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Abstract: A vertex v is a boundary vertex of u if d(u, w) < d(u, v) for all w € N(v). A vertex u has more
than one boundary vertex at different distance levels. A vertex v is called a boundary neighbor of u if v is
a nearest boundary of u. A set S < V(G) is a b-dominating set if every vertex in V=S has at least one
neighbor in S and at least one boundary neighbor in S. The minimum cardinality of the b-dominating
set is called the b- domination number and is denoted by y,.(G).

In this paper we present several bounds on the b-domination number of graph G and we found
the exact value of 1,u(G) for some particular classes of graphs and trees.
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1. Introduction

Graphs discussed in this paper are undirected and simple. For graph theoretic
terminology refer to Harary[7], Buckley and Harary[5]. For a graph G, let V(G) and E(G)
denote its vertex and edge set respectively. A graph with p vertices and q edges is called a
(p> @) graph. The length of any shortest path between any two vertices u and v of a connected
graph G is called the distance between u and v and it is denoted by dg(u, v). The distance

between two vertices in different components of a disconnected graph is defined to be 0.

For a connected graph G, the eccentricity e(v) of v is the distance to a vertex farthest from

v. Thus, e(v) = max{d(u, v) : u € V}. The radius rad(G) is the minimum eccentricity of the
vertices, whereas the diameter diam(G) is the maximum eccentricity. If these two are equal
in a graph, that graph is called self-centered graph with radius r and is called an r self-
centered graph. For any connected graph G, rad(G) < diam(G) < 2rad(G). The vertex vis a
central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a vertex v,
each vertex at a distance e(v) from v is an eccentric vertex of v.

A subgraph of G is a graph having all of its vertices and edges in G. It is a spanning
subgraph if it contains all the vertices of G. If H is a subgraph of G, then G is a super graph
of H. For any set S of vertices in G, the induced subgraph < S > is the maximal subgraph
with vertex set S. A vertex v in a graph G is called a complete vertex or an extreme vertex if
the sub graph induced by its neighborhood is complete.

The corona G,°G, of two graphs G, and G, was defined as the graph G obtained by
taking one copy of G,(which has n vertices) and n copies of G, and then joining the i vertex
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of G, to every vertex in the i"copy of G,.Let G be a graph with p vertices. Take p copies of
path P;. Attach an end vertex of i copy of P; to i™ vertex of G. The new graph obtained is

known as 2-corona of G.

A vertex v is a boundary vertex of u if d(u, w) < d(u, v) for all w € N(v). A vertex

u can have more than one boundary vertex at different distance levels. The set of all vertices

S = {v €V(G)/v is a boundary vertex of some u € V(G)} is known as the set of all boundary
vertices of G. A vertex v is called a boundary neighbor of u if v is a nearest boundary of u.

The number of boundary neighbor of u is called the boundary degree of u [6].

A set D C V is said to be a dominating set in G, if every vertex in V—D is adjacent

to some vertex in D. The minimum cardinality of a dominating set is called the domination
number and is denoted by Y(G) [9]. A dominating set D is said to be an eccentric

dominating set if for every v € V—D, there exists at least one eccentric vertex of v in D. The

minimum cardinality of an eccentric dominating set of G is called the eccentric domination

numberY 4(G) [1, 2, 8]of G.
In 2010, Janakiraman, Bhanumathi and Muthammai[8] defined Eccentric

domination in graphs. Motivated by this, we have defined b-domination number of a given
graph and study the parameter Y4(G) in [3].
Theorem 1.1[9]: If D is any dominating set then |V—D| < X [()jEQ(U) for all ueD.

ue

Theorem 1.2[9]: If G is a connected graph with p vertices, then Y(G) < p/2.
Theorem 1.3[8]: ’Yed(C_n ) = |_n/3—|.

2. b-domination in graphs

In [3], we have defined the b-domination number of a graph G as follows:

Definition 2.1[3]:A set SCV(G) is a b-dominating set if every vertex in V—S has at least
one neighbor in S and at least one boundary neighbor in S. The minimum cardinality of the
b-dominating set is called the b-domination number and is denoted by Y,4(G).

