International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 7, No. 1, January – March 2016, pp. 16 - 40

Domination parameters of the Boolean graph $BG₁(G)$ and its complement

T.N.Janakiraman1 , M.Bhanumathi 2 and S.Muthammai2

1 Department of Mathematics, National Institute of Technology, Trichirapalli 620015, India. E-mail: *janaki@nitt.edu 2 Government Arts College for Women, Pudukkottai-622001, India.* E-mail: *bhanu_ksp@yahoo.com, muthammai_s@yahoo.com*

Abstract: Let G be a simple (p, q) graph with vertex set $V(G)$ *and edge set* $E(G)$ *. B_{G, NINC},* $\bar{k}_q(G)$ *is a graph with vertex set* $V(G) \cup E(G)$ *and two vertices are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this graph by BG1(G), Boolean graph of G-first kind. In this paper, domination parameters of BG1(G) and its complement are studied.*

Key words: Boolean graph BG1(G).

1. Introduction

Let G be a finite, simple, undirected (p, q) graph with vertex set $V(G)$ and edge set $E(G)$. For graph theoretic terminology refer to Harary [6], Buckley and Harary [4].

Definition 1.1 [7]:A set $S \subseteq V$ is said to be a *dominating set* in G, if every vertex in V-S is adjacent to some vertex in S. A dominating set D is an *independent dominating set,* if no two vertices in D are adjacent that is D is an independent set. A dominating set D is a *connected dominating set*, if < D > is a connected subgraph of G. A dominating set D is a *perfect dominating set*, if for every vertex $u \in V(G)-D$, $|N(u) \cap D|= 1$. A dominating set D is a *total dominating set*, if < D > has no isolated vertices. A dominating set D is called an *efficient dominating set*, if the distance between any two vertices in D is at least three. A cycle C of a graph G is called a *dominating cycle* of C, if every vertex in V-C is adjacent to some vertex in C. A set $D \subseteq V(G)$ is a *global dominating set*, if D is a dominating set in G and G . A total dominating set D of a graph is a *total global dominating set*, if D is also a total dominating set of G. A set $D \subseteq V(G)$ is a *restrained dominating set*, if every vertex in V-S is adjacent to a vertex in S and other vertex in V-S.

Definition 1.2 [11]: A set S of vertices is said to be *irredundant*, if for every vertex $v \in S$, $p_n[v, S] = N[v]-N[S-[v]] \neq \emptyset$, that is, every vertex $v \in S$ has a private neighbor.

Received: 22December, 2015; Revised: 28February, 2016; Accepted: 22March, 2016

17 International Journal of Engineering Science, Advanced Computing and Bio-Technology

 The *irredundance number ir(G)* is the minimum cardinality of a maximal irredundant set in G.

Definition 1.3 [12]:A set S of vertices is called a *neighborhood set* provided G is the union of the subgraphs induced by the closed neighborhoods of the vertices in S; that is, $G = \bigcup \langle N[v] \rangle$. The *neighborhood number* $n_o(G)$ of a graph G equals the minimum cardinality of a neighborhood set.

Definition 1.4 [7]:The *domination number* γ of G is defined to be the minimum cardinality of a dominating set in G. Similarly, one can define the perfect domination number γ_{P} , connected domination number γ_{σ} , total domination number γ_{P} , independent domination number $\gamma_{\rm p}$ efficient domination number $\gamma_{\rm e}$, cycle domination number $\gamma_{\rm o}$, global domination number γ_e , total global domination number γ_{te} , restrained domination number γ .

An edge $uv \in E(G)$ is a *dominating edge* of G, if all the vertices of G other than u and v are adjacent to either u or v.

Definition 1.5:Cockayne and Hedetniemi [5] defined the *domatic number d(G)* of a graph to be the maximum number of elements in a partition of V(G) into dominating sets. G is *domatically full* if $d(G) = 1+\delta(G)$.

Definition 1.6:A vertex (point) and an edge are said to *cover*each other, if they are incident. A set of vertices, which cover all the edges of a graph G is called a *(vertex) point cover of G*, while a set of lines (edges), which covers all the vertices is a *line cover*. The smallest number of points in any point cover for G is called its *point covering number* and is denoted by $\alpha_{0}(G)$ or α_{0} . A set of points in G is *independent*, if no two of them are adjacent. The largest number of points in such a set is called the *pointindependence number* of G and is denoted by $\beta_0(G)$ or β_0 . Similarly, $\alpha_1(G)$ or α_1 is the smallest number of lines in any line cover of G and is called its *line covering number*. A point cover is called *minimum*, if it contains α _o points. A line cover is called *minimum*, if it contains α_1 points. Analogously, an independent set of lines (matching) of G has no two of its lines adjacent and the maximum cardinality of such a set is the *line independence number* $\beta_i(G)$ or β_1 . A set of independent edges covering all the vertices of a graph G is called a *1-factor* or a *perfect matching* of G.

Let G be a simple (p, q) graph with vertex set $V(G)$ and edge set $E(G)$. In [3, 8], it is defined that B_{G, NINC, Kq}(G) is a graph with vertex set V(G) \cup E(G) and two vertices are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this graph by $BG₁(G)$, Boolean graph of G-first kind. In this paper, domination parameters of $BG₁(G)$ and its complement are studied.

We need the following theorems to study the domination parameters of $BG₁(G)$ and its complement.

Theorem 1.1 [7]:ir(G) $\leq \gamma(G) \leq \gamma_i(G) \leq \beta_o(G)$. If $\gamma(G) \geq 2$, $\gamma(G) \leq \gamma_i(G) \leq \gamma_c(G)$.

Theorem 1.2[7]: $\gamma_{tg}(G) < \gamma_t(G)+2$.

Theorem 1.3[7]: Let D be a γ_g -set of G such that < D > has no isolates and diam(G) = 3, then $\gamma_{tg}(G) \leq \gamma_g(G)+2$.

Theorem 1.4[12]: $\gamma(G) \leq n_o(G) \leq \alpha_o(G)$.

Theorem 1.5 [9]: $BG_1(G)$ is self-centered with diameter two if and any if $G \neq K_2$.

2. Domination Parameters of $BG_1(G)$ and $\overline{BG_1(G)}$

In this section, domination parameters of $BG₁(G)$ and $BG₁(G)$ are studied. First domination parameters of $BG₁(G)$ are studied.

 Let G be a given graph. G is non-trivial. Therefore, G has at least one edge $e = uv \in E(G)$, where u, $v \in V(G)$. Consider $D = \{u, v, e\}$. D is a dominating set of $BG_1(G)$. Also, radius of $BG_1(G)$ is always greater than one. Hence, $1 < \gamma(BG_1(G)) \leq 3$.

If G has a pendant vertex $u \in V(G)$ and $e \in E(G)$ is incident with u in G, then D $= \{u, e\}$ dominates all the vertices of BG₁(G). Hence, $\gamma(BG_1(G)) = 2$. This set $\{u, e\}$ is independent in $BG_1(G)$. It is also an irredundant set (maximal) in $BG_1(G)$. Again, every element in V-D has adjacent elements in V-D. Hence, $\gamma_i(BG_1(G)) = \gamma_r(BG_1(G)) = 2$. D is also an efficient dominating set for $BG_1(G)$.

Now, assume that G has no pendant vertices.

(1) Let G be a graph with $\gamma(G) = 1$: Then the radius of G is one. If diam(G) = 1, that is G K_n , $n \geq 3$, take $e \in E(G)$, $e = uv$, where $u, v \in V(G)$. The set $D = \{u, v, e\}$ dominates $BG_1(G)$ and D is not independent. Hence, $\gamma(BG_1(K_n)) = 3$. If $n \geq 4$, D is restrained. If $n = 3$, $D = E(G)$ is restrained and independent. Hence, $\gamma_i(BG_1(K_3)) = \gamma_r(BG_1(K_3)) = 3$. When $n \ge 4$, let $S = \{e \in E(G) : e \text{ is incident with } u \text{ in } G\}$. Take $D = \{u\} \cup S$. Then D is a minimal independent dominating set of $BG_1(K_n)$, and is also restrained. Hence, $\gamma_i(BG_1(G)) \leq p$. $D = \{u, v, e\}$, where $e \in E(G)$ is a restrained dominating set of $BG_1(G)$ and hence $\gamma_r(BG_1(K_n)) = 3$.

Next, if $r(G) = 1$ and diam(G) = 2, there exists non-adjacent vertices u and v in G. If there exists non-adjacent vertices u and v in G, which dominates G, then $\{u, v\}$ dominates $BG_1(G)$. Hence, $\gamma(BG_1(G)) = 2 = \gamma_i(BG_1(G))$, otherwise, $\gamma(BG_1(G)) = 3 = \gamma_r(BG_1(G)) =$ ir($BG₁(G)$). ({u, v, x}, where $e_G(x) = 1$ and u and v not adjacent in G is irredundant in $BG₁(G)$ and hence ir($BG₁(G)$) = 3).

If $u \in V(G)$, $S = \{e \in E(G): e \text{ is incident with } u \text{ in } G\}$, then $S \cup \{u\}$ is an independent dominating set for BG₁(G). Hence, $\gamma_i(BG_1(G)) \leq 1+\delta(G)$.

