International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 7, No. 3, July – September 2016, pp. 60 - 72

Further results on b-domination in graphs

*M. Bhanumathi¹ and M. Kavitha²

¹Govt. Arts College for Women, Pudukkottai-622001, Tamil Nadu, India. ²Govt. Arts College for Women, Pudukkottai-622001, Tamil Nadu, India. E-mail: *bhanu_ksp@yahoo.com¹, kavisdev@gmail.com²

Abstract: A vertex v is a boundary vertex of u if $d(u, w) \le d(u, v)$ for all $w \in N(v)$. A vertex u has more than one boundary vertex at different distance levels. A vertex v is called a boundary neighbor of u if v is a nearest boundary of u. A set $S \subseteq V(G)$ is a b-dominating set if every vertex in V–S has at least one neighbor in S and at least one boundary neighbor in S. The minimum cardinality of the b-dominating set is called the b- domination number and is denoted by $\gamma_{bd}(G)$.

In this paper we present several bounds on the b-domination number of graph G and we found the exact value of $\gamma_{bd}(G)$ for some particular classes of graphs and trees.

Keywords: Boundary vertex, boundary neighbor, b-dominating set, b-domination number. 2010 Mathematics Subject Classification: 05C69, 05C12.

1. Introduction

Graphs discussed in this paper are undirected and simple. For graph theoretic terminology refer to Harary[7], Buckley and Harary[5]. For a graph G, let V(G) and E(G) denote its vertex and edge set respectively. A graph with p vertices and q edges is called a (p, q) graph. The length of any shortest path between any two vertices u and v of a connected graph G is called the distance between u and v and it is denoted by $d_G(u, v)$. The distance between two vertices in different components of a disconnected graph is defined to be ∞ . For a connected graph G, the eccentricity e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = \max\{d(u, v) : u \in V\}$. The radius rad(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is the maximum eccentricity. If these two are equal in a graph, that graph is called self-centered graph with radius r and is called an r self-centered graph. For any connected graph G, rad(G) $\leq \operatorname{diam}(G) \leq \operatorname{2rad}(G)$. The vertex v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v.

A subgraph of G is a graph having all of its vertices and edges in G. It is a spanning subgraph if it contains all the vertices of G. If H is a subgraph of G, then G is a super graph of H. For any set S of vertices in G, the induced subgraph < S > is the maximal subgraph with vertex set S. A vertex v in a graph G is called a complete vertex or an extreme vertex if the sub graph induced by its neighborhood is complete.

The corona $G_1 \circ G_2$ of two graphs G_1 and G_2 was defined as the graph G obtained by taking one copy of G_1 (which has n vertices) and n copies of G_2 and then joining the ith vertex

Received: 11 June, 2016; Revised: 24 July, 2016; Accepted: 12 August, 2016 *Corresponding Author

of G_1 to every vertex in the ithcopy of G_2 .Let G be a graph with p vertices. Take p copies of path P_3 . Attach an end vertex of ith copy of P_3 to ith vertex of G. The new graph obtained is known as 2-corona of G.

A vertex v is a boundary vertex of u if $d(u, w) \le d(u, v)$ for all $w \in N(v)$. A vertex u can have more than one boundary vertex at different distance levels. The set of all vertices $S = \{v \in V(G)/v \text{ is a boundary vertex of some } u \in V(G)\}$ is known as the set of all boundary vertices of G. A vertex v is called a boundary neighbor of u if v is a nearest boundary of u. The number of boundary neighbor of u is called the boundary degree of u [6].

A set $D \subseteq V$ is said to be a dominating set in G, if every vertex in V–D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$ [9]. A dominating set D is said to be an eccentric dominating set if for every $v \in V$ –D, there exists at least one eccentric vertex of v in D. The minimum cardinality of an eccentric dominating set of G is called the eccentric domination number $\gamma_{ed}(G)$ [1, 2, 8]of G.

In 2010, Janakiraman, Bhanumathi and Muthammai[8] defined Eccentric domination in graphs. Motivated by this, we have defined b-domination number of a given graph and study the parameter $\gamma_{bd}(G)$ in [3].

