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Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, NINC,Kq(G) is a 
graph with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this 
graph by BG1(G), Boolean graph of G-first kind. In this paper, domination parameters of BG1(G) and 
its complement are studied. 
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1. Introduction 
Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). 
For graph theoretic terminology refer to Harary [6], Buckley and Harary [4].  

Definition 1.1 [7]:A set S  V is said to be a dominating set in G, if every vertex in VS 
is adjacent to some vertex in S. A dominating set D is an independent dominating set, if no 
two vertices in D are adjacent that is D is an independent set. A dominating set D is a 
connected dominating set, if < D > is a connected subgraph of G. A dominating set D is a 

perfect dominating set, if for every vertex u  V(G)D, |N(u) D|= 1. A dominating set 
D is a total dominating set, if < D > has no isolated vertices. A dominating set D is called 
an efficient dominating set, if the distance between any two vertices in D is at least three. A 

cycle C of a graph G is called a dominating cycle of C, if every vertex in VC is adjacent to 

some vertex in C. A set D  V(G) is a global dominating set, if D is a dominating set in G 
and G . A total dominating set D of a graph is a total global dominating set, if D is also a 

total dominating set ofG. A set D  V(G) is a restrained dominating set, if every vertex 

in VS is adjacent to a vertex in S and other vertex in VS.  

Definition 1.2 [11]: A set S of vertices is said to be irredundant, if for every vertex v  S, 

pn[v, S] = N[v]N[S{v}]  , that is, every vertex v  S has a private neighbor. 
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 The irredundance number ir(G) is the minimum cardinality of a maximal irredundant set 
in G. 

Definition 1.3 [12]:A set S of vertices is called a neighborhood set provided G is the union 
of the subgraphs induced by the closed neighborhoods of the vertices in S; that is,             

G = <N[v]>. The neighborhood number no(G) of a graph G equals the minimum 
cardinality of a neighborhood set.   

Definition 1.4 [7]:The domination number  of G is defined to be the minimum 
cardinality of a dominating set in G. Similarly, one can define the perfect domination 

number p, connected domination number c, total domination number t, independent 

domination number i, efficient domination number e, cycle domination number o, 

global domination number g, total global domination number tg, restrained domination 

number r.  

An edge uvE(G) is a dominating edge of G, if all the vertices of G other than u 

and v are adjacent to either u or v.  

Definition 1.5:Cockayne and Hedetniemi [5] defined the domatic number d(G) of a graph 
to be the maximum number of elements in a partition of V(G) into dominating sets. G is 

domatically full if d(G) = 1+(G). 

Definition 1.6:A vertex (point) and an edge are said to covereach other, if they are 

incident. A set of vertices, which cover all the edges of a graph G is called a (vertex) point 

cover of G, while a set of lines (edges), which covers all the vertices is a line cover. The 

smallest number of points in any point cover for G is called its point covering number and 

is denoted by o(G) or o.  A set of points in G is independent, if no two of them are 

adjacent. The largest number of points in such a set is called the pointindependence 

number of G and is denoted by o(G) or o.  Similarly, 1(G) or 1 is the smallest 

number of lines in any line cover of G and is called its line covering number. A point cover 

is called minimum, if it contains o points. A line cover is called minimum, if it contains 

1points.Analogously, an independent set of lines (matching) of G has no two of its lines 

adjacent and the maximum cardinality of such a set is the line independence number 1(G) 

or 1. A set of independent edges covering all the vertices of a graph G is called a 1-factor 

or a perfect matching of G.  
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 Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). In [3, 8], it 

is defined that BG, NINC,Kq(G) is a graph with vertex set V(G)  E(G) and two vertices are 
adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an 
edge not incident to it in G. For simplicity, denote this graph by BG1(G), Boolean graph of 
G-first kind. In this paper, domination parameters of BG1(G) and its complement are 
studied. 

We need the following theorems to study the domination parameters ofBG1(G) and its 
complement. 

Theorem 1.1 [7]:ir(G)  (G)  i(G)  o(G). If (G)  2, (G)  t(G) c(G). 

Theorem 1.2[7]:tg(G) <t(G)+2. 

Theorem 1.3[7]: Let D be a g-set of G such that < D > has no isolates and diam(G) = 3, 

then tg(G) g(G)+2. 

Theorem 1.4[12]:(G)  no(G) αo(G).  

Theorem 1.5 [9]:BG1(G) is self-centered with diameter two if and any if G  K2. 