(2) Let $\gamma(G) = 2:$ If there exists a dominating edge $e = uv \in E(G)$ and $\gamma_i(G) > 2$, then $\gamma(BG_1(G)) = 3$, where $D = \{u, v, e\}$ is a dominating set. D is also restrained. Hence, $\gamma_r(BG_1(G)) = 3 = \text{ir}(BG_1(G)) = 3$. If $\gamma(G) = 2 = \gamma_i(G)$, then $\gamma(BG_1(G)) = 2 = \gamma_i(BG_1(G)) = 3$ $ir(BG_1(G)) = \gamma_r(BG_1(G))$. (The independent dominating set of G is again an independent dominating set for $BG_1(G)$).

(3) Let $\mathbf{Y}(G) = 3$: In this case, $\mathbf{Y}(BG_1(G)) = 3$. If G has at least three independent vertices, then $\gamma_i(BG_1(G)) = 3$, since they dominate $BG_1(G)$. In general, $\gamma_i(BG_1(G)) \leq 1+\delta(G)$ and $\gamma_{\text{L}}(BG_1(G)) = 3$, since D = {u, v, e}, where e = uv \in E(G) is a restrained dominating set. D is also irredundant.

Thus, the following theorems are proved.

Theorem 2.1: If G has a pendant vertex, then $\gamma(BG_1(G)) = 2$.

Theorem 2.2:Let G be a graph without pendant and isolated vertices.

(1) If diam(G) = 1, then $\gamma(BG_1(G)) = 3 = \gamma_r = ir(BG_1(G))$ and $\gamma_i(BG_1(G)) \leq p$.

(2) If $r(G) = 1$ and diam(G) = 2, and if there exists non-adjacent vertices u, $v \in V(G)$ such that $\{u, v\}$ dominates G, then $\gamma(BG_1(G)) = \gamma_i(BG_1(G)) = \gamma_r(BG_1(G)) = ir(BG_1(G)) = 2$.

(3) If $\gamma(G) = 2 = \gamma_c(G)$ and $\gamma_i(G) > 2$, then $\gamma(BG_1(G)) = \gamma_r(BG_1(G)) = \text{ir}(BG_1(G)) = 3$ and $\gamma_i(BG_i(G)) \leq 1+\delta(G).$

(4) If $\gamma(G) = 2 = \gamma_i(G)$, then $\gamma(BG_1(G)) = \gamma_i(BG_1(G)) = ir(BG_1(G)) = \gamma_r(BG_1(G)) = 2$.

$$
(5) \ \text{If} \ \gamma(G) \geq 3, \ \text{then} \ \gamma(BG_1(G)) = \gamma_r(BG_1(G)) = \text{ir}(BG_1(G)) = 3 \ \text{and} \ \gamma_i(BG_1(G)) \leq 1 + \delta(G).
$$

Remark 2.1:

1. If $u \in V(G)$ and D is the set of all edges incident with u in G, then $\{u\} \cup D$ is a dominating set of $BG_1(G)$, which is also independent. Hence, $\gamma_i(BG_1(G)) \leq 1+\delta(G)$. 2. D = V(G) is a dominating set of $BG_1(G)$ if and only if $G \neq K_2$.

3. D = E(G) is a dominating set of BG₁(G) if and only if $G \neq K_{1,n}$.

4. If $D \subset V(G)$ is a dominating set of G, then D is a dominating set of $BG_1(G)$ if and only if $|D| \geq 3$ or $|D| = 2$ and is independent.

 A D-partition of G is a partition of V(G) into dominating sets. The maximum order of a D-partition is called the domatic number of G. Now, we shall evaluate the domatic numbers of $BG_1(G)$, when $G = C_n$, P_n , $K_{1,n}$, K_n , $K_{n,n}$ and nK_2 .

Proposition 2.1:Domatic number of BG₁(C_n) is $\lfloor (n+2)/2 \rfloor$.

Proof: Let $v_1, v_2, v_3, ..., v_n$ form a cycle $C_n = G$ and let $v_1v_2 = e_{12}, ..., v_{n-1}v_n = e_{(n-1)n}$, $v_n v_1 =$ $e_{nl} \in E(G)$.

Case 1: n is even, $n = 2k$.

 $D_1 = \{v_1, e_{12}, e_{n1}\}, D_2 = \{v_3, e_{23}, e_{34}\}, ... D_{n/2} = \{v_{2k-1}, e_{(2k-2)(2k-1)}, e_{(2k-1)2k}\}, D_{(n+2)/2} = \{v_{2k}, v_{2k-2}, e_{(2k-1)2k}\}$..., v_2 . D₁, D₂, ..., D_{(n+2)/2} is a maximum domatic partition of BG₁(G). Therefore, Domatic number of $BG_1(C_n) = (n+2)/2 = n/2+1$.

Case 2: n is odd = $2k+1$.

Take $D_1 = \{v_1, e_{12}, e_{21}, e_{22}, e_{31}\}, D_2 = \{v_3, e_{33}, e_{34}\}, \ldots, D_{2k/2} = \{v_{2k-1}, e_{(2k-1)(2k-2)}, e_{(2k-1)2k}\}.$ $D_{(n+1)/2} = D_{2k/2+1} = \{v_{2k+1}, v_{2k}, v_{2k-2}, \ldots, v_{2}, e_{2k(2k+1)}\}\$. $D_1, D_2, \ldots, D_{n+1/2}$ is a domatic partition of $BG₁(G)$.

Proposition 2.2:Domatic number of $BG_1(P_n)$ is $\lfloor n+2/2 \rfloor$.

Proof: Let $v_1, v_2, ..., v_n$ represent $P_n = G$. $v_i v_{i+1} = e_{i(i+1)} \in E(G)$. **Case 1:** n = 2k+1 (odd).

Consider $D_1 = \{e_{12}, v_1\}$, $D_2 = \{v_3, e_{23}, e_{34}\}$, …, $D_k = \{v_{2k-1}, e_{(2k-2)(2k-1)}, e_{(2k-1)2k}\}$, $D_{k+1} = \{v_2, v_4, v_5\}$ $..., v_{n-1}, v_n, e_{2k(2k+1)}\)$. $D_1, D_2, ..., D_{k+1}$ is a domatic partition of $BG_1(P_n)$. Hence, domatic number of BG₁(P_n) is k+1 = \int (n+2)/2].

Case 2: n = 2k, even.

Consider $D_1 = \{v_1, e_{12}\}, D_2 = \{v_3, e_{23}, e_{34}\}, \ldots, D_{n/2} = \{v_{n-1}, e_{(n-2)(n-1)}, e_{(n-1)n}\}, D_{n/2+1} = \{v_2, v_4, e_{(n-1)n}\}$ $..., v_n$. D₁, D₂, ...,D_{n/2+1} is a domatic partition of BG₁(P_n).

Hence, domatic number of $BG_1(P_n)$ is $(n/2)+1 = (n+2)/2$.

Proposition 2.3:Domatic number of $BG_1(K_{1,n}) = n$. **Proof:** Let v be the central vertex of $K_{1,n}$ and let $v_1, v_2, ..., v_n$ be the other vertices.

 $D_1 = \{v_1, e_1\}, D_2 = \{v_2, e_2\}, \dots, D_n = \{e_n, v_n\}, e_j = v v_j \in E(G)$ is a domatic partition. Hence, domatic number of $BG_1(K_{1n})$ is n.

Remark 2.2: $\delta(BG_1(K_{1,n})) = n-1$. Hence, $d(BG_1(K_{1,n})) = \delta(BG_1(K_{1,n})) + 1 = n$. Hence, $BG_1(K_{1,n})$ is domatically full.

Proposition 2.4:Domatic number of $BG_1(K_n)$ is $\left| n/2 \right|$.

Proof: Let $v_1, v_2, ..., v_n$ be the vertices of K_n and $v_i v_j = e_{ij} \in E(G)$, i, j = 1, 2, ..., n. **Case 1:** n is even.

 $D_1 = \{v_1, v_2, e_{12}\}; D_2 = \{v_3, v_4, e_{34}\}; \dots; D_{n/2} = \{v_{n+1}, v_2, e_{(n-1)n}\}$, all other line vertices} is a domatic partition of $BG_1(K_n)$. Hence, domatic number of $BG_1(K_n) = n/2$. **Case 2:** n is odd. Let n = 2k+1.

 $D_1 = \{v_1, v_2, e_{12}\}; D_2 = \{v_3, v_4, e_{34}\} \dots; D_k = \{v_{2k-1}, v_{2k}, v_{2k+1}, e_{(2k-1)2k}\} \cup \{other line vertices\}$ is a domatic partition of BG₁(K_n). Therefore, domatic number of BG₁(K_n) = $\lfloor n/2 \rfloor$ = k = $(n-1)/2$.

Proposition 2.5:Domatic number of $BG_1(K_{n,n})$ is n.

Proof: Let u_i , v_i , where $i = 1, 2, ..., n$ be the vertices of $K_{n,n}$ and $e_{ij} = u_i v_j$, $i, j = 1, 2, ..., n$. D_1

 $= \{u_1, v_1, e_{22}\}, D_2 = \{u_2, v_2, e_{33}\}, \ldots, D_{n-1} = \{u_{n-1}, v_{n-1}, e_{nn}\}, D_n = \{u_n, v_n, e_{11}\}\$ and remaining line vertices} is a domatic partition of $R(K_{n,n})$. Hence, domatic number of $BG_1(K_{n,n})$ is n.

