and hence γ_{ctnd} (W_p) ≤ 4 , where $p \geq 5$. But, γ_{ctnd} (W_p) = 2 and γ_{ctd} (W_p) $\leq \gamma_{ctnd}$ (W_p), which implies γ_{ctnd} (W_p) ≥ 2 . By Theorem 2.7., γ_{ctnd} (W_p) $\neq 2$. Therefore γ_{ctnd} (W_p) ≥ 3 . Let D be a ctnd-set of W_p such that |D| = 3. Since <V-D> is a tree, <V-D> is either a path or, n < p. In both cases, $V(W_p) - D$ is a dominating set. Therefore, $|D| \geq 4$. Hence, γ_{ctnd} (W_p) = 4, where $p \geq 5$.

Theorem 2.11:

If G is a connected graph with γ_{ctnd} (G) = 3 and if $\delta(G) \ge 2$, then diam(G) ≤ 4 . **Proof:**

Let D be ctnd-set of G such that |D| = 3. Then the induced subgraph $\langle V - D \rangle$ is a tree and there exists a vertex $u \in D$ such that $N(u) \cap (V-D) = \varphi$. Since G is connected, u is adjacent to a vertex, say $v \in D$. Let $D = \{u, v, w\}$, where $w \in V(G)$. **Case (1):** $N(u) \cap (V-D) = N(v) \cap (V-D) = \varphi$

Since $\delta(G) \ge 2$, both u and v are adjacent to w and each vertex in V-D is adjacent to w. Let $v_i \in V$ -D. Then, $d(u,v_i) = d(v, v_i) = 2$ and $d(w, v_i) = 1$. Therefore diam(G) = 2. **Case (2):** N(u) \cap (V-D) = φ .

Since, $\delta(G) \ge 2$, u is adjacent to both v and w.

- (a) Let v be adjacent to w. Each vertex in V-D is adjacent to atleast one of v and w and hence for any $v_i \in V$ -D, $d(u, v_i) = 2$, $d(v, v_i) = 1$ or 2 and $d(w, v_i) = 1$ or 2, . Also, for any $v_i \in V$ -D, $d(v_i, v_i) \le 3$, $i \ne j$. Therefore, diam(G) ≤ 3 .
- (b) Let v be not adjacent to w. Then for any $v_i \in V$ -D, $d(u, v_i) = 2$, $d(v, v_i) \leq 3$, $d(w, v_i) \leq 3$ and for any $v_i \in V$ -D, $d(v_i, v_i) \leq 4$, $i \neq j$.

Hence, diam(G) ≤ 4 .

1(

Theorem 2.12:

Let D be a γ_{ctnd} – set of a connected graph G with $\delta(G) = 1$. If |D| = 3 and if the induced subgraph $\langle D \rangle$ is connected, then diam(G) ≤ 3 . **Proof:**

Let D be γ_{cind} – set of G such that |D| = 3. Then the induced subgraph $\langle V - D \rangle$ is a tree. Since $\langle D \rangle$ is connected, $\langle D \rangle \cong P_3$, a path on three vertices. Let D = {u, v, w}, where u, v, w \in V(G). Assume u and w are pendant vertices in $\langle D \rangle$ and N(u) \cap (V-D) = φ .

- a) If $N(v) \cap (V-D) = \varphi$, then all the vertices of V-D are adjacent to w. Therefore, d(u, v) = 1, d(u, w) = 2 and for any $v_i, v_j \in V - D$, $d(u, v_i) = 3$, $d(v, v_i) = 2$, $d(w, v_i) = 1$ and $d(v_i, v_i) = 2$. Therefore, diam(G) ≤ 3 .
- b) If N(v) ∩ (V-D) ≠ Ø, then all the vertices of V- D are adjacent to v or w. Therefore, d(u, v) = 1, d(u, w) = 2 and for any v_i, v_j ∈ V D, d(u, v_i) = 2 or 3, d(v, v_i) = d(w, v_i) = 1 or 2 and d(v_i, v_j) = 2 or 3. Hence, diam(G) ≤ 3.

In the following, the connected graphs G for which γ_{cind} (G) = p -1 are found.

Theorem 2.13:

Let G be a connected graph with $p \ge 3$ and $\delta(G) = 1$, then $\gamma_{ctnd}(G) = p - 1$ if and only if the subgraph of G induced by vertices of degree atleast 2 is K_2 or K_1 . **Proof:**

Let G' be the subgraph of G induced by vertices of degree atleast 2.