Theorem 1.1[9]: If D is any dominating set then $|V-D| \leq \sum_{u \in D} \deg(u)$ for all $u \in D$.

Theorem 1.2[9]: If G is a connected graph with p vertices, then $\gamma(G) \leq p/2$. **Theorem 1.3[8]:** $\gamma_{ed}(\overline{C_n}) = \lceil n/3 \rceil$.

2. b-domination in graphs

In [3], we have defined the b-domination number of a graph G as follows:

Definition 2.1[3]: A set $S \subseteq V(G)$ is a b-dominating set if every vertex in V-S has at least one neighbor in S and at least one boundary neighbor in S. The minimum cardinality of the b-dominating set is called the b-domination number and is denoted by $\gamma_{bd}(G)$.

For a vertex v, let B(v) denote the set of all boundary neighbors of v in G. Let $S \subseteq V(G)$. Then S is known as a boundary neighbor set of G if for every vertex $v \in V-S$, S has at least one vertex u such that $u \in B(v)$. A boundary neighbor set S of G is a minimal boundary neighbor set if no proper subset S' of S is a boundary neighbor set of G.

We define S as a minimum boundary neighbor set if S is a boundary neighbor set with minimum cardinality. Let b(G) denote the cardinality of a minimum boundary neighbor set of G; b(G) can be called as boundary number of G.

Let D be a minimum dominating set of a graph G and S be a minimum boundary neighbor set of G. Clearly, D \cup S is a b-dominating set of a graph G. Hence, $\gamma_{bd}(G) \leq \gamma(G) + b(G)$.

If $G \neq K_n$, $\gamma_{bd}(G) \ge 2$. Hence, if $G \neq K_n$, $2 \le \gamma_{bd}(G) \le \gamma(G) + b(G)$.

Figure 2.1: G

In Figure 2.1, $D_1 = \{v_1, v_3, v_5\}$ is a minimum dominating set of G. $\gamma(G) = 3.D_1$ is also an eccentric dominating set of G. $\gamma_{ed}(G) = 3$. $D_2 = \{v_2, v_3, v_5\}$ is a dominating set of G, but it is not an eccentric dominating set of G. $D_3 = \{v_2, v_8, v_7, v_5\}$ is a b-dominating set but it is not an eccentric dominating set of G. $D_4 = \{v_1, v_5, v_7\}$ is a minimum b-dominating set of G. $\gamma_{bd}(G) = 3$.

Figure 2.2: G

In Figure 2.2, $D_1 = \{9\}$ is a minimum dominating set of G. Therefore, $\gamma(G) = 1$. $D_2 = \{1, 2, 9\}$ is a minimum eccentric dominating set. Therefore, $\gamma_{ed}(G) = 3$. $D_3 = \{1, 3, 5, 7\}$ is a minimum b-dominating set of G. $\gamma_{bd}(G) = 4 = \left\lfloor \frac{9}{2} \right\rfloor$.

Following theorems give the bounds of $\gamma_{ed}(G)$.

Theorem 2.1: Let D be any b-dominating set of G. Then $|V-D| \leq \sum_{u \in D} \deg(u)$ for all

 $u \in D$. Equality holds for any complete graph.

Proof: Let D be any b-dominating set of G. Then clearly D is a dominating set of G. Thus, the proof follows from Theorem 1.1.

Remark 2.1: For any graph G, $\left\lceil \frac{p}{\Delta + 1} \right\rceil \leq \gamma(G) \leq \gamma_{bd}(G)$.

Theorem 2.2: If G is a connected graph with $\delta(G) \ge 2$, then $\gamma_{bd}(G) \le (p+m)/2$, where m is the number of boundary vertices of G.

Proof: Let G be a graph with m boundary vertices $v_1, v_2, ..., v_m$. Attach one pendant vertex to each of these vertices. Let the new graph be G'. Then G' is a connected graph containing p+m vertices. Hence, $\gamma(G') \leq (p+m)/2$. Dominating set of G', containing $v_1, v_2, v_3, ..., v_m$ is the b-dominating set of G. Therefore, $\gamma_{bd}(G) \leq (p+m)/2$.