Proposition 2.6:Domatic number of $BG_1(nK_2) = n$.

Proof: Let u_i , v_i , $i = 1, 2, ..., n$ be the vertices of nK_2 and let $u_i v_i = e_i \in E(G)$. $D_1 = \{u_1, v_1, e_1\}; D_2 = \{u_2, v_2, e_2\}$,..., $D_n = \{u_n, v_n, e_n\}$ is a domatic partition of $BG_1(nK_2)$. Hence, the domatic number of $BG_1(nK_2)$ is n.

Now, we shall find the domination parameters of $BG₁(G)$ for some classes of graphs and give the bounds for γ (BG₁(G)).

Proposition 2.7: γ ($BG_1(G)$) = 1 if and only if $G = K_2$. **Proof:** Clearly γ ($BG_1(K_2)$) = 1.

On the other hand, assume γ ($BG_1(G)$) = 1. Hence, r($BG_1(G)$) = 1. $BG_1(G)$ is self-centered with diameter two except when $G = K_2$. This proves the result.

Proposition 2.8: If $G \neq K_2$ and has a pendant vertex, then γ ($BG_1(G)$) = 2 = γ_c (BG₁(G)).

Proof: Let x be a pendant vertex of G and let $e = xy \in E(G)$, $y \in V(G)$. Consider, $D = \{x, e\}$ in BG₁(G). D is a connected minimal dominating set in BG₁(G), since e is adjacent to every other line vertices and x, y; x is adjacent to all other point vertices except y in BG₁(G). Therefore, γ (BG₁(G)) = 2 = γ_c (BG₁(G)).

Proposition 2.9: If G has an isolated vertex, then γ ($BG_1(G)$) = 2.

Proof: Let $u \in V(G)$ be an isolated vertex of G. Consider $D = \{u, e\}$, where $e \in E(G)$. D is an independent dominating set of $BG₁(G)$, since u dominates all the point vertices and e dominates all the line vertices of $BG_1(G)$. Hence, γ ($BG_1(G)$) = 2 = γ_i ($BG_1(G)$).

Proposition 2.10: If $G \neq K_2$ and $p \leq 4$, then γ ($BG_1(G)$) = 2.

Proof: As $G \neq K_2$, clearly γ ($BG_1(G)$) > 1. If G has a pendant vertex or isolated vertex, then γ (BG₁(G)) = 2. If G has no isolated vertices, there exists e₁, e₂ EE(G) such that ${e_1, e_2}$ is a line cover for G. Hence, D = ${e_1, e_2}$ is a dominating set of BG₁(G). This proves the proposition.

Theorem 2.3: γ ($BG_1(G)$) = 2 if and only if any one of the following is true.

(1) G has a pendant vertex $(G \neq K_2)$. (2) $p \leq 4$. (3) G has an isolated vertex. (4) G contains a triangle with at least one vertex of degree two in G.

Proof: Assume γ ($BG_1(G)$) = 2. Let D be a dominating set of $BG_1(G)$ with cardinality two.

Case 1: $D = \{u, v\} \subseteq V(G)$

D dominates $BG_1(G)$. Hence, all other point vertices and line vertices in $BG_1(G)$ are adjacent to u or v or both. This gives $\gamma((G)) \leq 2$.

Sub case 1.1:
$$
\gamma
$$
(G) = 1

In this case, G has an isolated vertex u. But $D = \{u, v\}$. Hence, in BG₁(G), u is adjacent to all point vertices and v is adjacent to all line vertices. Hence, all edges are incident with v in G. Hence, $G = K_{1,n} \cup mK_1$.

$$
Sub case 1. 2:\text{Y}(-G) = 2.
$$

In this case, G has no vertex, which is adjacent to both u and v, and all edges are incident with u or v or both in G. That is, G is a double star or $G = K_{1,n} \cup K_{1,m}$. So, in this case 1, G has a pendant vertex.

Case 2: $D = \{e_1, e_2\} \subseteq E(G)$.

This gives e_1 , e_2 are incident with all point vertices. Hence $p \leq 4$.

Case 3: $D = \{u, e\}$, where $u \in V(G)$ and $e \in E(G)$.

In this case, e is adjacent to all line vertices in $BG₁(G)$ and is adjacent to exactly two point vertices v_1 , v_2 , where $e = v_1v_2 \in E(G)$. Therefore, remaining point vertices must be adjacent to u in $BG_1(G)$. Hence, deg_Gu is at most 2.

Now, $deg_G u = 0$ implies that u is isolated in G; $deg_G u = 1$ implies u is pendant in G; deg_Gu = 2 implies u is adjacent to v_1 and v_2 such that $v_1v_2 = e \in E(G)$, that is G contains a triangle with a vertex of degree two in G.

Converse follows from the previous propositions.

Remark 2.3: From the definition of $BG₁(G)$, the following results follow:

(1) If D is dominating set of G, then D \cup {e} is a dominating set of BG₁(G). Hence, γ (BG₁(G)) $\leq \gamma$ (G)+1.

(2) If $D \subseteq E(G)$ is a line cover of G, then D dominates $BG₁(G)$. Converse is also true. Hence, γ (BG₁(G)) $\leq \alpha$ ₁(G).

(3) If there exists a minimal point cover D of G such that $N(v) \cap D \neq D$ for $v \in V-D$, then D is a dominating set of $BG_1(G)$. γ ($BG_1(G)$) $\le \alpha_0(G)$. Here, D is a global dominating set of G. The converse is also true.

(4) The set of all point vertices is a dominating set for $BG₁(G)$.

(5) The set of all line vertices is a dominating set of $BG₁(G)$ if and only if G has no isolated vertices.

(6) If $u \in V(G)$ and $D \subseteq E(G)$ contains all the edges incident with u in G, $D \cup \{u\}$ is a dominating set of $BG_1(G)$. Hence, γ ($BG_1(G)$) $\leq 1+\delta(G)$.

Generally, γ (BG₁(G)) min {1+ γ (G), α ₁(G), 1+ δ (G)}.

(7) D is dominating set of G, D dominates $BG₁(G)$ if and only if D is global dominating set of G and is also a point cover of G.

 Now, assume that G is a graph without isolated vertices and pendant vertices. Also, assume that $p \geq 5$.

Theorem 2.4: Let G be a graph such that diam(G) \geq 3.

(1) If G contains a triangle with at least one vertex of degree 2 in G then γ (BG₁(G)) = 2 $=\gamma_i$ (BG₁(G)).

(2) If G contains no triangle with at least one vertex of degree 2 in G, then γ ($BG₁(G)$)=3. $Proof:$ Diam(G) \geq 3.

Case 1: G contains a triangle with one vertex of deg 2 in G.

Let u, v, w form this triangle and let deg_Gu = 2, Let e = vw $\in E(G)$. D = {u, e} dominates $BG_1(G)$, since u dominates all point vertices except u and w and e dominates v, w and all line vertices. Hence, γ ($BG_1(G)$) = 2.

Case 2: G has no triangle with a vertex of deg 2 in G.

Diam(G) \geq 3. Therefore, there exists u, $v \in V(G)$ such that $d_G(u, v) \geq 3$. Then D = {u, v} dominates G and hence $\{u, v, e\}$, $e \in E(G)$ dominates $BG_1(G)$. $\{u, v, e\}$ is connected, if e is incident with u or v. Hence, γ (BG₁(G)) = 3 = γ _c(BG₁(G)).

This proves the theorem.

Theorem 2.5: Let G be a graph with diameter two. (1) If G contains a triangle with at least one vertex of degree 2 in G, then γ ($BG_1(G)$) = 2.

(2) If (1) is not true and if G has an edge e not in any triangle, then γ ($BG_1(G)$) = 3.

(3) If $\delta(G) = 2$ such that deg_Gu = 2 and u is not in any triangle, then γ (BG₁(G)) = 3.

(4) γ (BG₁(G)) = 1+ $\mathbf{Q}_1(N(v))$, where deg_Cv = δ (G).

Proof: Assume that diameter of G is 2.

Proof of (1): Similar to the proof of Theorem 2.4.

Proof of (2): Let $e = uv \in E(G)$ such that e is not in any triangle. $D = \{u, v, e\}$ dominates $BG_1(G)$. Hence, γ ($BG_1(G)$) \leq 3. Therefore, γ ($BG_1(G)$) = 3 by Theorem 2.4. **Proof of (3):** Let $deg_G u = \delta(G) = 2$, u is not in any triangle. Let v, w be adjacent to u in G and v, w be not adjacent in G. Hence $D = \{u, e_1, e_2\}$, where $e_1 = uv$, $e_2 = uw \in E(G)$ is a minimal dominating set of $BG_1(G)$. Hence, γ ($BG_1(G)$) = 3.

Proof of (4): If the hypothesis of (1), (2) and (3) are not true, then let $\delta(G) = deg_G u$. Let D be the set of edges incident with u. Then $D \cup \{u\}$ is a dominating set of BG₁(G). Hence, γ (BG₁(G)) \leq 1+ δ (G). Since every edge of G is in a triangle,

 $\langle N(u)\rangle$ has no isolated vertices. Consider a line cover of $\langle N(u)\rangle$ in G. Then $\{u\}$ \cup (Line cover of $\langle N(u) \rangle$ form a dominating set for BG₁(G).