For a vertex v, let B(v) denote the set of all boundary neighbors of v in G.
Let SCV(G). Then S is known as a boundary neighbor set of G if for every vertex v €V-S,
S has at least one vertex u such that u € B(v). A boundary neighbor set S of G is a minimal

boundary neighbor set if no proper subset S'of S is a boundary neighbor set of G.
We define S as a minimum boundary neighbor set if S is a boundary neighbor set
with minimum cardinality. Let b(G) denote the cardinality of a minimum boundary

neighbor set of G; b(G) can be called as boundary number of G.
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Let D be a minimum dominating set of a graph G and S be a minimum boundary
neighbor set of G. Clearly, D \U S is a b-dominating set of a graph G. Hence,
Yoa(G) < Y(G) + b(G).

If G # K, ,Y4a(G) 2 2.Hence, if G #K,, 2 <Y4(G) < Y(G) + b(G).

V2 Va
V3
Vi Vs
Vg Ve
V7
Figure 2.1: G

In Figure 2.1, D, = {v,, v;, v;} is a minimum dominating set of G. Y(G) = 3.D, is also an

eccentric dominating set of G. ¥.4(G) = 3.
D, = {v,, v, v5} is a dominating set of G, but it is not an eccentric dominating set of G.

D; = {v,, Vg, V;, Vs} is a b-dominating set but it is not an eccentric dominating set of G.

D, = {v}, V5, V;} is a minimum b-dominating set of G. ¥,4(G) = 3.

Figure 2.2: G

In Figure 2.2, D,= {9} is a minimum dominating set of G. Therefore, Y(G) = 1.

D, = {1, 2, 9} is a minimum eccentric dominating set. Therefore, ¥ 4(G) = 3.

D, = {1, 3, 5, 7} is a minimum b-dominating set of G. ¥,,4(G) = 4 = {%J

Following theorems give the bounds ofY.4(G).

Theorem 2.1: Let D be any b-dominating set of G. Then |V—D| < ZD deg(u) for all
ue

u€D. Equality holds for any complete graph.
Proof: Let D be any b-dominating set of G. Then clearly D is a dominating set of G. Thus,

the proof follows from Theorem 1.1.
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Remark 2.1: For any graph G, [ﬁ—l <Y(G) £ V4i(G).
+

Theorem 2.2: If G is a connected graph with S(G) 2 2, then Voa(G) < (p+m)/2, where m is
the number of boundary vertices of G.

Proof: Let G be a graph with m boundary vertices v,, v,,...,v,. Attach one pendant vertex
to each of these vertices. Let the new graph be G'. Then G’ is a connected graph containing
p+m vertices. Hence, Y(G') < (p+m)/2. Dominating set of G', containing v,, v,, Vs, ..., v, is

the b-dominating set of G. Therefore, ¥;,4(G) < (p+m)/2.

Theorem 2.3: Let G be a graph with radius 1 and diameter 2, then 2 < Yoa(G) S |_p/2J .

Proof: Consider a graph G with radius 1 and diameter 2. Let D be a minimum boundary

neighbor set of G. We have b(G) < LgJ —1, since G has at least one vertex with eccentricity

one. Let u be a central vertex of G. Then {u} U D form a b-dominating set of G. Hence,

Yoa(G) S 1+ LgJ—l SL?J ______ 1)

The central vertex u dominates all the vertices of G but u is not a boundary
neighbor of all other vertices of G. So we have to include at least one vertex v(#u) of G to

form a Yy4-set of G. Hence, ¥,4(G) 22.  ------ ()
From (1) and (2), we have 2 S’de(G) SL?J

Remark 2.3:
(i) Lower bound is attained for G = K| ,.

(ii) The upper bound is sharp for the graph in Figure 2.2.

Theorem 2.4: If G is of radius 2 with a unique central vertex u and N(u) has no pendant

vertex and N(u) has no vertex of degree two, then Y,4(G) < n—(deg(u)/2).
Proof: Let G be a graph with radius 2 and has a unique central vertex u. The central vertex

u dominates N(u) but vertices in N(u) may have their boundary neighbors in N(u). Let S be
a subset of N(u) such that vertices in N(u)—S have their boundary neighbors in S.

(V—N(u)) U S is a b-dominating set of G. Hence, Y¥,4(G) < n—(deg(u)/2).