Theorem 2.3: Let G be a graph with radius 1 and diameter 2, then $2 \le \gamma_{bd}(G) \le \lfloor p/2 \rfloor$.

Proof: Consider a graph G with radius 1 and diameter 2. Let D be a minimum boundary neighbor set of G. We have $b(G) \leq \left\lfloor \frac{p}{2} \right\rfloor -1$, since G has at least one vertex with eccentricity one. Let u be a central vertex of G. Then $\{u\} \cup D$ form a b-dominating set of G. Hence, $\gamma_{bd}(G) \leq 1 + \left\lfloor \frac{p}{2} \right\rfloor -1 \leq \left\lfloor \frac{p}{2} \right\rfloor$. ------ (1)

The central vertex u dominates all the vertices of G but u is not a boundary neighbor of all other vertices of G. So we have to include at least one vertex $v(\neq u)$ of G to form a γ_{bd} -set of G. Hence, $\gamma_{bd}(G) \ge 2$. ------ (2)

From (1) and (2), we have
$$2 \leq \gamma_{bd}(G) \leq \left\lfloor \frac{p}{2} \right\rfloor$$
.

Remark 2.3:

(i) Lower bound is attained for $G = K_{1, n}$.

(ii) The upper bound is sharp for the graph in Figure 2.2.

Theorem 2.4: If G is of radius 2 with a unique central vertex u and N(u) has no pendant vertex and N(u) has no vertex of degree two, then $\gamma_{bd}(G) \leq n-(deg(u)/2)$.

Proof: Let G be a graph with radius 2 and has a unique central vertex u. The central vertex u dominates N(u) but vertices in N(u) may have their boundary neighbors in N(u). Let S be a subset of N(u) such that vertices in N(u)–S have their boundary neighbors in S. (V–N(u)) \cup S is a b-dominating set of G. Hence, $\gamma_{bd}(G) \leq n-(\deg(u)/2)$.

Theorem 2.5: If G is a graph with radius greater than two, then $\gamma_{bd}(G) < n-(\Delta(G))/2$.

Proof: Let $u \in V(G)$ with deg $u = \Delta(G)$. Clearly V-N(u) is a dominating set of G. But vertices in N(u) may have their boundary neighbors in N(u). Let S be a subset of N(u) such

63

that vertices in N(u)–S have their boundary neighbors in S. Then (V–N(u)) \cup S is a b-dominating set of G. Hence, $\gamma_{bd}(G) \leq n-(\Delta(G))/2$.

Next, we evaluate the exact value of eccentric domination number of some particular classes of graphs.

Theorem 2.6: If G is 2-corona graph of C_n , then $\gamma_{bd}(G) = \gamma(C_n) + n$, where n is the number of vertices of C_n.

Proof: Let G be a 2-corona graph of C_n . Then G has 3n vertices. In cycle C_n , $\gamma(C_n)$ vertices dominate other vertices of C_n . The graph G has n pendant vertices. These pendant vertices dominate their support vertices in G. Also, the set of all pendant vertices are the boundary neighbor set of G. Hence, $\gamma_{bd}(G) = \gamma(C_n) + n$.

Theorem 2.7: Let n be an even integer and let G be obtained from the complete graph K_n by deleting edges of a linear factor. Then $\gamma_{bd}(G) = n/2$.

Proof: Let u and v be a pair of non adjacent vertices in G. Then u and v are boundary neighbors to each other.

Therefore, $\gamma_{bd}(G) \ge n/2$. ----- (1)

Consider $D \subseteq V(G)$ such that $\langle D \rangle = K_{n/2}$. D contains n/2 vertices such that each vertex in V-D is adjacent to at least one element in D and each element in V-D has its boundary neighbor in D. Hence $\gamma_{bd}(G) \leq n/2$. ----- (2) From (1) and (2), $\gamma_{bd}(G) = n/2$.