Therefore, γ (BG₁(G)) \leq 1+ α ₁(<N(u)>).

Proposition 2.11: If $G = K_n$, then γ ($BG_1(G)$) = $\int n/2$, n is even. $(n+1)/2$, n is odd.

Proof: In G, all vertices are adjacent to each other. Consider any minimal line cover for G. If $G = K_n$, $\mathbf{C}_1(G) = n/2$ or $(n+1)/2$ and this minimal line cover is the minimal dominating set for $BG₁(G)$ with minimum cardinality. This proves the proposition.

Proposition 2.12: γ ($BG_1(G)$) $\leq \delta(G)$, if $\delta(G) \geq 3$.

Proof: If there exists $e \in E(G)$ such that e is not in any triangle, then $D = \{u, v, e\}$, where $e = uv \in E(G)$ dominates $BG_1(G)$. Hence, $\gamma(\overline{BG}_1(G)) \leq 3$. If there exists no such e in G, that is if every edge lies in some triangle, then let $S = \{e \in E(G) : e$ is incident with u}, where deg_Gu = δ (G). Consider N(u). N(u) has no isolated vertices and so α_1 (< N(u) >) $\leq \delta(G)-1$. Let D be a line cover of N(u) with cardinality α_1 (< N(u) >). $\{u\} \cup D$ is a dominating set for $BG_1(G)$. Hence, γ ($BG_1(G)$) $\leq 1+\delta(G)-1 = \delta(G)$.

Remark 2.4:Let G be a graph without isolated vertices and pendant vertices, with $p \ge 5$. Then (1) If deg_Gu = 2 and u lies on a triangle, then γ ($BG_1(G)$) = 2. If deg_Gu = 2 and u is not on any triangle, then γ (BG₁(G)) = 3. (2) If $\delta(G) \geq 3$, then $\gamma(\overline{BG}_1(G)) \leq \delta(G)$.

Theorem 2.6: If $G \neq K_2$, then $4 \leq \gamma(\overline{BG}_1(G)) + \gamma(\overline{BG}_1(G)) \leq 4+k$ where $k = \min \{\delta(G),$ $\gamma(-G)$.

Proof: Since $G \neq K_2$, γ ($BG_1(G)$) \geq 2, and $\gamma(BG_1(G)) = 2$ or 3.

 Therefore, 4 (BG1(G))+(BG1(G)) --------------------------------------- (1) Also, $\gamma(BG_1(G)) \leq 3$ and $\gamma(\text{ BG}_1(G)) \leq \min\{1+\delta(G), \gamma(G)+1\}$ Therefore, $\gamma(BG_1(G)) + \gamma(\overline{BG}_1(G)) \leq 4+k$, where k = min { $\delta(G), \gamma(\overline{G})$ } ------ (2) From (1) and (2), it is clear that, $4 \leq \gamma(BG_1(G)) + \gamma(ABG_1(G)) \leq 4+k$.

Remark 2.5:(1) When $G = K_2$, $\gamma(BG_1(G)) = 2$ and $\gamma(C) = 1$. Hence, $\gamma(BG_1(G))+\gamma(-BG_1(G)) = 3.$ (2) If $\delta(G) > 2$, $4 \leq \gamma(BG_1(G))+\gamma(-BG_1(G)) \leq 3+k$.

Examples (1) If G has a pendant vertex then γ ($BG_1(G)$) = 2 and $\gamma(BG_1(G))$ = 2. Hence, the lower bound is sharp.

Here, D = {u, e₁, e₂}. γ (BG₁(G)) = 3, δ (G) = 2 and γ (G) = 2. $\gamma(BG_1(G)) = 3$, since $\gamma(G) \geq 3$. Hence, $\gamma(BG_1(G)) + \gamma(ABG_1(G)) = 6 = 4+2 = 4+k$. Hence, the upper bound in the inequality is also sharp.

3. Irredundant number of $BG₁(G)$

Next, properties related to irredundant sets of $BG₁(G)$ and $BG₁(G)$ can be studied.

Proposition 3.1:(1) Set of all point vertices is an irredundant set of $BG₁(G)$ if and only if $G = K₃$.

(2) Set of all line vertices is an irredundant set of $BG₁(G)$ if and only if $G = 2K₂$, $K₃$ and $K_{1,2}$.

Proof of (1): Let V(G) be irredundant in $BG_1(G)$. Let $v \in V(G)$. v has a private neighbor in $BG₁(G)$ if there exists an edge e not incident with v but incident with all other vertices, which is true for every $v \in V(G)$. This gives $p = 3$ and $G = K₃$. Converse is obvious.

Proof of (2): Let $D = E(G)$ be irredundant in $BG_1(G)$. Take $e \in D$. e has a private neighbor in $BG_1(G)$, if there exists $u \in V(G)$ such that e is not incident with u and all other edges are incident with u. This is true for all $e \in E(G)$. Hence, $G = 2K_2$, K_3 or K_1 .

Theorem 3.1:ir($BG_1(G)$) = 2 if G satisfies any one of the following conditions.

(1) G is a graph with $p \leq 4$. (2) G has a pendant vertex. (3) G has an isolated vertex. (4) G has a triangle with a vertex of degree two.

Proof: Let G be a graph with $p \leq 4$. If G has no pendant or isolated vertices, let $D = \{e_1, e_2\}$. e_1, e_2 have private neighbors in BG₁(G), and hence D is irredundant. Also, γ (BG₁(G)) = 2. Hence, ir(BG₁(G)) = 2 [since ir(BG₁(G)) $\leq \gamma$ (BG₁(G))].

If G has a pendant vertex u, then $\{u, e\}$, where e is incident with u, is an irredundant set (maximal). Hence, ir $(BG_1(G)) = 2$.

If G has an isolated vertex u, $D = \{u, e\}$, where $e \in E(G)$ is a maximal irredundant set with minimum cardinality. Hence, ir $(BG₁(G)) = 2$.

If G has a triangle with a vertex u of degree 2 in G, then in $BG_1(G)$, {u, e}, where $e = u_1, u_2 \in E(G)$ and $N(u) = \{u_1, u_2\}$ is irredundant. Hence the theorem is proved.

Theorem 3.2: Let G be a graph without isolated vertices. Let $\text{diam}(G) \geq 3$.

- (1) If G has a pendant vertex, then ir($BG₁(G)$) = 2.
- (2) If G has no pendent vertices, then ir $(BG_1(G)) = 3$.

Proof: Proof of (1) follows from Theorem 3.1. If v, $u \in V(G)$ are not pendant in G, then $D = \{u, v, e\}$, where $d_G(u, v) \geq 3$ and $e \in E(G)$ is a maximal irredundant set with minimum cardinality. Hence, ir $(BG_1(G)) = 3$.

Following results are stated without proof, since they are easy to follow.

Theorem 3.3: Let diam(G) = 2. (1) If G contains a triangle with a vertex u of degree two and e an edge not incident with u, then $D = \{u, e\}$ is a maximal irredundant set for $BG_1(G)$.

(2) If G has an edge $e = uv \in V(G)$, which is not in any triangle, then $D = \{u, v, e\}$ is maximal irredundant.

(3) Let $u \in V(G)$, with $e(u) \neq 1$ and $D = \{e \in E(G) : e$ is incident with u}. Then D is maximal irredundant in $BG₁(G)$.

(4) If every edge of G is in a triangle for $u \in V(G)$ with $e(u) \neq 1$. $D = \{u\} \cup D^1$, where D^1 is a minimal line cover of $N(u)$ in G is maximal irredundant in $BG₁(G)$.

Proposition 3.2: Let $r(G) = 1$. Let $u \in V(G)$ such that $e(u) = 1$. Then (1) $N(u)$ is a maximal irredundant set of $BG₁(G)$.

(2) Let $D = \{e \in E(G): e \text{ is incident with } u\}$. Then D is also a maximal irredundant set of $BG_1(G)$.

Proposition 3.3:If $G = K_n$, any set containing $(n-1)$ point vertices is an irredundant subset of $BG_1(G)$.

Proposition 3.4: Let G be a graph without isolated vertices and let D be a minimal line cover for G. Then D is an irredundant set of $BG_1(G)$

4. Independent domination of $BG₁(G)$

We have already found out the independent domination number of $BG₁(G)$. Now, independent domination number of $BG₁(G)$ can be studied.

Theorem 4.1: γ_i $BG_1(G)$ = 2 if and only if any one of the following is true. (1) G = K₂ mK₁, m > 1. (2) G has an isolated vertex. (3) G has a pendant vertex u such that uv \in E(G) and deg_Gv \geq 2. (4) G has a vertex u lying on a triangle and deg_Gu = 2. **Proof:** Assume γ_i $BG_1(G)$) = 2, $G \neq K_2$. Since γ $BG_1(G)$) \neq 1, γ $BG_1(G)$) = 2. Let D be an independent dominating set of $BG₁(G)$. **Case 1:** $D = \{u, v\} \subset V(G)$.

Since D is independent, u and v are adjacent in G and u, v are not in any triangle in G.

Also u, v dominates only one line vertex. Hence, G must be $K_2 \cup mK_1$, $m > 1$. (Because for $G = K_2$, γ ($BG_1(G)$) = 1 = γ_i ($BG_1(G)$)).

Case 2: $D = \{e_1, e_2\} \subset E(G)$.

