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Abstract: Let G be a simple graph with vertex set V(G) and edge set E(G).The Boolean Function Graph 

( , , )qB G K INC  of G is a simple graph with vertex set V(G)E(G) and two vertices in ( , , )qB G K INC
are adjacent if and only if they correspond to two nonadjacent vertices of G or to a vertex and an edge 
incident to it in G. For simplicity, this graph is denoted by BF1(G). In this paper, eccentricity properties 
of BF1(G) are studied. 
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1. Introduction 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, 

let V(G) and E(G) denote its vertex set and edge set respectively. For two vertices u and v 
in a graph G, the distance d(u, v) from u to v is the length of a shortest u-v path in G. For 
a vertex in a connected graph G, the eccentricity e(v) or ecc(v) of v is the distance between 
v and a vertex farthest from v in G. The minimum eccentricity among the vertices of G is 
its radius and maximum eccentricity is its diameter, which are denoted by rad(G) and 
diam(G), respectively. A vertex v in G is a central vertex if e(v) = rad(G) and the subgraph 
induced by the central vertices of G is the center Cen(G) of G. If every vertex of G is a 
central vertex, then Cen(G) = G and G is called self-centered. As for every graph 
(undirected, uniformly weighted) there exists an adjacency (0, 1) matrix, we call the general 
operation a Boolean operation. Boolean operation on a given graph uses the adjacency 
relation between two vertices or two edges and incidence relationship between vertices and 
edges and defines new structure from the given graph. This extracts information from the 
original graph and encodes it into a new structure.   

 Whitney [22] introduced the concept of the line graph L(G) of a given graph G in 
1932. The first characterization of line graphs is due to Krausz. The Middle graph M(G) of 
a graph G was introduced by Hamada and Yoshimura[5]. Chikkodimath and 
Sampathkumar [3] also studied it independently and they called it the semi-total graph 
T1(G) of a graph G. Characterizations were presented for middle graphs of any graph, trees 
and complete graphs in [1]. The concept of total graphs was introduced by Behzad [2] in 
1966. Sastry and Raju [21] introduced the concept of quasi-total graphs and they solved the 
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graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. 
Janakiraman et al., introduced the concepts of Boolean and Boolean function graphs             
[7 - 20]. 

The Boolean function graph ( , , )qB G K INC  of G is a graph with vertex set 

V(G)E(G) and two vertices in ( , , )qB G K INC  are adjacent if and only if they correspond 

to two nonadjacent vertices of G or to a vertex and an edge incident to it in G. For brevity, 
this graph is denoted by BF1(G).  In this paper eccentricity properties of BF1(G) are studied.  
Here, G is a graph with p vertices and q edges. The definitions and details not furnished in 
this paper may be found in [4].  

 

2. Main Results 
In this section, eccentricities of vertices of BF1(G) are found. It is observed that diameter 

of BF1(G) is atmost 4. The graphs G for which BF1(G) is self-centered with radius 2 and 3 
are characterized. Also, the graphs G for which BF1(G) is bi-eccentric with radius 2 and 
diameter 3 are characterized.  
Observation:  

2. 1. V (BF1(G)) = V(G)V(L(G)), where L(G) is the line graph of G. 
2.2. BF1(G)  is always connected. 

2.3. G and qK are induced  subgraphs of BF1(G).                                                                                 

2.4. The number of vertices in BF1(G) is p + q and the number of edges in BF1(G) is 

  
( 1)

2

p p
q


 . 

2.5.  The degree of uV(G) in BF 1(G) is p-1 and degree of eE(G) in BF1(G) is 2 
2.6.  If p = 3, then BF1(G) is C3, C4 or C5 . 
2.7.  If p ≥ 4, then BF1(G) is bi-regular. 

 In the following, eccentricities of vertices in V(BF1(G))V(G) are found. 
 
Theorem 2.1: 
 Eccentricity of the vertex of BF1(G) corresponding to a vertex of  G is atmost 3. 
Proof: 

 Let  uV(G). Then uV(BF1(G)) 

(a) Distance between any two vertices of V(BF1(G))V(G).  
Case(1):  degG(u) = 0 
 Then u is adjacent to all the vertices of V(G) in BF1(G). 

Therefore, d(u, v) = 1 in BF1(G), for all vV(G). 