Case (1):
$$G' \cong K_2$$

Let $V(G') = \{u, v\}$. Then $V(G) - \{u\}$ and $V(G) - \{v\}$ are the only ctnd-sets of G. Case (2): $G' \cong K_1$

If $w \in V(K_1)$, then $V(G) - \{w\}$ is a ctnd-set of G. Hence $\gamma_{ctnd}(G) = p - 1$.

Conversely, assume $\gamma_{ctnd}(G) = p - 1$ and G' contains at least 2 edges. Since G is connected, G' is also connected. Let $e_1 = (u_1, v_1)$, $e_2 = (u_2, v_2) \in E(G)$, where $u_1, v_1, u_2, v_2 \in V(G)$. Then V(G)- $\{u_1, v_1\}$ or V(G) - (u_2, v_2) is a ctnd-set of G. Therefore, $\gamma_{ctnd}(G) \leq p - 2$. But $\gamma_{ctnd}(G) = p - 1$. Hence G' contains at most one edge. Therefore, $G' \cong K_2$ (or) K_1 .

Remark 2.2:

If G is one of the following graphs γ_{ctnd} (G) = p - 1.

- (i) G is the star $K_{1,n}$, $n \ge 2$.
- (ii) G is the double star $S_{m,n}(m, n \ge 1)$

Theorem 2.14:

Let G be a connected noncomplete graph such that $\delta(G) \ge 2$. Then $\gamma_{ctnd}(G) = p - 1$ if and only if each edge of G is a dominating edge. Proof:

Let G be a connected graph such that $\delta(G) \ge 2$. Assume $\gamma_{ctrid}(G) = p - 1$.

Let $e = (u, v) \in E(G)$ be an edge in G which is not dominating edge of G. Then there exists a vertex, say $w \in V(G)$ such that w is adjacent to neither u nor v. Let $D = V(G) - \{u, v\}$. Then, $V(G) - D = \{u, v\}$ and $\langle V(G) - D \rangle \cong K_2$. Therefore, D is a ctd-set of G. Also, $w \in D$ is such that $N(w) \subseteq D$ and hence D is ctnd-set of G. Therefore, $\gamma_{ctnd}(G) \leq |D| = p-2$. Hence, each edge of G is a dominating edge.

Conversely, assume each edge of G is a dominating edge. Let $e \in (u, v)$ be a dominating edge of G. Then each vertex in G is adjacent to atleast one of u and v. Since G is noncomplete, $\gamma_{ctnd}(G) \leq p - 1$. If there exists a ctnd-set D of G having p-2 vertices, then $\langle V - D \rangle \cong K_2$ and this edge is also a dominating edge of G and therefore D is a dominating set of G, which is a contradiction. Therefore, $\gamma_{ctnd}(G) > p - 2$, which implies $\gamma_{ctnd}(G) \geq p - 1$. Hence, $\gamma_{ctnd}(G) = p - 1$.

Example 2.9:

For the following graphs G, γ_{ctnd} (G) = p-1

a) Leaf graph $L_4(G)$ is a graph having 4 copies of squares with three common vertices and two common edges.

- b) $G = mK_2$, $m \ge 2$.
- c) $G = K_p e, p \ge 4$.
- d) $G = K_{m,n} (m, n \ge 2).$

In the following, the trees T for which γ_{ctnd} (T) = p - 2 are found.

Theorem 2.15:

Let T be a tree on p vertices such that γ_{ctnd} (T) \leq p -2. Then γ_{ctnd} (T) = p - 2 if and only if T is one of the following graphs.

- (i) T is obtained from a path P_n ($n \ge 4$ and n < p) by attaching pendant edges at atleast one of the end vertices of P_n .
- (ii) T is obtained from P₃ by attaching pendant edges at either both the end vertices or all the vertices of P₃

Proof:

Let T be a tree on p vertices such that γ_{ctnd} (T) \leq p - 2. Let S be the set of all pendant vertices of T together with a support of T.

Let $v \in V(T)$ - S be such that deg $_{T}(v) \ge 3$ and v is not a pendant vertex of $\langle V(T) - S \rangle$. Let u, w be vertices in V(T)-S adjacent to v. Then V(T) - {u, v, w} is a ctnd-set of G. Therefore, $\gamma_{ctnd}(G) \le p$ - 3. Hence, if $v \in V(T)$ - S, then degree of v in V(T) - S is 1 or 2. That is, $\langle V(T) - S \rangle$ is a path.