Theorem 2.5: If G is a graph with radius greater than two, then Y,4(G) < n—(A(G))/2.

Proof: Let u €V(G) with deg u = A(G). Clearly V—N(u) is a dominating set of G. But
vertices in N(u) may have their boundary neighbors in N(u). Let S be a subset of N(u) such
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that vertices in N(u)—S have their boundary neighbors in S. Then (V—N(u)) U S is a
b-dominating set of G. Hence, Y,,4(G) < n—(AG))/2.

Next, we evaluate the exact value of eccentric domination number of some particular classes

of graphs.

Theorem 2.6: If G is 2-corona graph of C,, then ¥,4(G) = Y(C,) + n, where n is the number

of vertices of C,.

Proof: Let G be a 2-corona graph of C,. Then G has 3n vertices. In cycle C,, Y(C,) vertices
dominate other vertices of C,. The graph G has n pendant vertices. These pendant vertices

dominate their support vertices in G. Also, the set of all pendant vertices are the boundary

neighbor set of G. Hence, V,4(G) = Y(C,) + n.

Theorem 2.7: Let n be an even integer and let G be obtained from the complete graph K,

by deleting edges of a linear factor. Then Y,4(G) = n/2.
Proof: Let u and v be a pair of non adjacent vertices in G. Then u and v are boundary

neighbors to each other.

Therefore, Y,o(G) 2 n/2. e (1)

Consider D CV(G) such that < D > = K, ,. D contains n/2 vertices such that each vertex in
V—D is adjacent to at least one element in D and each element in V—D has its boundary
neighbor in D. Hence V,4(G) <nf2. = 2)

From (1) and (2), ¥1,4(G) = n/2.

Theorem 2.8: If G is a graph on n vertices and H = GemK,, m > 1, then Y,4(H) = 2n.
Proof: Let G be a graph on n vertices. Let V(G) = {u;, u,, ..., u,}. Attach mK, with every
vertex of G. Consider the vertices adjacent to u; as u,', u;% ..., u;™.Let S be a set of n pendant

vertices such that S contains exactly one pendant vertex adjacent to u; fori=1,2, 3, ..., n.
Then V U S is a b-dominating set. Since m > 1, VU S is a minimum b-dominating set.

Therefore, Y,4(H) = 2n.

Theorem 2.9: If G is a graph with n vertices and H = G°K,, then Y, 4(H) = n.
Proof: Let G be a graph with n vertices and let H = G°K,. Let u;, u,, ..., u, be the vertices of
!

G. Let ul', u2',..., un' and u1", uz' s eees un" be the newly added vertices of H. Then the sets

! 14 . .
{vi> V3, V3, ...V, }, where v, = u; or u; are b-dominating sets of G. Hence Y,,4(H) = n.
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Theorem 2.10: If G is a friendship graph, then Y,4(G) = r, where r is the number of wings
of G.
Proof: Let G be a friendship graph with r wings. Let S be a set, which contains exactly one

vertex from each wing of G. This set is a minimum b-dominating set. Hence, Y¥,4(G) =r.

Theorem 2.11: Y3u(C, ) = 2, Y2a(Cy ) = 3 and Y4u(C,, ) = Yui(C, ) = n/3 L n = 6.
Proof: Clearly, ybd(C_4 ) =2, 'de(C_s) =3.

Now assume that n > 6. Let v,, v,, ...,v,, v; form C,. Then C_n = K,-C, and each
vertex v; is adjacent to all other vertices except v,; and v, inC_n. InC_n, the eccentric

vertices are same as the boundary neighbors. Hence, ybd(C_n) = Yed(C_n) = |_n/3—| by
Theorem 1. 3.

Theorem 2.12: Let C,“), t > 2, be the one point union of t cycles of length n (n > 5),

If n is even, Y,o(C,") = (n_;Z]t +1.

If n is odd, Y,e(C,") = ( g—lt if n=3m+1

5 ¢ vom

Proof: Let C,"be the one point union of t cycles of length n and u be a central vertex which

is a common vertex of all C,. G has t(n—1)+1 vertices. Let the vertex set of k™ cycle in C,"
be Vk = {u, ukl, ukz’ “_,uk(n,l)}, k = 1, 2, ooy t.