Case(2):  degG(u)  1. 
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 Then there exists a vertex vV(G) adjacent to u in G. 

Let e = (u, v)E(G). Then eV(BF1(G)) and dBF1(G)(u, v) = 2, since uev is a geodesic path 
in BF1(G). From Case(i) and Case(ii), distance between any two vertices of G in BF1(G) is 
either 1 or 2. 

(b) Distance between uV(G) and eV(L(G)) in BF1(G) 

Let eV(L(G)). Then eE(G). If e is incident with u in G, then d BF1(G)(u, e) = 1. Let e be 

not incident with u in G and let e = (v, w)E(G), where v, wV(G) and u  v, w. 
(i) If u is not adjacent to atleast one of v and w, say v, then uve is a geodesic path in BF1(G)  
and hence d(u, e) = 2 in BF1(G) . 

(ii) Let both uv, vwE(G) and let f = (u, v)E(G). Then u f v e is a geodesic path in BF1(G) 
and hence d(u, e) = 3 in BF1(G). 

From (i) and (ii), d(e, u)  3 in BF1(G).  

That is, the distance between uV(G) and eV(L(G)) in BF1(G) in BF1(G) is atmost 3. 
From (a) and (b), eccentricity of a vertex of G in BF1(G) is atmost 3. 
 
Theorem 2.2:  
 Let G have at least two edges. Eccentricity of a vertex of BF1(G) corresponding to an 
edge of G lies between 2 and 4. 
Proof: 

 Let eE(G). Then eV(BF1(G)).  From (b) of Theorem 2.1., the distance between e 
and a vertex of G in BF1(G) is atmost 3. 

Let e1, e2E(G). In the following, distance between two vertices in BF1(G) corresponding 
to e1 and e2 is found. 

Let e1 = (u1, v1) and e2 = (u2, v2), where u1, v1, u2, v2 V(G). 
Case(i): e1 and e2 are adjacent in G 
 If u2 is the vertex common to both e1 and e2, then e1u2e2 is a geodesic path in BF1(G) and 
hence dBF1(G) (e1, e2) = 2. 
Case(ii): e1 and e2 are nonadjacent in G. 

(a) If one of ui is nonadjacent to vi in G, say (u1,v1)E(G ), then e1u1 v1e2 is a geodesic path 
in BF1(G) and hence dBF1(G) (e1, e2) = 3. 

(b) Let each ui be adjacent to each vi (i = 1, 2). Then (u1,v1), (u1,v2), (u2,v1), (u2,v2)E(G). 

Let x = (u1, v1). Then xV(BF1(G)). Then e1 u1 x v1e2 is a geodesic path in BF1(G) and hence 
dBF1(G) (e1, e2) = 4. From the above,  it can be concluded that eccentricity of a vertex in BF1(G) 
corresponding to an edge of G lies between 2 and 4.   
 In the following, the graphs G for which radius of BF1(G) is 1 are characterized.  
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Theorem 2.3: 

 For any graph G, radius of BF1(G) is 1 if and only if G  K2 or nK1, n  2. 
Proof: 

 If G  K2, then the edge eE(K2) has eccentricity 1 in BF1(G). If G  nK1, n  2, then 
each vertex of G has eccentricity 1 in BF1(G). Therefore, radius of BF1(G) is 1. 
Conversely, assume radius of BF1(G) is 1. Therefore, there exists a vertex in BF1(G) of degree 
p + q - 1. 

Degree of a vertex in V(BF1(G))V(G) is p -1 . If p – 1 = p + q – 1, then q = 0. Therefore, 

G  nK1, n  2. Similarly, degree of a vertex in V(BF1(G))V(L(G)) of BF1(G) is 2. 

Therefore, if 2 = p+q– 1, then p+q = 3, q  1. Therefore, p = 2 and q = 1 and hence G K2. 
 

Remarks 2.1: 

1. BF1(G) is self-centered with radius 1 if and only if G  nK1, n  2. 

2. For any graph G, BF1(G) is bi-eccentric with radius 1 if and only if G  K2. 
 In the following, the graphs G for which BF1(G) is self-centered with radius 2 are 
characterized.  
 