This is not possible, since line vertices form a complete graph in $BG₁(G)$.

Case 3: $D = \{u, e\}$, where $u \in V(G)$ and $e \in E(G)$.

Since D is independent in G, e is not incident with u.

Sub case 3.1: u is isolated.

In this case, e may be any line vertex.

Sub case 3.2: $\text{deg}_{\text{G}}u = 1$.

If deg_Gu = 1. u is pendant in G. Let $e_1 = uv \in E(G)$. In BG₁(G), u cannot dominate v. Therefore, D is an independent dominating set implies that e must be incident with v.

Hence, deg_Gv \geq 2.

Sub case 3.3: $deg_G u = 2$.

Let $N(u) = \{v, w\}$ in G. In BG₁(G), u dominates all the point vertices except v and w. Hence, e must be incident with both v and w.

Sub case 3.4 :deg_cu ≥ 3 .

In this case, D cannot be a dominating set.

This proves (1) , (2) , (3) and (4) . Converse is obvious.

Proposition 4.1: γ_i (BG₁(G)) $\leq \gamma_i$ (G) or γ_i (G)+1.

Proof: Let D be an independent dominating set with cardinality γ_i (G) for G. If D is a point cover for G, then D is an independent dominating set of $BG₁(G)$, otherwise $D \cup \{e\}$, where $e \in E(G)$ is not incident with any element of D, is an independent dominating set for $BG_1(G)$. Hence, $\gamma_i(-BG_1(G)) \leq \gamma_i(-G)$ or $\gamma_i(-G)+1$.

Remark 4.1: If G is a graph with $p \leq 4$, then γ_i ($BG_1(G)$) = 2 or 3.

Theorem 4.2: Let G be a graph not satisfying the conditions of the Theorem 4.1. (1) If G has an edge not lying in any triangle, then γ_i $B G_1(G)$ = 3.

(2) If each edge of G is lying on a triangle, then $\gamma_i(-BG_1(G)) \leq \delta(G)+1$.

Proof: Let G be a graph not satisfying any conditions of Theorem 4.1. Then γ_i $BG_1(G)$) > 2 .

Case 1: G has an edge not lying in any triangle.

Let $e = uv \in E(G)$, such that e is not lying in any triangle. u and v dominates all point vertices in BG₁(G). Take D = {u, v, e₁}, where e₁ is not incident with u and v in G. D is an independent dominating set for $BG_1(G)$. Hence, γ_i ($BG_1(G)$) = 3.

Case 2: Every edge of G is lying in some triangle and $G \neq K_1$.

Let deg_Gu = $\delta(G)$. In BG₁(G), u dominates all point vertices in V(G)–N(u). Since, every edge is lying on a triangle, $\langle N(u) \rangle$ has no isolated vertices. Consider a minimal independent dominating set for $\langle N(u) \rangle$. Let it be D₁. If $G \neq K_n$, then $D_1 \cup \{u\}$ is an independent dominating set of G. D = $D_1 \cup \{u\} \cup \{e\}$, where e is not incident with elements of D₁, is an independent dominating set of $\overline{B}G_1(G)$ and $\overline{D}|\leq D_1|+1+1 \leq$ $(\delta(G)-1)+1+1 = \delta(G)+1.$

Case 3: $G = K_n$

Let $e = v_1v_2 \in E(G)$ and $v_1, v_2, ..., v_n \in V(G)$. $D = \{e, v_3, v_4, ..., v_n\}$ is an independent dominating set for $BG_1(G)$. Hence, $\gamma_i(-BG_1(G)) \leq n-1 \leq \delta(G)+1$.

This proves the theorem.

5. Connected, total and cycle domination of $BG_1(G)$ and $BG_1(G)$

In this section, connected, total and cycle domination of $BG₁(G)$ and its complement are studied.

Observations: (1) If G has a pendant vertex with $p > 2$ and $q \ge 2$, then $\gamma_c(BG_1(G)) = 3$. If u is pendant, v is adjacent to u in G, then $D = \{u, v\} \cup \{e\}$, where $e \neq uv \in E(G)$ is a dominating set.

(2) Let G be a connected graph with $p \ge 3$ and $\gamma(G) = 2$. Then $\gamma_c(BG_1(G)) = 3$. $[D = \{u_1, u_2\}$ u_2, u_3 , where $\{u_1, u_2\}$ is a connected dominating set of G and u_3 is adjacent to u_1 or u_2 or $D = \{u_1, u_2, e\}$, where e is not incident with u_1, u_2 if $\{u_1, u_2\}$ is not a connected dominating set of G].

(3) If $\gamma_c(G) > 3$ and G has no pendant vertex, then $\gamma_c(BG_1(G)) \leq 4$. [The connected dominating set D is given by $D = \{u, v, w, e\}$, $e = uv \in E(G)$, where $\{u, v, w\}$ is a connected set of G. $\gamma_c(BG_1(G))$ is at least 3. (4) D $\subset V(G)$ such that $|D| = 2$ cannot be a connected dominating set of $BG₁(G)$.

Theorem 5.1: If $G \neq K_2$, 2 K_2 , then $\gamma_t(BG_1(G)) \leq 4$.

Proof: Let $e = uv \in E(G)$ and let w be adjacent to u or v in G. Then $\langle D \rangle = \langle u, v, e, w \rangle$ $>$ is connected. Hence, D is a connected dominating set of BG₁(G) and hence $\gamma_c(BG_1(G))$

 ≤ 4 and $\gamma_t(BG_1(G)) \leq 4$. If $G = 2K_2$, then $BG_1(G)$ is disconnected and $\gamma_t(BG_1(G)) = 4$. If $G = nK_2$ for $n > 2$, $\gamma_c(BG_1(G)) = 4 = \gamma_t(BG_1(G))$. This proves the theorem.

Theorem 5.2: $\gamma_o(BG_1(G)) = 3$ if and only if $\gamma_o(G) = 3$.

Proof: If $\gamma_o(G) = 3$, then G has a dominating set D = {u, v, w}, where u, v, w form a C₃ in G. This D is also a dominating set for $BG_1(G)$. Hence, $\gamma_0(BG_1(G)) = 3$.

(Here, $\langle D \rangle$ is an induced cycle). Conversely, assume that $\gamma_0(BG_1(G)) = 3$. Then there exists $D = \{x, y, z\} \subseteq V(BG_1(G))$ such that D is a cycle dominating set of $BG_1(G)$. Case1: $x, y, z \in V(G)$.

Since, G is an induced subgraph of BG₁(G), $\gamma_o(G) = 3$.

Case2: x, $y \in V(G)$ and $z \in E(G)$.

x, y and z form a C_3 in $BG_1(G)$. Thus, in G, z is not incident with x and y. Also in G, x and y are adjacent. Take $e = xy \in E(G)$. In $BG_1(G)$, e is not dominated by D. Hence, this case is not possible. Similarly, other cases are also not possible.

This proves the theorem.

Theorem 5.3: Let G be a graph with $p > 4$, $\gamma_o(BG_1(G)) = 4$ if and only if $\gamma_o(G) \neq 3$ and any one of the following is true. (1) G has a vertex of degree at least 3.

(2) There exists two non-adjacent vertices u and v in G and two edges e_1 and e_2 not incident with both u and v such that either they are not adjacent or they are incident at w, where w is adjacent to u or v.

Proof: Assume $\gamma_o(G) \neq 3$ and (1) or (2) is true. Since $\gamma_o(G) \neq 3$, $\gamma_o(BG_1(G)) \neq 3$. Now, assume that G has a vertex v_0 of degree at least 3. Let $N(v_0) = \{v_1, v_2, v_3\}$ and $e_i = v_o v_i \in E(G)$. In $BG_1(G)$, $D = \{v_0, e_1, v_2, v_3\}$ is a cycle dominating set. Hence $\gamma_{0}(BG_{1}(G)) = 4.$

If (2) is true, D = {u, v, e_{1,} e₂} is a cycle dominating set in BG₁(G). Therefore, $\gamma_o(BG_1(G))$ = 4.

Conversely, assume that $\gamma_0(BG_1(G)) = 4$. $\gamma_0(BG_1(G)) = 4$ implies that $\gamma_0(BG_1(G))$

 \neq 3 and hence $\gamma_0(G) \neq$ 3 by Theorem 5.2.

Case 1: All vertices in the cycle dominating set D are point vertices.

Let $D = \{u, v, w, z\} \subset V(G)$. D is also a cycle dominating set of G. Since $p \ge 5$, there exists another vertex x in G, which is adjacent to any one of this four vertices (say u). [x cannot be in another component, since D is a dominating set of $BG₁(G)$. Thus, $deg_Gu \geq 3$. **Case 2:** D contains one line vertex and three point vertices

Let $D = \{u, v, w, e\}$, $e \in E(G)$. Let u v w e u be an induced C_4 . In this case, $\{u, v, w\}$ is not a cycle dominating set of G; u, w are not adjacent; e is not incident with u and w; and e must be incident with v, (otherwise, e and v are adjacent in BG₁(G)). Thus, $\text{deg}_{\mathbb{C}}v \geq 3$. **Case 3:** D contains two point vertices and 2 line vertices.