Case (i): n is even, n = 2m.
For each vertex v,€ V(C,?) v; has its boundary neighbor in the same cycle C,?. The

middle vertices of C,®, k = 1, 2, 3, ..., j—1, j+1, ..., t are the boundary neighbors of the
middle vertex of C,%.
Subcase (i)a: m is odd.

Let Dy = {ujp, Wy - osWiomyh K= 1,2, .., t=1. Dy = {uy, Uy, oo Uys +v Uyooyy} and
t-1

D= (kU Dk YU Dy , where u,, € D, is the boundary neighbor of u,,, k =1, 2,..., t-1. The
=1

vertices of V-D have their neighbors and boundary neighbors in D and vertices from
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V,— D, have neighbors and boundary neighbors in D, Hence, D is a minimum

L n-2
b-dominating set of G and V¥,4(G) = |D| = T t+1.

Sub case (i)b: m is even.

Let Dk = {ukl, Uz eoes uk(m—l), uk(m+2), PN uk(zm—z)} 5 k = 1, 2, soey t—l, take Dt = {uu,

t-1
Uiy +eor Uy Uymenys «+o> Womopy} and D = (kU Dk ) U Dyt , where u,, € D, is the boundary
=1

neighbor of u,, k = 1, 2,..., t-1. The vertices of V-D have neighbors and boundary

neighbors in D and vertices from V,— D, have neighbors and boundary neighbors in D,.

n-2
Hence, D is a minimum b-dominating set of G and Y,4(G) = |D| = (TJt +1.

Case (ii): n is odd.

Each vertex v;€ V(C,?) has their boundary neighbor in the same cycle C,%.
Subcase (ii)a: n = 3m, m is odd.

t-1
Let Dk = {ukl, Uy Uggeeos Uy uk(m+3), PN uk(zm—l)}, k = 1, 2, 3,..., t and D= kU Dk

C V(G). Then vertices from V—D have their neighbors in D and boundary neighbors in D.
n
Hence, D is a minimum b-dominating set of G and Y,,4(G) = |D| = (Ejt .

Sub case (ii)b: n = 3m+1, m is even.

Let Dk = {ukl, uk4, uk7,..., uk(m+1), uk(m+3), uk(m+6), ceey uk(zm)}, k = 1, 2, 3,..., t al‘ld

t-1
D= kU Dk C V(G). Then vertices from V—D have neighbors in D and boundary neighbor
=1

n
in D. Hence, D is a minimum b-dominating set of G and Y,,4(G) = |D| = ’75—"[ .

Sub case (ii)c: n = 3m+2, m is odd.

Let Dk = {ukl, ukz, uk5, uk& ceey ukm, uk(m+3), uk(m+4), ceey uk(zm—l)}, k = 1, 2, 3,..., t al‘ld D
t-1

= kU Dk C V(QG). Then vertices from V—D have neighbors in D and boundary neighbors
=1

n
in D. Hence, D is a minimum b-dominating set of G and Y,4(G) = |D| = OVE—‘ +1jt .
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Figure 2.3: G = C,¥

In Figure 2.3, D = {u,, u;y} U {u,,, uy} U {uy;, uy;, uys} form a minimum b-dominating

set of G and V,4(G) = 7. u

Figure 2.4: G = C,®

In Figure 2.4, D = {u,;, uyy, uy;} U {u,), uyy, vy} Y {uy, uyy, uy;} form a minimum b-

dominating set of G and Y,4(G) = 9.

Theorem 2.13: Let K,*, t > 2, be the one point union of t complete graphs of n (n > 2)

vertices, then Y,4(G) = t.
Proof: Let K, be the one point union of t complete graphs of n and u be a central vertex
which is a common vertex of all K,. G has t(n—1) + 1 vertices. Let the vertex set of k™

complete graph in K, be V, = {u, w, o, Wbk =1,2, ..., t.

t-1
Let D, = {uyy}, k=1,2, ..., tand D = kU Dk C V(G). The vertices from V—D have
=1

neighbors and boundary neighbors in D. Hence, D is a minimum b-dominating set and

Voa(G) = |D| =t
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Following theorems characterize graphs for whichY 4(G) = V,4(G), when r(G) = 1

or G is 2 self-centered.