Case (1): $\langle V(T) - S \rangle \cong P_m$, where $m \ge 3$.

If atleast one vertex of V(T) - S is a support of T, then also γ_{ctnd} (G) \leq p-3. Therefore, no vertex of P_n (n \geq 3) is a support of T. Hence, T is obtained from P_n(n \geq 4) by attaching pendant edges at atleast one of the end vertices of P_n. **Case(2):** $\langle V(T) - S \rangle \cong K_2$

Then T is a tree obtained from P_3 by attaching pendant edges at atleast one of the vertices of P_3 . If pendant edges are attached at exactly one end vertex of P_3 , then γ_{ctnd} (T) = p - 1.

Therefore, pendant edges are attached either at both the end vertices or at all the vertices of P_3 . Therefore T is one of the graphs given in the Theorem.

Conversely, assume T is a tree obtained by attaching pendant edges at atleast one of the end vertices of P_n , $n \ge 4$, n < p.

Let t be the number of pendant vertices in T. Therefore, n + t = p. But, $\gamma_{ctnd}(P_n) = n - 2$. Therefore, $\gamma_{ctnd}(P_n) \ge n - 2 + t = p - 2$. Given, $\gamma_{ctnd}(P_n) \le p - 2$. Hence, $\gamma_{ctnd}(P_n) = p - 2$. Similarly, if T is a tree obtained from P_3 by attaching pendant edges at both the end vertices or all the vertices of P_3 , then the set of all the pendant vertices together with a support is a γ_{ctnd} -set of T. Therefore $\gamma_{ctnd}(T) = p - 2$.

Notation 2.1:

Let \mathcal{G} be the class of connected graphs G with δ (G) = 1 having one of the following properties.

- (a) There exists two adjacent vertices u, v in G such that $\deg_G(u) = 1$ and $\langle V(G) \{u, v\}\rangle$ contains P₃ as an induced subgraph such that end vertices of P₃ have degree atleast 2 and the central vertex of P₃ has degree atleast 3.
- (b) Let P be the set of all pendant vertices in G and let there exist a vertex v∈ V(G)-P having minimum degree in V(G) P and is not a support of G such that V(G) (N_{V-P}[v] P) contains P₃ as an induced subgraph such that the end vertices of P₃ have degree atleast 2 and the central vertex of P₃ has degree atleast 3.

Theorem 2.16:

Let G be a connected graph with δ (G) = 1. Assume γ_{ctnd} (G) \neq p -1. Then

 $\gamma_{_{ctnd}}$ (G) = p -2 if and only if G does not belong to the class \mathscr{G} of graphs. **Proof**:

Assume G is a connected graph with $\delta(G) = 1$ and $\gamma_{ctnd}(G) = p - 2$. Let $G \in \mathcal{G}$. Then G satisfies (a) or (b) of Notation 2.1. Let $V(P_3) = \{u_1, u_2, u_3\}$ such that $deg(u_1)$, $deg(u_3) \ge 2$ and $deg(u_2) \ge 3$ in G. Then $V(G) - \{u_1, u_2, u_3\}$ is a ctnd-set of G.

Therefore, γ_{ctnd} (G) \leq p - 3. Therefore, G $\notin \mathscr{G}$.

Conversely, assume $G \notin \mathcal{G}$.

By Theorem 2.15., $\gamma_{ctnd}(G) \leq p-2$, Since, $G \notin \mathcal{G}$, there exists two adjacent vertices $u, v \in V(G)$ such that $\deg_G(u) = 1$ and $\langle V(G) - \{u, v\} \rangle$ either contains P_3 as an induced subgraph such that atleast one of the end vertices has degree 1 or the central vertex of P_3 has degree 2 in G; or $\langle V(G) - \{u, v\} \rangle$ does not contain P_3 as an induced subgraph. In both cases, $\gamma_{ctnd}(G) \geq p - 2$. Therefore, $\gamma_{ctnd}(G) = p - 2$.

Example 2.10:

The following are some of the graphs G having γ_{ctnd} (G) = p - 2.