Let D = {u, v, e₁, e₂}. Here u e₁ v e₂ u is a C₄,where e₁, and e₂ are not incident with u and v in G. Also, as D is a dominating set, either e_1 , e_2 are not adjacent in G or they are incident at a vertex, which is adjacent to u or v. This proves the theorem. (Other cases are not possible)

Remark 5.1: (1) For all connected graphs, which are not a path or cycle, $\gamma_o(BG_1(G)) \leq 4$. (2) If G = $P_n \cup mK_1$, or $C_n \cup mK_1$, or $P_n \cup C_n \cup mK_1$, for $n > 3$ and $m \ge 2$, then $\gamma_0(BG_1(G)) = 4.$

(3) If $G = C_3 \cup mK_1$ for $m \geq 2$, then $\gamma_0(BG_1(G)) = 5$ and if $G = P_3 \cup mK_1$ for $m \geq 2$, then $\mathcal{V}_0(BG_1(G)) = 6.$

(4) If $G = P_4$ or P_5 or C_5 , then $\gamma_0(BG_1(G)) = 5$.

(5) If G = P_n or C_n for $n \geq 5$, then $\gamma_0(BG_1(G)) = 4$.

(6) If G = $P_4 \cup K_1$ or $C_4 \cup K_1$, then $\gamma_0(BG_1(G)) = 5$.

(7) If $G = P_5 \cup K_1$ or $C_5 \cup K_1$, then $\gamma_0(BG_1(G)) = 4$.

Next, we shall find out the connected, total and cycle domination numbers of $BG_1(G)$.

Theorem 5.4: If G \neq K₂ and G has a pendant vertex, or p \leq 4, then γ_c ($\overline{BG}_1(G)$) = 2 = γ_t (BG₁(G)) and γ_o (BG₁(G)) = 3.

Proof: Case 1: Let $p \leq 4$ and let G has no pendant vertex.

Then $D = \{e_1, e_2\}$ is a connected dominating set for $BG_1(G)$. $D = \{e_1, e_2, e_3\}$ or $\{u, e_1, e_2\}$ is a cycle dominating set. Hence, $\gamma_o(-BG_1(G)) = 3$.

Case 2: G has a pendant vertex u.

Let $e = uv \in E(G)$ be incident with u in G. Then $D = \{u, e\}$ is a connected dominating set for $BG_1(G)$. $D = \{u, v, e\}$ is a cycle dominating set for $BG_1(G)$. Hence, γ_c $BG_1(G) = 2$ $=\gamma_t$ (BG₁(G)) and γ_o (BG₁(G)) = 3.

Theorem 5.5: If G is a graph with $(p > 4)$, no pendant vertex and has an isolated vertex, then γ_c ($BG_1(G)$) = γ_t ($BG_1(G)$) = 3 and γ_o ($BG_1(G)$) = 4.

Proof: Let u be an isolated vertex in G and v not isolated. Let $e = vw \in E(G)$. $D = \{u, v, e\}$ is connected dominating set and there exists no connected dominating set with cardinality

two. $\{u, v, e, w\}$ is a cycle dominating set. Hence, γ_c (BG₁(G)) = γ_t (BG₁(G)) = 3 and γ_o (BG₁(G)) = 4.

Now, let us assume that G has no isolated vertices and has no pendant vertices with $p \geq 5$.

Theorem 5.6: If diam(G) \geq 3, then (1) γ_c ($BG_1(G)$) = γ_t ($BG_1(G)$) = 3. (2) γ_o ($BG_1(G)$) $= 4.$

Proof: Let u, $v \in V(G)$ such that of $d_G(u, v) \geq 3$. Then G has a dominating edge uv. Consider $D = \{u, v, e\}$, where e is incident with u or v in G. D is a connected dominating set for $BG₁(G)$ and there exists no connected dominating set with cardinality two. Hence, γ_c (BG₁(G)) = γ_t (BG₁(G)) = 3. Let $e_1 \in E(G)$, $e_2 \in E(G)$ such that e_1 is incident with u and e_2 is incident with v in G. Then $D = \{u, v, e_1, e_2\}$ is a cycle dominating set for $BG_1(G)$. Therefore, γ_o (BG₁(G)) = 4.

Theorem 5.8: (1) If diam(G) = 2 and G contains a triangle with at least one vertex of degree 2 in G and every edge of G lies in a triangle, then γ_c (BG₁(G)) = γ_t (BG₁(G)) = γ_o (BG₁(G)) = 3.

(2) If diam(G) = 2 and G has an edge e not in any triangle, then γ_c (BG₁(G)) = γ_t (BG₁(G)) = γ_o (BG₁(G)) = 3.

(3) If diam (G) = 2 and G has no triangle with a vertex of degree 2 and every edge of G lies in a triangle, then γ_c ($BG_1(G)$) = γ_t ($BG_1(G)$) = γ_o ($BG_1(G)$) \leq 2+ α_1 (<N(v)>).

Proof of (1): If G contains a triangle with one vertex u of degree 2 in G. Let $N(u) = \{v, w\}$ and $e = v$ w $\in E(G)$, $e_1 = uv$, $e_2 = uw \in E(G)$. Consider $D = \{u, e\}$. D dominates $BG_1(G)$. $\{u, e, e_1\}$ dominates $BG_1(G)$ and is connected. $\{u, e_1, e_2\}$ is a cycle dominating set.

Proof of (2): If G has an edge $e = uv$ not in any triangle, $D = \{u, v, e\}$ dominates $BG_1(G)$, where D forms a cycle.

Proof of (3): Let $v \in V(G)$ such that deg_G $v = \delta(G)$. Since every edge of G lies on a triangle, $\langle N(v) \rangle$ has no isolated vertex. Let D be a line cover of $\langle N(v) \rangle$ in G. D₁ = {v} \bigcup D is a dominating set for BG₁(G) and D₂ = D₁ \bigcup {e}, where e is incident with v, is a connected dominating set for $BG_1(G)$ and $D_3 = \{e, e_1\} \cup D_1$, where e, e_1 are incident with v is a cycle dominating set for $BG₁(G)$ (not induced). This proves the theorem.

Theorem 5.9: If $G = K_n$, then γ ($BG_1(G)$) = γ_t ($BG_1(G)$) = γ_c ($BG_1(G)$) = n/2 or (n+1)/2.

33 International Journal of Engineering Science, Advanced Computing and Bio-Technology

6. Global domination number of $BG_1(G)$

Following theorems and propositions deal with the global domination number of $BG_1(G)$. Some bounds for global domination number are also found out.

Theorem 6.1: Let G be a graph without isolated vertices. Then $\gamma_{\varphi}(BG_1(G)) \leq 1+\delta(G)$. **Proof:** Let $u \in V(G)$ such that $deg_G u = \delta(G)$. Let $D = \{e \in E(G) : e \text{ is incident with } u \text{ in } \delta(G)\}$ G}. Then $D \cup \{u\}$ is a dominating set for $BG_1(G)$ and $BG_1(G)$. Hence, $\gamma_{\sigma}(\text{BG}_1(G)) \leq 1+\delta(G).$

Remark 6.1:If G has a pendant vertex, then $\gamma_{g}(BG_1(G)) = 2$.

Theorem 6.2: If G has an isolated vertex, then $\gamma_{g}(BG_1(G)) \leq 4$.

Proof: Let $u \in V(G)$ be an isolated vertex of G. {u, e}, $e \in E(G)$ dominates $BG_1(G)$. If $e = vw \in E(G)$, {v, w, e} dominates $BG₁(G)$. Therefore, {u, v, w, e} is a global dominating set for $BG_1(G)$. Hence, $\gamma_\nu(BG_1(G)) \leq 4$.

Remark 6.2: If G has a pendant vertex and has some isolated vertices, then $\gamma_e(BG_1(G)) = 3$ or 4.

Proposition 6.1: For $p \ge 5$, if G has no pendant vertex and if G has a vertex of degree 2 lying on a triangle; or if G has an edge e not lying on a triangle, then $\gamma_{\alpha}(\text{BG}_1(G)) = 3$. **Proof:** Let v be the vertex of degree two lying in a triangle. $N(v) = \{v_1, v_2\}$, $e = v_1v_2 \in E(G)$. $\{v, e\}$ dominates BG₁(G). Let $u \in V(G)$ be not adjacent to v. Then $\{u, v, e\}$ dominates $BG_1(G)$. Hence, $\gamma_e(BG_1(G)) = 3$. Let uv = e $\in E(G)$ such that e is not lying on any triangle. Then D = {u, v, e} dominates $BG_1(G)$ and $BG_1(G)$. Hence, $\gamma_g(BG_1(G)) = 3$.

Proposition 6.2: If G = K_n, then $\gamma_g(BG_1(G)) = n/2 + 2$ or $(n+1)/2 + 2$. **Proof:** Follows from Proposition 2.11 and Theorem 2.2.

Proposition 6.3:If diam(G) \geq 3, then $\gamma_{\varphi}(\text{BG}_1(G)) \leq 4$.

Proof: Let u, $v \in V(G)$ such that $d_G(u, v) \geq 3$. Let w be adjacent to u and let $e = uw \in E(G)$. Then $\{u, v, w, e\}$ is a global dominating set. Hence, $\gamma_e(BG_1(G)) \leq 4$.

Proposition 6.4: Let D be a minimal dominating set for G. Then (1) D is a dominating set for $BG_1(G)$ if and only if $|D| \geq 3$ or $|D| = 2$ and D is independent. (2) D dominates $BG₁(G)$ if and only if D is a global dominating set for G and D is a line cover for G.