Theorem 2.8: If G is a graph on n vertices and $H = G^{\circ}mK_1$, m > 1, then $\gamma_{bd}(H) = 2n$. **Proof:** Let G be a graph on n vertices. Let $V(G) = \{u_1, u_2, ..., u_n\}$. Attach mK₁ with every vertex of G. Consider the vertices adjacent to u_1 as u_1^{1} , u_1^{2} , ..., u_1^{m} .Let S be a set of n pendant vertices such that S contains exactly one pendant vertex adjacent to u_i for i = 1, 2, 3, ..., n. Then $V \cup S$ is a b-dominating set. Since m > 1, $V \cup S$ is a minimum b-dominating set. Therefore, $\gamma_{bd}(H) = 2n$.

Theorem 2.9: If G is a graph with n vertices and $H = G \circ K_2$, then $\gamma_{bd}(H) = n$.

Proof: Let G be a graph with n vertices and let $H = G^{\circ}K_2$. Let $u_1, u_2, ..., u_n$ be the vertices of G. Let $u_1', u_2', ..., u_n'$ and $u_1'', u_2'', ..., u_n''$ be the newly added vertices of H. Then the sets $\{v_1, v_2, v_3, ..., v_n\}$, where $v_i = u_i'$ or u_i'' are b-dominating sets of G. Hence $\gamma_{bd}(H) = n$.

Theorem 2.10: If G is a friendship graph, then $\gamma_{bd}(G) = r$, where r is the number of wings of G.

Proof: Let G be a friendship graph with r wings. Let S be a set, which contains exactly one vertex from each wing of G. This set is a minimum b-dominating set. Hence, $\gamma_{bd}(G) = r$.

Theorem 2.11: $\gamma_{bd}(\overline{C_4}) = 2$, $\gamma_{bd}(\overline{C_5}) = 3$ and $\gamma_{bd}(\overline{C_n}) = \gamma_{ed}(\overline{C_n}) = \lceil n/3 \rceil$, $n \ge 6$. **Proof:** Clearly, $\gamma_{bd}(\overline{C_4}) = 2$, $\gamma_{bd}(\overline{C_5}) = 3$.

Now assume that $n \ge 6$. Let $v_1, v_2, ..., v_n, v_1$ form C_n . Then $\overline{C_n} = K_n - C_n$ and each vertex v_i is adjacent to all other vertices except v_{i-1} and v_{i+1} in $\overline{C_n}$. In $\overline{C_n}$, the eccentric vertices are same as the boundary neighbors. Hence, $\gamma_{bd}(\overline{C_n}) = \gamma_{ed}(\overline{C_n}) = \lceil n/3 \rceil$ by Theorem 1. 3.

Theorem 2.12: Let $C_n^{(t)}$, $t \ge 2$, be the one point union of t cycles of length n (n ≥ 5),

If n is even,
$$\gamma_{bd}(C_n^{(t)}) = \left(\frac{n-2}{2}\right)t+1.$$

If n is odd, $\gamma_{bd}(C_n^{(t)}) = \begin{cases} \left(\frac{n}{3}\right)t & if \quad n = 3m\\ \left\lceil \frac{n}{3} \right\rceil t & if \quad n = 3m+1\\ \left(\left\lceil \frac{n}{3} \right\rceil + 1\right)t & if \quad n = 3m+2 \end{cases}$

Proof: Let $C_n^{(t)}$ be the one point union of t cycles of length n and u be a central vertex which is a common vertex of all C_n . G has t(n-1)+1 vertices. Let the vertex set of k^{th} cycle in $C_n^{(t)}$ be $V_k = \{u, u_{k1}, u_{k2, ...,} u_{k(n-1)}\}, k = 1, 2, ..., t$. **Case (i):** n is even, n = 2m.

For each vertex $v_i \in V(C_n^{(j)}) v_i$ has its boundary neighbor in the same cycle $C_n^{(j)}$. The middle vertices of $C_n^{(k)}$, k = 1, 2, 3, ..., j-1, j+1, ..., t are the boundary neighbors of the middle vertex of $C_n^{(j)}$.

Subcase (i)a: m is odd.

