International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 7, No. 3, July – September 2016, pp. 73 - 77

Odd Sum Labeling of Alternative Quadrilateral Snake

R. Gopi

PG and Research Department of Mathematics Srimad Andavan Arts and Science College(Autonomous) Tiruchirappalli – 62005, Tamil Nadu , India E-Mail:drrgmaths@gmail.com

Abstract: An injective function $f: V(G) \rightarrow \{0,1,2,...,q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all $uv \in E(G)$ is a bijection and $f^*: E(G) \rightarrow \{1,3,5,...,2q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of Alternative quadrilateral snake.

Key words: Odd sum Labeling, Odd Sum Graph. AMS Subject Classification (2010):05C78

1. Introduction

Through out this paper, by a graph we mean a finite undirected simple graph. Let G(V, E) be a graph with p vertices q edges. For notation and terminology, we follow [7]. For detailed survey of graph labeling we refer to Gallian[4].

In[9], the concept of mean labeling was introduced and further studied in [5, 6]. An injective function $f: V(G) \rightarrow \{0,1,2,...,q\}$ is said to be a mean labeling if the induced edge labeling f^* defined by

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is injective and the resulting edge labels are distinct.

A graph G is said to be an odd mean graph if there exists an injective function $f: V(G) \rightarrow \{0,1,2,...,2q-1\}$ such that the induced map $f^*: E(G) \rightarrow \{1,3,5,...,2q-1\}$

defined by
$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is a bijection[8]

In[1], the concept of odd sum labeling was introduced and studied[2,3]. An injective function $f: V(G) \rightarrow \{0,1,2,...,q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all $uv \in E(G)$ is a bijection and

Received: 02 June, 2016; Revised: 27 August, 2016; Accepted: 14 September, 2016

International Journal of Engineering Science, Advanced Computing and Bio-Technology

 $f^*: E(G) \rightarrow \{1,3,5,...,2q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we investigate odd sum labeling of alternative quadrilateral snake.

2. Main Results

Definition: 2.1:

 $A(D(Q_n))$ consist of two alternate quadrilateral snakes that have a common path.

Definition: 2.2:

An alternative quadrilateral snake $A(Q_n)$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to a new vertices v_i, w_i respectively and then joining v_i and w_i . That is every alternative edge of a path replaced by a Cycle C_4 .

Definition: 2.3:

The double quadrilateral snake $D(Q_n)$ consists of two Quadrilateral snakes that have a common path.

Theorem 2.4:

The graph $A(D(Q_n))(n \ge 4)$ is a odd sum graph.

Proof:

Case1: If the graph $A(D(Q_n))$ is start from u_1

Let $\{v_i, v'_i, 1 \le i \le n-2, u_{i,1} \le i \le n\}$ be the vertices and $\{a_i, a'_i, 1 \le i \le n-2, e_i, 1 \le i \le n-1\}$ be the edges which are denoted as in

Figure 1.1: Ordinary labeling of $A(D(Q_n))$

First we label the vertices as follows

Define $f: V \rightarrow \{0, 1, 2, ..., q\}$ by

For $1 \le i \le n-2$	$f(v_i) = \begin{cases} 2(2i-1) \\ 4i-3 \end{cases}$	i is odd i is even
For $1 \le i \le n$	$f(u_i) = \begin{cases} 4(i-1)\\ 4i-7 \end{cases}$	i is odd i is even
For $1 \le i \le n-2$	$f(v_i') = \begin{cases} 4i\\ 4i-1 \end{cases}$	i is odd i is even

Then the induced edge labels are:

For $1 \le i \le n-1$	$f^*(e_i) = 8i - 7$	
For $1 \le i \le n-2$	$f^*(a_i) = \begin{cases} 8i-5\\ 8i-3 \end{cases}$	i is odd
		i is even
For $1 \le i \le n-2$	$f^*(a_i') = \begin{cases} 8i-3\\ 8i-1 \end{cases}$	i is odd
		i is even
For $1 \le i \le n$	$f^*(b_i) = 16i - 9$,	$f^*(b'_i) = 16i - 5$

Therefore $f^*(E) = \{1, 3, 5, \dots, 2q-1\}$. So f is an odd sum and hence, the graph $A(D(Q_n))(n \ge 4)$ is an odd sum graph.

Odd sum labeling of the graph $A(D(Q_4))$ is shown in the Figure 1.2

Figure 1.2: Odd sum labeling of $A(D(Q_4))$ Case2: If the graph $A(D(Q_n))$ is start from u_2

Let { $v_i, u_i, v'_i, 1 \le i \le n$ } be the vertices and $\{b_i, b'_i, e_i, 1 \le i \le n - 1, a_i, a'_i, 1 \le i \le n\}$ be the edges which are denoted as in figure 1.3

Figure 1.3: Odd sum labeling of $A(D(Q_n))$

First we label the vertices as follows Define $f: V \rightarrow [0,1,2,...,q]$ by

$$\begin{aligned} & \text{For } 1 \leq i \leq n \qquad f(v_i) = \begin{cases} 4i - 3 & i \text{ is odd} \\ 4(i - 1) & i \text{ is even} \end{cases} \\ & \text{For } 1 \leq i \leq n \qquad f(u_i) = \begin{cases} 8(i - 1) & i \text{ is odd} \\ 4i - 1 & i \text{ is even} \end{cases} \\ & \text{For } 1 \leq i \leq n \qquad f(v_i') = \begin{cases} 4i - 1 & i \text{ is odd} \\ 2(2i - 1) & i \text{ is even} \end{cases} \end{aligned}$$

Then the induced edge labels are:

For
$$1 \le i \le n-1$$
 $f^*(b_i) = 16i-11$
For $1 \le i \le n$ $f^*(a_i) = \begin{cases} 8i-7, i \text{ is odd} \\ 8i-5, i \text{ is even} \end{cases}$
 $f^*(a'_i) = \begin{cases} 16i-13, i \text{ is odd} & \text{for } 1 \le i \le n-1 \\ 8i-3, i \text{ is even} & \text{for } 2 \le i \le n-1 \end{cases}$

For $1 \le i \le n - 1$ $f^*(b'_i) = 16i - 7$

Therefore $f^*(E) = \{1, 3, 5, \dots, 2q-1\}$. So f is an odd sum and hence, the graph $A(D(Q_n))(n \ge 4)$ is an odd sum graph.

Odd sum labeling of the graph $A(D(Q_6))$ is shown in Figure 1.4

Odd Sum Labeling of Alternative Quadrilateral Snake

Figure 1.4: Odd sum labeling of $A(D(Q_6))$

Reference:

- S. Arockiaraj and P. Mahalakshmi, On odd sum graphs, International Journal of Mathematical Combinatorics, 4(2013), 58 – 77.
- [2] S. Arockiaraj, P. Mahalakshmi and P. Namasivayam, Odd sum labeling of some subdivision graphs, Kragujevac Journal of Mathematics
- [3] S. Arockiaraj, P. Mahalakshmi and P. Namasivayam, Electronic Journal of Graph Theory and Applications 3(2)(2015), 197 – 215.
- [4] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2014), #DS6.
- [5] B. Gayathri and R. Gopi, Necessary Condition for mean labeling, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol.4(3), July – Sep(2013), 43 – 52.
- B. Gayathri and R. Gopi, Cycle related mean graphs, Elixir International Journal of Applied Sciences, No.71(2014), 25116 – 25124.
- [7] F. Harary, Graph Theory, Narosa Publication House Reading, New Delhi 1998.
- [8] K. Manickam and M. Marudai, Odd mean labeling of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149 – 153.
- [9] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210 – 213.