Proof of (1): As $\gamma(BG_1(G)) > 1$, $|D| > 1$. Also, if $|D| = 2$ and $\langle D \rangle$ is connected, then the edge in D can not be dominated by D in $BG₁(G)$. This proves (1). **Proof of (2):** Proof is obvious.

Proposition 6.5: Let D be a global dominating set of G. Then D is a global dominating set of $BG₁(G)$ if and only if (1) $|D| \geq 3$ or $|D| = 2$ and D is independent. (2) D is a point cover for G.

Proof: Follows from Proposition.6.4.

Remark 6.2: In Proposition 6.5, $|D| = 2$ and D is independent is true only when G is disconnected, otherwise D cannot be a dominating set of $BG₁(G)$ or $BG₁(G)$.

Theorem 6.3: $\gamma_g(BG_1(G)) \leq \gamma_g(G)+1$.

Proof: Let D be a global dominating set of G. Then it is clear that $|D| \ge 2$. If $|D| = 2$, then take $D_1 = \{u, v, e\}$, for $u, v \in D$ and e edge in < D >. Clearly, D_1 dominates $BG_1(G)$ and $BG_1(G)$. If $|D| \geq 3$, then $D_1 = D \cup \{e\}$ for $e \in E(G)$ dominates $BG_1(G)$ and $BG_1(G)$. This proves the theorem.

7. Total global domination of $BG_1(G)$

A total dominating set D of a graph is a total global dominating set, if D is also a total dominating set of G. In this section, bounds for total domination number of $BG₁(G)$ are found out.

Theorem 7.1: Let G be a graph without isolated vertices and $diam(G) > 1$. Then $\gamma_{t\sigma}(\text{BG}_1(G)) \leq \delta(G)+3.$

Proof: Let $u \in V(G)$ such that $deg_G u = \delta(G)$. Let $D = \{e \in E(G) : e \text{ is incident with } u\}$. Let $e = uv \in E(G)$ and $w \in V(G)$ is such that it is adjacent to v, not to u. Let $D_1 = D \cup \{u, v, v\}$ w}. Then D_1 is a global dominating set of $BG_1(G)$ and $BG_1(G)$ and is also a total dominating set in BG₁(G) and BG₁(G). Hence, $\gamma_{v}(BG_1(G)) \leq \delta(G)+3$.

Remark 7.1:If $G \neq K_2$, and connected with $\delta(G) = 1$, then $\gamma_{i\sigma}(BG_1(G)) \leq 4$.

Proposition 7.1: If G is a connected graph with diam(G) \geq 3, then $\gamma_{\text{te}}(BG_1(G)) \leq$ 5.

Proof: If diam(G) \geq 3, then there exists a path u v w z in G. Let e = uv, e₁ = vw. Consider $D = \{u, v, z, e, e_1\} \subseteq V(BG_1(G))$. D is a total dominating set for $BG_1(G)$ and $BG_1(G)$. Therefore, $\gamma_{te}(\text{BG}_1(G)) \leq 5$.

Proposition 7.2: Let $G \neq K_2$. If there exists $e \in E(G)$ such that e is not lying in a triangle in G, then $\gamma_{te}(BG_1(G)) \leq 4$.

Proof: Let u, $v \in V(G)$ such that $e = uv \in E(G)$ and $G \neq K_2$ and e is not lying on a triangle. D = {u, v, e} dominates $BG_1(G)$ and $BG_1(G)$. D₁ = {u, v, e, w}, w not incident with e, is a total global dominating set of BG₁(G). Therefore, $\gamma_{tg}(BG_1(G)) \leq 4$.

Proposition 7.3: If G has a vertex of degree two lying on a triangle, then $\gamma_{\text{te}}(BG_1(G)) \leq 4$. **Proof:** Let $v \in V(G)$ such that $deg_G v = 2$ and v lies in a triangle formed by v, v_1 , v_2 . $D = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ e}, where $e = v_1v_2 \in E(G)$ dominates $BG_1(G)$. Now, let u be any other vertex, which is not adjacent to v in G. Then $D_1 = \{u, v, e\}$ dominates $BG_1(G)$ and is a total dominating set. Therefore, $D_2 = \{u, v, e, e_1\}$, where $e_1 = vv_1 \in E(G)$ is a total dominating set for $BG_1(G)$ and BG₁(G). Therefore, $\gamma_{te}(BG_1(G)) \leq 4$.

Proposition 7.4: If diam(G) = 1, $\gamma_{te}(BG_1(G)) = (p/2)+3$ or $((p+1)/2)+3$.

Proof: Let diam(G) = 1. Hence, $G = K_n$. Let $e = uv \in E(G)$. $D = \{u, v, e\}$ dominates $BG_1(G)$. $D_1 = \{u, v, e\} \cup D_2$, where $D_2 \subset E(G)$ is a line cover of G. D_1 dominates $BG_1(G)$ and D_1 is total. Therefore, $S = \{u, v, e\} \cup D_2 \cup \{w\}$, where $e \in D_2$ is a total dominating set for $BG_1(G)$ and $BG_1(G)$. Therefore, $\gamma_{v}(BG_1(G)) \leq (p/2)+3$ or $((p+1)/2)+3$.

Proposition 7.5: Let G be a graph with no pendant vertices and diam $(G) = 2$. Then $\gamma_{\text{te}}(BG_1(G)) \leq (\delta(G)+5)/2.$

Proof: Case 1: $e \in E(G)$ is not lying on a triangle.

 $D = \{u, v, e\}$, $e = uv \in E(G)$ dominates $BG_1(G)$ and $BG_1(G)$. $w \in V(G)$ is not adjacent to u or v, D₁ = {u, v, e, w} is a total dominating set. Therefore, $\gamma_{\text{te}}(BG_1(G)) \leq 4$. **Case 2:** Every edge of G is lying on a triangle.

Let D be a line cover of $\langle N(v) \rangle$, where deg_Gv = $\delta(G)$. Take D₁ = D \cup $\{v\}$ \cup $\{u\}$. This is a total dominating set of BG₁(G) and BG₁(G). Therefore, $\gamma_{tg}(BG_1(G)) \leq (\delta(G)/2)+2$ or $((\delta(G)+1)/2)+2 \leq (\delta(G)+5)/2.$

Theorem 7.2: (1) If diam(G) = 1, then $\gamma_{tr}(BG_1(G)) \leq (p/2)+3$ or $((p+1)/2)+3$.

(2) If diam(G) = 2, then $\gamma_{19}(BG_1(G)) \leq \min\{4, (\delta(G)+5)/2\}.$

(3) If diam(G) \geq 3, then $\gamma_{t_p}(BG_1(G)) \leq 5$.

Proof: Follows from Propositions 7.1, 7.2, 7.3, 7.4 and 7.5.

8. Efficient domination of $BG_1(G)$ **and** $BG_1(G)$

If $G \neq K_2$, BG₁(G) is self-centered with diameter two. Therefore, BG₁(G) has no efficient domination. Also, if $p > 4$ and G has no pendant vertices, then $BG₁(G)$ is self-centered with diameter two. So, if $p > 4$ and G has no pendant vertices, then $BG_1(G)$ has no efficient domination.

Proposition 8.1: If G has a pendant vertex, then $\gamma_e(BG_1(G)) = 2$.

Proof: Let $u \in V(G)$ be pendant in G and $e \in E(G)$ be incident with u in G. D = {u, e} is an efficient dominating set of $BG_1(G)$, since D is a dominating set for $BG_1(G)$ and $d(u, e)$ = 3 in $BG_1(G)$. Hence, $\gamma_e(BG_1(G)) = 2$.

Proposition 8.2: If $p = 4$ and G has no pendant vertices, then $BG_1(G)$ has no efficient domination.

Proof: Since $p = 4$ and G has no pendant vertices, G is any one of $K_3 \cup K_1$, K_4 , C_4 or K_4 —e. In all these cases, BG₁(G) has no efficient domination.

Proposition 8.3: If $p = 3$ and G has no pendant vertices, then $\gamma_e(BG_1(G)) = 3$. **Proof:** In this case, $G = K_3$ and the set of all point vertices is a dominating set and distance between any two line vertices is three. Therefore, $\gamma_e(BG_1(G)) = 3$.

Theorem 8.1: (1) $\gamma_e(BG_1(G)) = 2$ if and only if G has a pendant vertex.

(2) $\gamma_e(BG_1(G)) = 3$ if and only if $G = K_3$.

(3) If $G \neq K_3$ and has no pendant vertices, then BG₁(G) has no efficient domination.

Proof of (1): Let $\gamma_e(BG_1(G)) = 2$. Let D be an efficient dominating set of BG₁(G).

Case1: $D = \{u, v\} \subseteq V(G)$.

D is a dominating set of BG₁(G). Hence, $d_G(u, v) \ge 2$. This implies $d(u, v) \ge 3$ in BG₁(G) and u and v have no common non-incident edge in G. Hence, G is of the form $K_{1,m} \cup K_{1,n}$ or $K_{1,m} \cup nK_1$. Thus, G has pendant vertices.

Case 2: $D = \{u, e\}.$

D is a dominating set implies u is pendant and e is incident with it in G.

Case 3: $D = \{e_1, e_2\} \subset E(G)$.