Theorem 2.4: 

 For any graph G, BF1(G) is self-centered with radius 2 if and only if G  K1,nmK1,  

n  2, m  0 or G  K2mK1, m  1. 
Proof: 

 Assume BF1(G) is self-centered with radius 2. Let vV(G). Then vV(BF1(G)). 
Eccentricity of v is 2 in BF1(G), if either  

(i) all the vertices of G are adjacent to v (or)  

(ii) there exists an edge e = (u, w) in E(G) such that <{u, v, w}>	P3 or K2K1, where 

u, wV(G) 

Let eE(G). Then eccentricity of e in BF1(G) is 2, if  
(iii) all the edges of G are adjacent to e in G.  
Therefore, eccentricity of each vertex in BF1(G) is 2 if [(i) or (ii)] and (iii) hold. 

That is , G  K1,nmK1, n  2, m  0 or G  K2mK1, m  1. 

Conversely, if G  K1,nmK1, n  2, m  0 or G  K2mK1, m  1, then BF1(G) is self-
centered with radius 2.  
  
 In the following, the graphs for which BF1(G) is self-centered with radius 3 are 
characterized. 
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Theorem 2.5: 

 Let G be a graph with atleast three vertices such that G is not isomorphic to K1,nmK1, 

n  1 and m  0 and K4 is not an induced subgraph of G. Then BF1(G) is self-centered with 
radius 3 if and only if each vertex of G lies on a triangle 
Proof: 
 Let BF1(G) be Self-centered with radius 3. Then each vertex of BF1(G) has eccentricity 

3. Let vV(G). Then eccentricity of v in BF1(G) is 3. But, distance between v and a vertex 

in V(BF1(G))V(G) is less than or equal to 2. Also, d(v, e) = 3 in BF1(G), where                     

e V(BF1(G))V(L(G)), if <{v, e}> forms a triangle in G. Therefore, v lies on a triangle in 
G.  
Conversely, assume each vertex of G lies on a triangle in G. Therefore G contains no isolated 

vertices and radius of BF1(G) is atleast 2. Let v1,v2V(BF1(G))V(G).  

Then dBF1(G) ( v1, v2)  2. 

Let vV(G) and e = (u, w)E(G) such that <{u, v, w}> forms a triangle in G. Let                      

e1 = (u, v). Then v, u, w, e, e1V(BF1(G)) and v e1 u e is a geodesic path in BF1(G). Therefore,  
e(v) = 3 in BF1(G). 

Let e1, e2E(G).  Since K4 is not an induced subgraph of G, d(e1, e2)  3 in BF1(G). But 

since d(v, e) = 3 in BF1(G),  eccentricity of e is 3 in BF1(G), for any  eV(BF1(G)) V(L(G). 
Therefore BF1(G) is self-centered with radius 3. 
 
Remark 2.2: 

 Let G be a graph with atleast four vertices and let G be not isomorphic to  K1,nmK1, 

n  1 and m  0 and K4 be not an induced subgraph of G.  Then BF1(G) is bi-eccentric 
with radius 2 and diameter 3 if and only if there exists  atleast one vertex in G not lying on 
any triangle G.  
 
Theorem 2.6: 

 Let G be a graph with at least four vertices and let G be not isomorphic to K1,nmK1, 

n  1 and m  0. Then BF1(G) is bi-eccentric with radius 3 and diameter 4 if and only if 
K4 is an induced subgraph of G and each vertex of G lies on a triangle in G. 
Proof: 
 Assume K4 is an induced subgraph of G and each vertex of G lies on a triangle in G. 
Then vertices of G in BF1(G) have eccentricity 3. Let e1, e2 be two independent edges in K4. 

Then e1, e2V(BF1(G)) and d(e1, e2 ) = 4 in BF1(G). That is, vertices in BF1(G) corresponding 

to the edges of G have eccentricity 4. The remaining vertices in V(BF1(G))V(L(G)) have 
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eccentricity less than or equal to 4. Therefore BF1(G) is bi-eccentric with radius 3 and 
diameter 4. 
 Conversely, assume BF1(G) is bi-eccentric with radius 3 and diameter 4. If there exists 
a vertex, say v in G not lying in a triangle, then eccentricity of v in BF1(G) is 2. Similarly, if 
K4 is not an induced subgraph of G, then there exists no vertex in BF1(G) having eccentricity 
4. Therefore K4 is an induced subgraph of G 
 
Remark 2.3: 

 Let G be a graph with at least four vertices and let G be not isomorphic to K1,nmK1, 

n  1 and m  0. Then BF1(G) has radius 2 and diameter 4 if and only if K4 is an induced 
subgraph of G and there exists a vertex not lying on a triangle in G. 