Let $D_k = \{u_{k2}, u_{k4}, ..., u_{k(2m-2)}\}$, k = 1, 2, ..., t-1. $D_t = \{u_{t1}, u_{t3}, ..., u_{tm}, ..., u_{t(2m-1)}\}$ and $D = (\bigcup_{k=1}^{t-1} D_k) \cup D_t$, where $u_m \in D_t$ is the boundary neighbor of u_{mk} , k = 1, 2, ..., t-1. The vertices of V–D have their neighbors and boundary neighbors in D and vertices from

 $V_t - D_t$ have neighbors and boundary neighbors in D_t . Hence, D is a minimum b-dominating set of G and $\gamma_{bd}(G) = |D| = \left(\frac{n-2}{2}\right)t + 1$. Sub case (i)b: m is even.

Let $D_k = \{u_{k1}, u_{k3}, ..., u_{k(m-1)}, u_{k(m+2)}, ..., u_{k(2m-2)}\}$, k = 1, 2, ..., t-1, take $D_t = \{u_{t1}, u_{t3}, ..., u_{tm}, u_{t(m+1)}, ..., u_{t(2m-2)}\}$ and $D = (\bigcup_{k=1}^{t-1} D_k) \cup D_t$, where $u_m \in D_t$ is the boundary neighbor of u_{mk} , k = 1, 2, ..., t-1. The vertices of V–D have neighbors and boundary neighbors in D and vertices from V_t – D_t have neighbors and boundary neighbors in D_t .

Hence, D is a minimum b-dominating set of G and $\gamma_{bd}(G) = |D| = \left(\frac{n-2}{2}\right)t + 1$. Case (ii): n is odd.

Each vertex $v_i \in V(C_n^{(j)})$ has their boundary neighbor in the same cycle $C_n^{(j)}$. Subcase (ii)a: n = 3m, m is odd.

Let
$$D_k = \{u_{k1}, u_{k4}, u_{k7}, ..., u_{km}, u_{k(m+3)}, ..., u_{k(2m-1)}\}, k = 1, 2, 3, ..., t \text{ and } D = \bigcup_{k=1}^{t-1} D_k$$

 \subseteq V(G). Then vertices from V–D have their neighbors in D and boundary neighbors in D.

Hence, D is a minimum b-dominating set of G and $\gamma_{bd}(G) = |D| = \left(\frac{n}{3}\right)t$.

Sub case (ii)b: n = 3m+1, m is even.

Let $D_k = \{u_{k1}, u_{k4}, u_{k7}, ..., u_{k(m+1)}, u_{k(m+3)}, u_{k(m+6)}, ..., u_{k(2m)}\}$, k = 1, 2, 3, ..., t and $D = \bigcup_{k=1}^{t-1} D_k \subseteq V(G)$. Then vertices from V–D have neighbors in D and boundary neighbor

in D. Hence, D is a minimum b-dominating set of G and $\gamma_{bd}(G) = |D| = \left|\frac{n}{3}\right|t$. Sub case (ii)c: n = 3m+2, m is odd.

Let $D_k = \{u_{k1}, u_{k2}, u_{k5}, u_{k8}, \dots, u_{km}, u_{k(m+3)}, u_{k(m+4)}, \dots, u_{k(2m-1)}\}$, $k = 1, 2, 3, \dots, t$ and $D = \bigcup_{k=1}^{t-1} D_k \subseteq V(G)$. Then vertices from V–D have neighbors in D and boundary neighbors

in D. Hence, D is a minimum b-dominating set of G and $\gamma_{bd}(G) = |D| = \left(\left\lceil \frac{n}{3} \right\rceil + 1 \right) t$.

In Figure 2.3, $D = \{u_{12}, u_{14}\} \cup \{u_{22}, u_{24}\} \cup \{u_{31}, u_{33}, u_{35}\}$ form a minimum b-dominating

Figure 2.4: $G = C_9^{(3)}$

In Figure 2.4, D = $\{u_{11}, u_{14}, u_{17}\} \cup \{u_{21}, u_{24}, u_{27}\} \cup \{u_{31}, u_{34}, u_{37}\}$ form a minimum bdominating set of G and $\gamma_{bd}(G) = 9$.

Theorem 2.13: Let $K_n^{(t)}$, $t \ge 2$, be the one point union of t complete graphs of $n \ (n \ge 2)$ vertices, then $\gamma_{bd}(G) = t$.