Theorem 2.14: Let G be a 2 self-centered graph. Y.4(G) = ¥,,4(G) if and only if G has no

complete vertex.

Proof: G has no complete vertex if and only if boundary neighbors of v €V(G) are its

eccentric vertices. Hence the theorem follows.

Theorem 2.15: Let G be a graph of radius one and diameter two. Then Y 4(G) = Y,.(G) if
and only if G has no complete vertex.

Proof: For a vertex of eccentricity one, all other vertices are boundary vertices. G has no

complete vertex if and only if boundary neighbors of v € V(G) with e(v) = 2 are its eccentric

vertices. Hence the theorem follows.

3. b-domination in trees

In this section, we study the b-domination number of trees. We found some bounds

for V,,4(T), where T is a tree.

Theorem 3.1: For any tree T, Vy,4(T) = V. 4(T).

Proof: Let T be a tree with n pendant vertices. In a tree T, the set of all pendant vertices is
the boundary neighbor set of T. Hence, Y4(T) 2 V.4(T).
In Figure 3.1, ¥ 4(T) = Ypa(T).

2 3 5

9 s @7
o0e11
312

Figure 3.1: T

D, ={1, 8,9, 10, 11} is a minimum dominating set of T. Y(T) = 5.

D, = {2, 3, 6, 7, 12, 13} is a minimum eccentric dominating set of T. Y 4(T) = 6.

D, = {4, 5, 8,9, 12, 13} is a minimum b-dominating set of T and also a minimum eccentric
dominating set of T. Y,4(T) = 6.

Hence, ¥ 4(T) = Ypa(T) = 6.
In Figure 3.2, V,,(T) >Y.q(T).
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Figure 3.2: T

D, =1{2,3,5,7,10, 14, 19} is a minimum dominating set. Y(T) = 7.

D, =1{2, 3,5, 8, 10, 15, 19} is a minimum eccentric dominating set. Y 4(T) = 7.

D, ={4,6,7,10, 11, 14, 16, 18, 19, 21} is a minimum b-dominating set. Y;,4(T) = 10.
In this example, Y(T) = Y 4(T) but Y(T) #Y,a(T) and Y 4(T) #Ypa(D).

Theorem 3.2: For a tree T, V,4(T) < n—A(T)+1.

Proof: If T has a vertex u of maximum degree which is not a support, then V—N(u) is a

b-dominating set of T. If T has a vertex u of maximum degree which is a support of a

pendant vertex v, then (V—N(u)) U {v} is a b-dominating set of T. Hence the theorem

follows.

Theorem 3.3: Let T be a tree with rad(T) > 2 and u € V(T) such that deg u = A(T). Then
Yoa(T) < n = A(T).
Proof: Let deg u = A(T) and N(u) has no pendant vertex. V-N(u) is a b-dominating set of

cardinality n—-/A(T). Since the radius of T is at least three, diameter of T is at least five.
Consider a diameteral path P. This path contains at least six vertices and includes at most
two edges from the sub graph induced by N[u]. That is P contains at most three vertices
from N[u].

Case (i): All vertices of P-N[u] (except end vertices) are support of some pendant vertices.
In this case, we have to include all the vertices of P—N(u) in a Y,4-set, but we can

leave those pendant vertices from V-N(u) to form aY,,-set. Therefore, Y,4(T) < n-A(T).

Case (ii): At least one vertex w of P-N{[u] (except end vertices) is not a support.
In this case, we can leave that vertex w from V-N(u) to form a Y,4-set. Therefore,

Yoa(T) < n=A(T).

Theorem 3.4: For a bi central tree T with radius 2, ¥,4(T) <4
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Proof: Let u and v be the central vertices of T. If N[u] has more than one pendant vertex
and |N(V)| = 2, then Y,,4(T) = 3. Suppose N(u) and N(v) have more than one pendant vertex
then Y4(T) = 4. If T = P, then V,,4(T) = 2. Hence,Y,,(T) <4

Corollary 3.4: If T = K_m+ K, +K, +K_n, m, n > 1 then Yo(T) = 4.

Proof: Take G = K_m+ K1 + K1 +K_n. In G, the central vertices dominate other vertices
of G and any two peripheral vertices of G are the boundary neighbor set of G. Therefore,

the central vertices and two peripheral vertices form a b-dominating set of G. Hence,

Voa(G) = 4.