 

References: 
[1] J. Akiyama, T. Hamada and I. Yoshimura, Miscellaneous properties of Middle graphs, Tru. Math., Vol. 10 

(1974), 41-52. 
 

[2] M. Behzad  and  G. Chartrand,   Total  graphs  and   Traversability,  Proc. Edinburgh Math. Soc., 15 (1966), 
117-120. 

 
[3] S. B. Chikkodimath and E. Sampathkumar, Semi total graphs-II, Graph Theory   Research   Report,   Karnatak   

University,   No. 2,   (1973),  5 – 8. 
 
[4] F. Harary, Graph Theory, Addison- Wesley, Reading Mass, (1972). 
 
[5] T. Hamada  and  I. Yoshimura,   Traversability  and   connectivity   of  the Middle graph of a graph, Discre. 

Math., 14 (1976), 247-256. 
 
[6] T. N. Janakiraman, (1991), Line graphs of the geodetic graphs, Ph.d. Thesis, Madras University, Tamil Nadu, 

India. 
 
[7] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Boolean Function Graph of a Graph and on its 

Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.  
 
[8] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Boolean Function Graph 

of a Graph, Mathematica Bohemica, 130(2005), No.2, 135-151.  
 
[9] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean 

Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.  
[10] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Global Domination and Neighborhood numbers in 

Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 231-246. 
  

[11] T.N. Janakiraman, M. Bhanumathi, S. Muthammai, Edge Partition of the Boolean graph BG1(G), Journal of 
Physical Sciences, Vol.12, 2008, pp 97-107. 



	
	

47 Eccentricity Properties of Boolean Function Graph ( , , )B G K INC of a Graph 

[12] T.N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Complement of the Boolean function graph B(

Kp , NINC, L(G)) of a graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, 

Vol. 1, No.2, pp. 45-51, 2010. 
 
[13] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Domination Numbers on the Boolean Function 

Graph B( Kp , NINC, L(G)) of a graph, Int. J. of Engineering Science, Advanced Computing and Bio-

Technology, Vol. 2, No.1, pp. 11-24, 2011. 
 
[14] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Domination Numbers on the Complement of the 

Boolean Function Graph B( Kp , NINC, L(G)) of a Graph, Int. J. of Engineering Science, Advanced 

Computing and Bio-Technology, Vol. 2, No.2, pp. 66 -76, 2011. 
 
[15] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Global Domination and Neighborhood Numbers in 

Boolean Function Graph B( Kp , NINC, L(G)) of a Graph, Int. J. of Engineering Science, Advanced 

Computing and Bio-Technology, Vol. 2, No.3, pp. 110 -117, 2011. 
 
[16] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, On the Boolean graph BG2(G) of a Graph, Int. J. of 

Engineering Science, Advanced Computing and Bio-Technology, Vol. 3, No.2, pp. 93 -107, 2012. 
 
[17] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Domination parameters of the Boolean graph BG2(G) 

and its complement, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 3, No.3, 
pp. 115 -135, 2012. 

 

[18] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, On the Boolean Function Graph B(( Kp , NINC, 

L(G) ) of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.3, 

pp. 142 -151, 2012. 
 
[19] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, On the complement of the Boolean Function Graph 

B(( Kp , NINC, L(G) ) of a Graph”, Int. J. of Engineering Science, Advanced Computing and Bio-

Technology, Vol. 4, No.1, pp. 1 -18, 2013. 
 
[20] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentricity properties of Boolean graphs BG2(G) and 

BG3(G)  and its complement, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 
4, No.2, pp. 32 - 42 , 2013. 

 
[21] D.V.S. Sastry and B. Syam Prasad Raju, Graph equations for Line graphs, Total graphs, Middle graphs and 

Quasi-total graphs, Discrete Mathematics, 48(1984), 113-119. 
    
[22] H. Whitney, Congruent graphs  and  the  connectivity of graphs,  Amer. J.Math.  54 (1932), 150- 168.  

  