Proof: Let $K_n^{(t)}$ be the one point union of t complete graphs of n and u be a central vertex which is a common vertex of all K_n . G has t(n-1) + 1 vertices. Let the vertex set of k^{th} complete graph in $K_n^{(t)}$ be $V_k = \{u, u_{k1}, u_{k2, \dots, u_{k(n-1)}}\}, k = 1, 2, \dots, t$.

Let $D_k = \{u_{kl}\}, k = 1, 2, ..., t \text{ and } D = \bigcup_{k=1}^{t-1} D_k \subseteq V(G)$. The vertices from V-D have neighbors and boundary neighbors in D. Hence, D is a minimum b-dominating set and $\gamma_{bd}(G) = |D| = t$.

67

Following theorems characterize graphs for which $\gamma_{ed}(G) = \gamma_{bd}(G)$, when r(G) = 1or G is 2 self-centered.

Theorem 2.14: Let G be a 2 self-centered graph. $\gamma_{ed}(G) = \gamma_{bd}(G)$ if and only if G has no complete vertex.

Proof: G has no complete vertex if and only if boundary neighbors of $v \in V(G)$ are its eccentric vertices. Hence the theorem follows.

Theorem 2.15: Let G be a graph of radius one and diameter two. Then $\gamma_{ed}(G) = \gamma_{bd}(G)$ if and only if G has no complete vertex.

Proof: For a vertex of eccentricity one, all other vertices are boundary vertices. G has no complete vertex if and only if boundary neighbors of $v \in V(G)$ with e(v) = 2 are its eccentric vertices. Hence the theorem follows.

3. b-domination in trees

In this section, we study the b-domination number of trees. We found some bounds for $\gamma_{\rm bd}(T)$, where T is a tree.

Theorem 3.1: For any tree T, $\gamma_{bd}(T) \ge \gamma_{ed}(T)$.

Proof: Let T be a tree with n pendant vertices. In a tree T, the set of all pendant vertices is the boundary neighbor set of T. Hence, $\gamma_{bd}(T) \ge \gamma_{ed}(T)$.

In Figure 3.1, $\gamma_{ed}(T) = \gamma_{bd}(T)$.

Figure 3.1: T

 $D_1 = \{1, 8, 9, 10, 11\}$ is a minimum dominating set of T. $\gamma(T) = 5$.

 $D_2 = \{2, 3, 6, 7, 12, 13\}$ is a minimum eccentric dominating set of T. $\gamma_{ed}(T) = 6$.

 $D_2 = \{4, 5, 8, 9, 12, 13\}$ is a minimum b-dominating set of T and also a minimum eccentric dominating set of T. $\gamma_{bd}(T) = 6$.

Hence, $\gamma_{ed}(T) = \gamma_{bd}(T) = 6$.

In Figure 3.2, $\gamma_{bd}(T) > \gamma_{ed}(T)$.

 $D_1 = \{2, 3, 5, 7, 10, 14, 19\}$ is a minimum dominating set. $\gamma(T) = 7$. $D_2 = \{2, 3, 5, 8, 10, 15, 19\}$ is a minimum eccentric dominating set. $\gamma_{ed}(T) = 7$. $D_3 = \{4, 6, 7, 10, 11, 14, 16, 18, 19, 21\}$ is a minimum b-dominating set. $\gamma_{bd}(T) = 10$. In this example, $\gamma(T) = \gamma_{ed}(T)$ but $\gamma(T) \neq \gamma_{bd}(T)$ and $\gamma_{ed}(T) \neq \gamma_{bd}(T)$.

Theorem 3.2: For a tree T, $\gamma_{bd}(T) \leq n - \Delta(T) + 1$.

Proof: If T has a vertex u of maximum degree which is not a support, then V-N(u) is a b-dominating set of T. If T has a vertex u of maximum degree which is a support of a pendant vertex v, then $(V-N(u)) \cup \{v\}$ is a b-dominating set of T. Hence the theorem follows.

Theorem 3.3: Let T be a tree with rad(T) > 2 and $u \in V(T)$ such that deg $u = \Delta(T)$. Then $\gamma_{\rm bd}(T) < n - \Delta(T).$

Proof: Let deg u = Δ (T) and N(u) has no pendant vertex. V–N(u) is a b-dominating set of cardinality $n-\Delta(T)$. Since the radius of T is at least three, diameter of T is at least five. Consider a diameteral path P. This path contains at least six vertices and includes at most two edges from the sub graph induced by N[u]. That is P contains at most three vertices from N[u].