2. Domination Parameters of BG1(G) and )G(BG1  

In this section, domination parameters of BG1(G) andBG1(G) are studied. First 
domination parameters of BG1(G) are studied. 
 Let G be a given graph. G is non-trivial. Therefore, G has at least one edge           

e = uvE(G), where u, v  V(G). Consider D = {u, v, e}. D is a dominating set of 

BG1(G). Also, radius of BG1(G) is always greater than one. Hence, 1 < (BG1(G))  3. 

 If G has a pendant vertex uV(G) and e  E(G) is incident with u in G, then D 

= {u, e} dominates all the vertices of BG1(G). Hence, (BG1(G)) = 2. This set {u, e} is 
independent in BG1(G). It is also an irredundant set (maximal) in BG1(G). Again, every 

element in V–D has adjacent elements in V–D. Hence, i(BG1(G)) = r(BG1(G)) = 2. D is 
also an efficient dominating set for BG1(G).  
Now, assume that G has no pendant vertices. 

(1) Let G be a graph with (G) = 1: Then the radius of G is one. If diam(G) = 1, that is G 

= Kn, n  3, take e  E(G), e = uv, where u, v  V(G). The set D = {u, v, e} dominates 

BG1(G) and D is not independent. Hence, (BG1(Kn)) = 3. If n  4, D is restrained. If       

n = 3, D = E(G) is restrained and independent. Hence, i(BG1(K3)) = r(BG1(K3)) = 3. 
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When n  4, let S = {e E(G) : e is incident with u in G}. Take D = {u}  S. Then D is a 
minimal independent dominating set of BG1(Kn), and is also restrained. Hence,    

i(BG1(G))  p. D = {u, v, e}, where e  E(G) is a restrained dominating set of BG1(G) 

and hence r(BG1(Kn)) = 3.  
Next, if r(G) = 1 and diam(G) = 2, there exists non-adjacent vertices  u and v in G. If there 
exists non-adjacent vertices u and v in G, which dominates G, then {u, v} dominates 

BG1(G). Hence, (BG1(G)) = 2 = i(BG1(G)), otherwise, (BG1(G)) = 3 = r(BG1(G)) = 
ir(BG1(G)). ({u, v, x}, where eG(x) = 1 and u and v not adjacent in G is irredundant in 
BG1(G) and hence ir(BG1(G)) = 3). 

If u V(G), S = {e  E(G):e is incident with u in G}, then S  {u} is an 

independent dominating set for BG1(G). Hence, i(BG1(G))  1+(G). 

(2) Let (G) = 2:If there exists a dominating edge e = uvE(G) and i(G) > 2,then 

(BG1(G)) = 3, where D = {u, v, e} is a dominating set. D is also restrained. Hence, 

r(BG1(G)) = 3 = ir(BG1(G)) = 3. If (G) = 2 = i(G), then (BG1(G)) = 2 = i(BG1(G)) = 

ir(BG1(G)) = r(BG1(G)). (The independent dominating set of G is again an independent 
dominating set for BG1(G)). 

(3) Let (G) = 3: In this case, (BG1(G)) = 3. If G has at least three independent vertices, 

then i(BG1(G)) = 3, since they dominate BG1(G). In general, i(BG1(G))  1+(G) and 

r(BG1(G)) = 3, since D = {u, v, e}, where e = uv E(G) is a restrained dominating set. D 
is also irredundant. 

Thus, the following theorems are proved. 

Theorem 2.1: If G has a pendant vertex, then (BG1(G)) = 2. 

Theorem 2.2:Let G be a graph without pendant and isolated vertices. 

(1) If diam(G) = 1, then (BG1(G)) = 3= r = ir(BG1(G)) and i(BG1(G))  p.  

(2) If r(G) = 1 and diam(G) = 2, and if there exists non-adjacent vertices u, v  V(G) such 

that {u, v} dominates G, then (BG1(G)) = i(BG1(G)) = r(BG1(G)) = ir(BG1(G)) = 2.  

(3) If (G) = 2 = c(G) and i(G) > 2, then  (BG1(G)) = r(BG1(G)) = ir(BG1(G)) = 3 and 

i(BG1(G))  1+(G).  

(4) If (G) = 2 = i(G), then (BG1(G)) = i(BG1(G)) = ir(BG1(G)) = r(BG1(G)) = 2. 

(5) If (G)  3, then (BG1(G)) = r(BG1(G)) = ir(BG1(G)) = 3 and i(BG1(G))  1+(G).
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Remark 2.1: 

1. If u V(G) and D is the set of all edges incident with u in G, then {u}  D is a 

dominating set of BG1(G), which is also independent. Hence, i(BG1(G)) 1+(G). 