(ix) Graphs obtained by attaching a path of length 2 at a vertex of the complete graph $K_p, p\!\geq\!3$

Theorem 2.17:

Let G be a connected, noncomplete graph with p vertices $(p \ge 4)$ and $\delta(G) \ge 2$. Then $\gamma_{ctrid}(G) = p - 2$ if and only if G is one of the following graphs.

- (a) A cycle on atleast five vertices.
- (b) A wheel with six vertices
- (c) G is the one point union of complete graphs.
- (d) G is obtained by joining two complete graphs by an edges.
- (e) G is a graph such that there exists a vertex $v \in V(G)$ such that G v is a complete graph on (p 1) vertices.
- (f) G is a graph such that there exists a vertex $v \in V(G)$ such that G v is $K_{p-1} e$, $(e \in E(K_{p-1}))$ and N(v) contains at least one vertex of degree (p-3) in $K_{p-1} - e$.

Proof:

Let G be a connected, noncomplete graph with p vertices $(p \ge 4)$ and $\delta(G) \ge 2$. Assume $\gamma_{ctnd}(G) = p - 2$.

Case (1): G has a P_3 as an induced subgraph such that central vertex of P_3 has degree atleast three in G.

If there exists a vertex in V(G) – V(P₃) not adjacent to any of the vertices of P₃, then V(G) – V(P₃) is a ctnd – set of G and hence γ_{ctnd} (G) $\leq p$ – 3. Therefore, all the vertices of V(G) – V(P₃) must be adjacent to atleast one vertex of P₃. Hence, G must of the graphs mentioned in (b), (c), (d), (e) and (f) in the Theorem

Case (2): Central vertices of all induced P₃ have degree two in G.

Then G is a cycle on atleast three vertices. If $G \cong C_3$ or C_4 , then $\gamma_{cind}(G) = p - 1$. Therefore, G is a cycle on atleast five vertices.

Conversely, let G be one of the graphs given in the Theorem. Since G has no dominating edge, by Theorem 2.15., $\gamma_{ctnd}(G) \leq p - 2$. Also, all the graphs have no ctnd-sets of cardinality atmost (p - 3). Therefore, $\gamma_{ctnd}(G) = p - 2$.

References:

- [1] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
- [2] T. W. Haynes, S. T. Hedetnimi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, (1998).
- [3] V.R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian J. pure appl. Math., 27(6) (1996), 537–542.
- [4] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, Vol. 6, 2011, 26, 1273–1283.
- [5] S. Muthammai and N. Meenal, Co-isolated locating domination number for Cartesian product of two graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol. 6, No. 1, January – March 2015, p. 17 – 27.

- International Journal of Engineering Science, Advanced Computing and Bio-Technology
- [6] S. Muthammai and P. Vidhya, Complementary tree domination in grid graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No. 3, July-September 2011,pp. 118– 129.
- [7] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, (1962).
- [8] T. Tamizh Chelvam and S. Robinson Chellathurai, Complementary nil domination number of a graph, Tamkang Journal of Mathematics, Volume 40, Number 2, 165-172, 2009.

Authors' Profile:

16

S. Muthammai received the M.Sc. and M.Phil degree in Mathematics from Madurai Kamaraj University, Madurai in 1982 and 1983 respectively and received the Ph.D. degree in Mathematics from Bharathidasan University, Tiruchirappalli in 2006. From 16th September 1985 to 12th October 2016, she has been with the Government Arts College for Women (Autonomous), Pudukkottai, Tamilnadu and she is currently the Principal for Government Arts and Science College, Kadaladi, Ramanathapuram District, Tamilnadu. Her main area of research is domination in Graph Theory.

Ananthavalli .G was born in Aranthangi, India, in 1976. She received the B.Sc. degree in Mathematics from Madurai Kamaraj University, Madurai, India, in 1996, the M.Sc. degree in Applied Mathematics from Bharathidasan University, Tiruchirappalli, India, in 2000, the M.Phil. degree in Mathematics from Madurai Kamaraj University, Madurai, India, in 2002, the B.Ed, degree from IGNOU, New Delhi, India, in 2007 and the M.Ed. degree from PRIST University, Thanjavur, India, in 2010. She was cleared SET in 2016. She has nearly 12 years of teaching experience in various schools and colleges. She is pursuing research in the

department of Mathematics at Government Arts College for Women (Autonomous), Pudukkottai, India. Her main area of research is domination in Graph Theory.