Theorem 3.5: If T is a unicentral tree of radius 2 and N(u) does not have a pendant vertex,

then Y,4(T) < n-deg u, where u is the central vertex.
Proof: If a tree T is of radius 2 with a unique central vertex u and N(u) does not contain a
pendant vertex then u dominates N[u]. The vertices in V-N[u] dominates themselves and

each vertex in N(u) has boundary vertices in V-N[u] only. Therefore, V-N(u) is a

b-dominating set of cardinality n—deg(u), so that Y,,(T) < n-deg u.

Theorem 3.6: If every non pendant vertex of a tree T is a support vertex, then Y, (T) < I,
where [ is the number of pendant vertices.

Proof: Let T be a tree with [ pendant vertices. Consider a leaf e = uv in T, where u is a
support of v. The boundary neighbor of u is v in T. The pendant vertex is the boundary
neighbor of its support vertex. Suppose a support vertex u is adjacent with the pendant

vertices vy, v,, Vs, ..., V. Then vertex v; is the boundary neighbor of v, v,, ....,viy, Vi1, ..., Ve

Therefore, the set of all pendant vertices form a b-dominating set of T. Hence, Y,(T) <I.

Theorem 3.7: If T is a bi central tree, then V4(T) S’Y(T) + s, where s is the number of
support vertices of T.

Proof: Assume that T is a bi central tree with s support vertices. Let D be a dominating set
of T. Each pendant vertex is a boundary neighbor of its support vertex. Suppose a support

vertex u,; has pendant vertices u,;, uy,, u;3, ..., uy, then uy; is the boundary neighbor of u,
and u;;, Uy, Wyss oees Uy Wiy --o> Wi Take S = {u}, where u; is adjacent to u;, j = 1, 2,

..., 8. Hence, D U § is a b-dominating set. Therefore,Y,4(T) < Y(T) +s.

Theorem 3.8: Let G be a caterpillar with base P, then Y,4(G) <n+s, where s is the number

of support vertices.
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Proof: Let G be a caterpillar with base P,. Then G has at most n support vertices and may

have more than n pendant vertices. Let D CV(G) consists of all vertices of P, and at least

one pendant vertex adjacent to each support vertex. Clearly D is a b-dominating set.

Hence,Y4(G) <n+s.

Corollary 3.8: If G is a graph P,°mK;, m > 1 is an integer, then Ya(G) = 2n.

Proof: As in Theorem 3.8, we can prove that},,(G) = 2n.

Observations:

3.1 If G is a graph P °K, then V,4(G) = n.

3.2 If there exists a Y 4-set which contains all the pendant vertices of T, then Yy4(T) = V.4(T).
3.3 If there exist a Y-set which contains all the pendant vertices of a tree T, then Y(T) =
Yea(T) = Yoa(T).

3.4 If T has a dominating set D containing boundary neighbors set of T, then Y(T) = V,,4(T).
For example, Y(P,) = 2 = V,,4(P,).

Theorem 3.9: If every non pendant vertex of a tree T is a support vertex, then Y,,(T) < n/2.
Proof: Let T be a tree with n vertices. If u is a support vertex of v in T, then v is a boundary
neighbor of u. Suppose that every non pendant vertex of a tree T is a support vertex.

Case (i): Every support vertex has exactly one adjacent pendant vertex in T.

Every pendant vertex is a boundary neighbor of its corresponding support vertex

in T. Thus the set of all pendant vertices form a b-dominating set of T. Hence, Y,4(T) = n/2.
Case (ii): Every support vertex has more than one adjacent pendant vertex in T.
Assume a tree T has s support vertices. Consider a support vertex v, i=1,2, ..., s

which is adjacent to the pendant vertices v;;, Vi, ..., Vi, Any one pendant vertex vy is a
boundary neighbor of other pendant vertices (v;;, Vi, --.3Vi—1)Vigs1)» -++> Vim) and the support

vertex vi. D = {vj} U {v;},i=1, 2, ..., s is a b-dominating set of T. Hence, Y,,4(T) <n/2.

Conclusion
In this paper, exact values of b-domination number of some particular classes of
graphs and some bounds for b-domination number of graphs and b-domination number of

trees are given.
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