2. D = V(G) is a dominating set of BG1(G) if and only if G  K2. 

3. D = E(G) is a dominating set of BG1(G) if and only if G  K1,n. 

4. If D  V(G) is a dominating set of G, then D is a dominating set of BG1(G) if and only 

if D 3 or D = 2 and is independent. 
 A D-partition of G is a partition of V(G) into dominating sets. The maximum 
order of a D-partition is called the domatic number of G. Now, we shall evaluate the 
domatic numbers of BG1(G), when G = Cn, Pn, K1,n, Kn, Kn,n and nK2. 

Proposition 2.1:Domatic number of BG1(Cn) is (n+2)/2. 

Proof: Let v1, v2, v3, …,vn form a cycle Cn = G and let v1v2 = e12, ..., vn1vn = e(n1)n, vnv1 = 

en1 E(G). 
Case 1: n is even, n = 2k. 

D1 = {v1, e12, en1}, D2 = {v3, e23, e34}, ...Dn/2 = {v2k1, e(2k2)(2k1), e(2k1)2k}, D(n+2)/2 = {v2k, v2k2, 
…, v2}. D1, D2, ..., D(n+2)/2 is a maximum domatic partition of BG1(G). Therefore, Domatic 
number of BG1(Cn) = (n+2)/2 = n/2+1. 
Case 2: n is odd = 2k+1. 

 Take D1 = {v1, e12, en1}, D2 = {v3, e23, e34}, …, D2k/2 = {v2k1, e(2k1)(2k2), e(2k1)2k}. 

D(n+1)/2 = D2k/2+1 = {v2k+1, v2k, v2k2, …, v2, e2k(2k+1)}. D1, D2, ..., Dn+1/2 is a domatic partition of 
BG1(G). 

Proposition 2.2:Domatic number of BG1(Pn) is n+2/2. 

Proof: Let v1, v2, …,vn represent Pn = G. vivi+1 = ei(i+1) E(G). 
Case 1: n = 2k+1 (odd). 

Consider D1 = {e12, v1}, D2 = {v3, e23, e34}, …,Dk = {v2k1, e(2k2)(2k1), e(2k1)2k}, Dk+1 = {v2, v4, 

…, vn1, vn, e2k(2k+1)}. D1, D2, …, Dk+1 is a domatic partition of BG1(Pn). Hence, domatic 

number of BG1(Pn) is k+1 = (n+2)/2]. 
Case 2: n = 2k, even. 

Consider D1 = {v1, e12}, D2 = {v3, e23, e34} ,…,Dn/2 = {vn1, e(n2)(n1), e(n1)n}, Dn/2+1 = {v2, v4, 
…, vn}. D1, D2, …,Dn/2+1 is a domatic partition of BG1(Pn). 
 Hence, domatic number of BG1(Pn) is (n/2)+1 = (n+2)/2. 

Proposition 2.3:Domatic number of BG1(K1,n) = n. 
Proof: Let v be the central vertex of K1,n and let v1, v2, …, vn be the other vertices. 
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D1 = {v1, e1}, D2 = {v2, e2}, …,Dn = {en, vn}, ej = vvj E(G) is a domatic partition. Hence, 
domatic number of BG1(K1,n) is n. 

Remark 2.2: (BG1(K1,n)) = n–1. Hence, d(BG1(K1,n)) = (BG1(K1,n))+1 = n. 
 Hence, BG1(K1,n) is domatically full. 

Proposition 2.4:Domatic number of BG1(Kn) is n/2. 

Proof: Let v1, v2, …,vn be the vertices of Kn and vivj = eij E(G), i, j = 1, 2, …, n. 
Case 1: n is even. 

D1 = {v1, v2, e12}; D2 = {v3, v4, e34}; …; Dn/2 = {vn+1, v2, e(n1)n, all other line vertices} is a 
domatic partition of BG1(Kn). Hence, domatic number of BG1(Kn) = n/2. 
Case 2: n is odd. Let n = 2k+1. 

D1 = {v1, v2, e12}; D2 = {v3, v4, e34} …; Dk = {v2k1, v2k, v2k+1, e(2k1)2k}  {other line vertices} 

is a domatic partition of BG1(Kn). Therefore, domatic number of BG1(Kn) = n/2 = k = 

(n1)/2. 