37 International Journal of Engineering Science, Advanced Computing and Bio-Technology

D dominates $BG_1(G)$ and $d(e_1, e_2) \geq 3$ in $BG_1(G)$. Therefore, q = 2 and e₁, e₂ has no common non-incident vertex in G. Therefore, $G = 2K_2$ or $K_{1,2}$. If $G = K_{1,2}$, then D is not a dominating set. Hence, $G = 2K₂$. Therefore, G has a pendant vertex. Converse follows from Proposition 8.1.

Proof of (2): Assume $\gamma_e(BG_1(G)) = 3$. Let D be a minimal efficient dominating set with cardinality 3 for $BG₁(G)$.

Case 1: $D = \{u, v, w\} \subseteq V(G)$.

D is efficient implies distance between any two elements of D in G is at least 3 and there is no edge not incident with any two elements of D in G. This is not possible.

Case 2: $D = \{u, v, e\}$ $u, v \in V(G), e \in E(G)$.

D is efficient implies u and v are at distance at least 3 in G and e is incident with u and v, which is not possible.

Case 3: $D = \{u, e_1, e_2\}.$

D is efficient implies, e_1 , e_2 , are incident with u in G. But, $d(e_1, u) = d(e_2, u) = 2$ in $BG_1(G)$. Therefore, this is also not possible.

Case 4: $D = \{e_1, e_2, e_3\}.$

D is a dominating set implies $q = 3$ in G. D is efficient implies any two elements of D cannot have a common non-incident point vertex in G. Hence, $G = K_3$ only.

Converse follows from Proposition 8.3.

Proof of (3): Already proved.

9. Restrained domination of $BG_1(G)$ **and** $BG_1(G)$

Following results deal with the **restrained domination** of $BG₁(G)$.

Proposition 9.1: If $G \neq K_2$ and $p \leq 4$, then γ_r ($BG_1(G)$) = 2. **Proof: Case 1:** G has a pendant vertex u.

 $D = \{u, e\}, e = uv \in E(G)$ is a restrained dominating set of $BG₁(G)$.

Case 2: G has no pendant vertex and no isolated vertex.

If $G = C_3$, $D = \{u, e\}$, where $u \in V(G)$ and e not incident with u in G and in other cases, ${e_1, e_2}$, where e_1, e_2 are independent edges of G is a restrained dominating set. **Case 3:** G has an isolated vertex u.

 $D = {u, e}$ is a restrained dominating set. Hence, in all cases, γ_r (BG₁(G)) = 2.

Proposition 9.2: Let G be a graph with at least four vertices. If G has a pendant vertex or isolated vertex, then γ_r (BG₁(G)) = 2.

Proof: If u is pendant in G, then $\{u, e\}$, where $e = uv \in E(G)$ is a restrained dominating set of BG₁(G). If v is an isolated vertex, then {v, e}, where $e \in E(G)$ is a restrained dominating set of $BG_1(G)$. Hence, γ_r ($BG_1(G)$) = 2.

 Now, assume that G is a graph without isolated vertices and pendant vertices and $p \ge 5$. Following theorems give the restrained domination of BG₁(G). Since they are easy to follow, statements are given without proof.

Theorem 9.1:(1) Let diam(G) \geq 3. If G contains a triangle with at least one vertex of degree two in G, then γ_r ($BG_1(G)$) = 2; otherwise, γ_r ($BG_1(G)$) = 3.

(2) Let diam(G) \leq 2. If G contains a triangle with at least one vertex of degree two in G, then γ_r (BG₁(G)) = 2; If G has no such triangle and has an edge e, which is not in any triangle then γ_r ($BG_1(G)$) = 3; otherwise, γ_r ($BG_1(G)$) = 1+ α_1 (<N(v)>), where $deg_G v = \delta(G)$.

(3) If $G = K_n$, then γ_r ($BG_1(G)$) = n/2 or (n+1)/2.

Remark 9.1: (1) γ_r (**BG**₁(G)) = γ (**BG**₁(G)).

(2) If $q \ge 2$ and D is restrained dominating set of G, then $D \cup \{e\}$ is a restrained dominating set of $BG_1(G)$.

(3) If $q \ge 2$, the set of all point vertices is a restrained dominating set of BG₁(G).

(4) Set of all line vertices is a restrained dominating set if and only if radius of G is greater than one.

(5) Let D be a restrained dominating set ofG. D is a restrained dominating set of $BG₁(G)$ if and only if D is a point cover for G.

10. Neighborhood Number of $BG_1(G)$ and $BG_1(G)$

Neighborhood number of $BG_1(G)$ and $BG_1(G)$ have been studied here. Bounds for $n_o(BG_1(G))$ and $n_o(BG_1(G))$ are found out.

Proposition 10.1: (1) If $G \neq K_2$, then set of all point vertices is a neighborhood set for $BG₁(G)$.

(2) If $G \neq K_2 \cup mK_1$ and $q > 1$, then set of all line vertices is a neighborhood set of $BG₁(G)$.

Proof of (1): Since set of all line vertices is independent in $BG_1(G)$, set of all point vertices covers all the edges of $BG_1(G)$. Hence, it is a neighborhood set of $BG_1(G)$.

Proof of (2): Since $G \neq K_{1n} \cup mK_1$ and $q > 1$, for any two adjacent vertices u, v in G, there exists an edge not incident with u and v. Hence, in $BG_1(G)$, all the edges of $BG_1(G)$ is covered by the neighborhood of line vertices. Therefore, $D = E(G)$ is a neighborhood set of $BG_1(G)$.

Theorem 10.1:n_o($BG_1(G)$) \leq min {p, q}, if $G \neq K_{1,n} \cup mK_1$. **Proof:** Proof follows from Proposition 10.1.

Theorem 10.2: Let G be a graph without isolated vertices.

(1) If G = K_n, then n_o($\overline{BG}_1(G)$) = $\mathbf{Q}_1(G)$.

(2) If $G \neq K_n$, $\mathbf{Q}_1(G) \leq n_0$ $BG_1(G) \leq p-1$.

Proof of (1): Let G = K_n. Consider a line cover D of G. $\bigcup_{x \in D} \langle N[x] \rangle$ covers all the edges in K_q and edges joining point vertices to line vertices.

Hence, $BG_1(G) = \bigcup \subset N[x] >$. Hence, $n_0(BG_1(G)) \leq \mathcal{Q}_1(G)$.

Proof of (2): Let $G \neq K_n$. Consider $e = uv \in E(G)$; u, $v \in V(G)$. Let $D = V(G) - \{u, v\}$ and S $= \{e\} \cup D. \langle N[e] \rangle$ covers all the edges in $BG₁(G)$ joining line vertices and edges joining e to u and v and edges joining elements of D to other line vertices and $\langle N[x] \rangle$, where $x \in D$ covers all the edges of G. Hence, $BG_1(G) = \bigcup \{N[x]\}$. Therefore, $n_{\rm o}$ (BG₁(G)) \leq p-1. Also, $n_{\rm o}$ (BG₁(G)) \geq **Q**₁(G) for G. Hence, $\alpha_i(G) \leq n_o(-BG_1(G)) \leq p-1$.

Conclusion: In this paper, we have studied connected, efficient, independent, restrained, total and cycle dominations of $BG₁(G)$ and its Complement. Irredundance and neighborhood numbers are also studied. Other domination parameters and properties are also studied and submitted.

References:

- [1] Robert B. Allen, RenuLasker and Stephen Hedetniemi, A note on total domination, Discrete Mathematics 49 (1984) 7-13. North Holland.
- [2] Robert B. Allen and RenuLasker, On domination and independent domination numbers of a graph, Discrete Mathematics 23 (1978) 73-76, North Holland.
- [3] Bhanumathi, M., (2004) "A Study on some Structural properties of Graphs and some new Graph operations on Graphs" Thesis, Bharathidasan University, Tamil Nadu, India.
- [4] Buckley, F., and Harary, F., Distance in graphs, Addison-Wesley Publishing company (1990).
- [5] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Net works, 7: 247- 261.1977
- [6] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
- [7] Teresa W. Haynes, Stephen T. Hedetiniemi, Peter J. Slater. Fundamentals of domination in graphs. Marcel Dekkar Inc. 1998.
- [8] Janakiraman,T.N., Bhanumathi,M., Muthammai, S., Edge partition of the Boolean graph $BG_1(G)$, Journal of Physical Sciences,Vol. 12, 2008, 97-107.
- [9] T.N.Janakiraman, M.Bhanumathi, S.Muthammai, Boolean graph BG₁(G) of a graph G, International Journal of Engineering Science, Advanced Computing and Bio-Technology,Volume 6, Issue 1, **pp.1- 16**.
- [10] T.N.Janakiraman, M.Bhanumathi, S.Muthammai**,** Connectivity and traversability of the Boolean graph $BG₁(G)$ of a graph G, International Journal of Engineering Science, Advanced Computing and Bio-Technology,Vol 6, No.3**,** pp. 62- 73**.**
- [11] Kale, P.P., and Deshpande, N.V., On line independence, Domination, irredundance and neighborhood numbers of a graph. Indian J. pure. appl. Math., 21(8), 695-698, Aug 1990.
- [12] Sampathkumar, E., and Prabha S. Neeralagi, The neighborhood number of a graph. Indian J. pure. appl. Math., 16(2) : 126-132. February, 1985.