Case (i): All vertices of P-N[u] (except end vertices) are support of some pendant vertices.

In this case, we have to include all the vertices of P–N(u) in a γ_{bd} -set, but we can leave those pendant vertices from V–N(u) to form $a\gamma_{bd}$ -set. Therefore, $\gamma_{bd}(T) < n-\Delta(T)$. Case (ii): At least one vertex w of P-N[u] (except end vertices) is not a support.

In this case, we can leave that vertex w from V–N(u) to form a γ_{bd} -set. Therefore, $\gamma_{\rm bd}({\rm T}) < n - \Delta({\rm T}).$

Theorem 3.4: For a bi central tree T with radius 2, $\gamma_{bd}(T) \leq 4$.

Proof: Let u and v be the central vertices of T. If N[u] has more than one pendant vertex and |N(v)| = 2, then $\gamma_{bd}(T) = 3$. Suppose N(u) and N(v) have more than one pendant vertex then $\gamma_{bd}(T) = 4$. If $T = P_4$, then $\gamma_{bd}(T) = 2$. Hence, $\gamma_{bd}(T) \le 4$.

Corollary 3.4: If $T = \overline{K_m} + K_1 + \overline{K_n}$, m, n > 1 then $\gamma_{bd}(T) = 4$. **Proof:** Take $G = \overline{K_m} + K_1 + \overline{K_1} + \overline{K_n}$. In G, the central vertices dominate other vertices of G and any two peripheral vertices of G are the boundary neighbor set of G. Therefore, the central vertices and two peripheral vertices form a b-dominating set of G. Hence, $\gamma_{bd}(G) = 4$.

Theorem 3.5: If T is a unicentral tree of radius 2 and N(u) does not have a pendant vertex, then $\gamma_{bd}(T) \leq n$ -deg u, where u is the central vertex.

Proof: If a tree T is of radius 2 with a unique central vertex u and N(u) does not contain a pendant vertex then u dominates N[u]. The vertices in V–N[u] dominates themselves and each vertex in N(u) has boundary vertices in V–N[u] only. Therefore, V–N(u) is a b-dominating set of cardinality n–deg(u), so that $\gamma_{bd}(T) \leq n$ –deg u.

Theorem 3.6: If every non pendant vertex of a tree T is a support vertex, then $\gamma_{bd}(T) \leq l$, where *l* is the number of pendant vertices.

Proof: Let T be a tree with *l* pendant vertices. Consider a leaf e = uv in T, where u is a support of v. The boundary neighbor of u is v in T. The pendant vertex is the boundary neighbor of its support vertex. Suppose a support vertex u is adjacent with the pendant vertices $v_1, v_2, v_3, ..., v_s$. Then vertex v_i is the boundary neighbor of $v_1, v_2, ..., v_{i-1}, v_{i+1}, ..., v_s$. Therefore, the set of all pendant vertices form a b-dominating set of T. Hence, $\gamma_{bd}(T) \leq l$.

Theorem 3.7: If T is a bi central tree, then $\gamma_{bd}(T) \leq \gamma(T) + s$, where s is the number of support vertices of T.

Proof: Assume that T is a bi central tree with s support vertices. Let D be a dominating set of T. Each pendant vertex is a boundary neighbor of its support vertex. Suppose a support vertex u_1 has pendant vertices u_{11} , u_{12} , u_{13} , ..., u_{1n} then u_{1i} is the boundary neighbor of u_1 and u_{11} , u_{12} , u_{13} , ..., u_{1n} . Take $S = \{u_{ij}\}$, where u_{ij} is adjacent to u_i , j = 1, 2, ..., s. Hence, $D \cup S$ is a b-dominating set. Therefore, $\gamma_{bd}(T) \leq \gamma(T) + s$.