Proposition 2.5:Domatic number of BG1(Kn,n) is n. 
Proof: Let ui, vi, where i = 1, 2, …, n be the vertices of Kn,n and eij = uivj, i, j = 1, 2, ..., n. D1 

= {u1, v1, e22}, D2 = {u2, v2, e33}, …,Dn1 = {un1, vn1, enn}, Dn= {un, vn, e11}and remaining 
line vertices} is a domatic partition of R(Kn,n). Hence, domatic number of BG1(Kn,n) is n. 

Proposition 2.6:Domatic number of BG1(nK2) = n. 

Proof: Let ui, vi, i = 1, 2, …, n be the vertices of nK2 and let uivi = ei E(G). 
D1 = {u1, v1, e1}; D2 = {u2, v2, e2} ,…, Dn = {un, vn, en} is a domatic partition of BG1(nK2). 
Hence, the domatic number of BG1(nK2) is n. 

Now, we shall find the domination parameters ofBG1(G) for some classes of graphs and 

give the bounds for (BG1(G)). 

Proposition 2.7:(BG1(G)) = 1 if and only if G = K2. 

Proof: Clearly (BG1(K2)) = 1. 

 On the other hand, assume (BG1(G)) = 1. Hence, r(BG1(G)) = 1.BG1(G)  is 
self-centered with diameter two except when G = K2. This proves the result. 

Proposition 2.8: If G  K2 and has a pendant vertex, then (BG1(G)) = 2 = 

c(BG1(G)). 
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Proof: Let x be a pendant vertex of G and let e = xyE(G), y  V(G). Consider,              

D = {x, e} inBG1(G). D is a connected minimal dominating set inBG1(G), since e is 
adjacent to every other line vertices and x, y; x is adjacent to all other point vertices except 

y inBG1(G). Therefore, (BG1(G)) = 2 = c(BG1(G)). 

Proposition 2.9: If G has an isolated vertex, then (BG1(G)) = 2. 

Proof: Let u V(G) be an isolated vertex of G. Consider D = {u, e} , where e  E(G). D 

is an independent dominating set ofBG1(G), since u dominates all the point vertices and 

e dominates all the line vertices ofBG1(G). Hence, (BG1(G)) = 2 = i(BG1(G)). 

Proposition 2.10: If G  K2 and p  4, then (BG1(G)) = 2. 

Proof: As G  K2, clearly (BG1(G)) > 1. If G has a pendant vertex or isolated vertex, 

then (BG1(G)) = 2. If G has no isolated vertices, there exists e1, e2E(G) such that      

{e1, e2} is a line cover for G. Hence, D = {e1, e2} is a dominating set ofBG1(G). This 
proves the proposition. 

Theorem 2.3:(BG1(G)) = 2 if and only if any one of the following is true. 

(1) G has a pendant vertex (G  K2). (2) p  4. (3) G has an isolated vertex. (4) G 
contains a triangle with at least one vertex of degree two in G. 

Proof: Assume (BG1(G)) = 2. Let D be a dominating set ofBG1(G) with cardinality 
two. 

Case 1: D = {u, v} V(G) 

D dominatesBG1(G). Hence, all other point vertices and line vertices in BG1(G)  are 

adjacent to u or v or both. This gives ((G))  2. 

Sub case 1.1: (G) = 1 

In this case, G has an isolated vertex u. But D = {u, v}. Hence, inBG1(G), u is adjacent to 
all point vertices and v is adjacent to all line vertices. Hence, all edges are incident with v 

in G. Hence, G = K1,n mK1. 

Sub case 1. 2:(G) = 2. 
In this case, G has no vertex, which is adjacent to both u and v, and all edges are incident 

with u or v or both in G. That is, G is a double star or G = K1,n K1,m. So, in this case 1, G 
has a pendant vertex. 

Case 2: D = {e1, e2}  E(G). 

This gives e1, e2 are incident with all point vertices. Hence p  4. 
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Case 3: D = {u, e}, where u V(G) and e  E(G). 

In this case, e is adjacent to all line vertices inBG1(G) and is adjacent to exactly two point 

vertices v1, v2, where e = v1v2 E(G). Therefore, remaining point vertices must be adjacent 

to u inBG1(G). Hence, degGu is at most 2. 
 Now, degGu = 0 implies that u is isolated in G; degGu = 1 implies u is pendant in 

G; degGu = 2 implies u is adjacent to v1 and v2 such that v1v2 = e E(G), that is G contains 
a triangle with a vertex of degree two in G. 
 Converse follows from the previous propositions. 

Remark 2.3: From the definition ofBG1(G), the following results follow: 

(1) If D is dominating set ofG, then D  {e} is a dominating set ofBG1(G). Hence, 

(BG1(G))  (G)+1.  