Theorem 3.8: Let G be a caterpillar with base P_n , then $\gamma_{bd}(G) \leq n+s$, where s is the number of support vertices.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Proof: Let G be a caterpillar with base P_n . Then G has at most n support vertices and may have more than n pendant vertices. Let $D \subseteq V(G)$ consists of all vertices of P_n and at least one pendant vertex adjacent to each support vertex. Clearly D is a b-dominating set. Hence, $\gamma_{bd}(G) \leq n+s$.

Corollary 3.8: If G is a graph $P_n \circ mK_1$, m > 1 is an integer, then $\gamma_{bd}(G) = 2n$. **Proof:** As in Theorem 3.8, we can prove that $\gamma_{bd}(G) = 2n$.

Observations:

3.1 If G is a graph $P_n \circ K_1$, then $\gamma_{bd}(G) = n$.

3.2 If there exists a γ_{ed} -set which contains all the pendant vertices of T, then $\gamma_{bd}(T) = \gamma_{ed}(T)$. 3.3 If there exist a γ -set which contains all the pendant vertices of a tree T, then $\gamma(T) = \gamma_{ed}(T) = \gamma_{bd}(T)$.

3.4 If T has a dominating set D containing boundary neighbors set of T, then $\gamma(T) = \gamma_{bd}(T)$. For example, $\gamma(P_4) = 2 = \gamma_{bd}(P_4)$.

Theorem 3.9: If every non pendant vertex of a tree T is a support vertex, then $\gamma_{bd}(T) \leq n/2$. **Proof:** Let T be a tree with n vertices. If u is a support vertex of v in T, then v is a boundary neighbor of u. Suppose that every non pendant vertex of a tree T is a support vertex. **Case (i):** Every support vertex has exactly one adjacent pendant vertex in T.

Every pendant vertex is a boundary neighbor of its corresponding support vertex in T. Thus the set of all pendant vertices form a b-dominating set of T. Hence, $\gamma_{bd}(T) = n/2$. **Case (ii):** Every support vertex has more than one adjacent pendant vertex in T.

Assume a tree T has s support vertices. Consider a support vertex v_i , i = 1, 2, ..., s which is adjacent to the pendant vertices v_{i1} , v_{i2} , ..., v_{im} . Any one pendant vertex v_{ij} is a boundary neighbor of other pendant vertices $(v_{i1}, v_{i2}, ..., v_{i(j-1)}, v_{i(j+1)}, ..., v_{im})$ and the support vertex v_i . D = { v_i } \cup { v_{i1} }, i = 1, 2, ..., s is a b-dominating set of T. Hence, $\gamma_{bd}(T) \leq n/2$.

Conclusion

In this paper, exact values of b-domination number of some particular classes of graphs and some bounds for b-domination number of graphs and b-domination number of trees are given.

71

References:

- [1] M.Bhanumathi , S.Muthammai, "On Eccentric domination in Trees", International Journal of Engineering Science, Advanced Computing and Bio-Technology- Volume 2, No. 1,pp 38-46, 2011.
- [2] M.Bhanumathi, S.Muthammai, "Further Results on Eccentric domination in Graphs", International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 3, Issue 4, pp. 185-190, 2012.
- [3] M. Bhanumathi and M. Kavitha, "bd-Domination in Graphs" International Journal of Fuzzy Mathematical Archive – Vol.7, Number 1, 2015, 75-80.
- [4] M. Bhanumathi and M. Kavitha, "Boundary Digraph and Boundary Neighbour Digraph of a Graph G", Elixir Dis. Math. 93 (2016) 39443-39449.
- [5] Buckley. F, Harary. F, "Distance in graphs", Addison-Wesley, Publishing Company (1990).
- [6] Gary Chartrand, Ping zhang, "Introduction to Graph Theory", Tata McGraw Hill Publishing Company Limited, New Delhi, 2006.
- [7] Harary, F., "Graph theory", Addition Wesley Publishing Company Reading, Mass (1972).
- [8] Janakiraman T.N., Bhanumathi M and Muthammai S, "Eccentric domination in graphs", International Journal of Engineering Science, Computing and Bio-Technology, Volume 1, No. 2, pp 1-16, 2010.
- [9] Kulli V.R, Theory of domination in graphs, Vishwa International publications, 2010.