(2) If D  E(G) is a line cover of G, then D dominatesBG1(G). Converse is also true. 

Hence, (BG1(G))  α1(G).  

(3) If there exists a minimal point cover D of G such that N(v)  D  D for v   V–D, 

then D is a dominating set ofBG1(G). (BG1(G))  αo(G). Here, D is a global 
dominating set of G. The converse is also true.  

(4) The set of all point vertices is a dominating set forBG1(G).  

(5) The set of all line vertices is a dominating set ofBG1(G) if and only if G has no 
isolated vertices.  

(6) If u V(G) and D  E(G) contains all the edges incident with u in G, D  {u} is a 

dominating set ofBG1(G). Hence, (BG1(G))  1+(G). 

 Generally, (BG1(G))  min {1+(G), α1(G), 1+(G)}.  

(7) D is dominating set of G, D dominatesBG1(G) if and only if D is global dominating 
set of G and is also a point cover of G. 

 Now, assume that G is a graph without isolated vertices and pendant vertices. 

Also, assume that p  5. 

Theorem 2.4: Let G be a graph such that diam(G)  3.  

(1) If G contains a triangle with at least one vertex of degree 2 in G then (BG1(G)) = 2 

= i(BG1(G)).  

(2) If G contains no triangle with at least one vertex of degree 2 in G, then (BG1(G))=3. 

Proof:Diam(G)  3. 
Case 1: G contains a triangle with one vertex of deg 2 in G. 
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Let u, v, w form this triangle and let degGu = 2, Let e = vwE(G). D = {u, e} 

dominatesBG1(G), since u dominates all point vertices except u and w and e dominates 

v, w and all line vertices. Hence, (BG1(G)) = 2. 
Case 2: G has no triangle with a vertex of deg 2 in G. 

Diam(G)  3. Therefore, there exists u, v V(G) such that dG(u, v)  3. Then D = {u, v} 

dominatesG and hence {u, v, e}, e E(G) dominatesBG1(G). {u, v, e} is connected, if e 

is incident with u or v. Hence, (BG1(G)) = 3 = c(BG1(G)). 
 This proves the theorem. 

Theorem 2.5: Let G be a graph with diameter two. (1) If G contains a triangle with at least 

one vertex of degree 2 in G, then (BG1(G)) = 2.  

(2) If (1) is not true and if G has an edge e not in any triangle, then (BG1(G)) = 3.  

(3) If (G) = 2 such that degGu = 2 and u is not in any triangle, then (BG1(G)) = 3.              

(4) (BG1(G)) = 1+α1(N(v)), where degGv = (G). 
Proof: Assume that diameter of G is 2. 
Proof of (1): Similar to the proof of Theorem 2.4. 

Proof of (2): Let e = uvE(G) such that e is not in any triangle. D = {u, v, e} 

dominatesBG1(G). Hence, (BG1(G))  3. Therefore, (BG1(G)) = 3 by Theorem 2.4. 

Proof of (3): Let degGu = (G) = 2, u is not in any triangle. Let v, w be adjacent to u in G 

and v, w be not adjacent in G. Hence D = {u, e1, e2}, where e1 = uv, e2 = uwE(G) is a 

minimal dominating set ofBG1(G). Hence, (BG1(G)) = 3. 

Proof of (4): If the hypothesis of (1), (2) and (3) are not true, then let (G) = degGu. Let D 

be the set of edges incident with u. Then D  {u} is a dominating set ofBG1(G). Hence, 

(BG1(G))  1+(G). Since every edge of G is in a triangle,  

<N(u)> has no isolated vertices. Consider a line cover of <N(u)> in G. Then {u}  (Line 

cover of <N(u)) form a dominating set forBG1(G). 

 Therefore, (BG1(G))   1+1(<N(u)>). 

Proposition 2.11: If G = Kn, then (BG1(G)) =   n/2, n is even. 
               (n+1)/2, n is odd.   
Proof: In G, all vertices are adjacent to each other. Consider any minimal line cover for G. 

If G = Kn, α1(G) = n/2 or (n+1)/2 and this minimal line cover is the minimal dominating 

set forBG1(G)  with minimum cardinality. This proves the proposition. 

Proposition 2.12:(BG1(G)) (G), if (G)  3. 
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Proof: If there exists e E(G) such that e is not in any triangle, then D = {u, v, e}, where  

e = uv  E(G) dominatesBG1(G). Hence, (BG1(G))  3. If there exists no such e in 

G, that is if every edge lies in some triangle, then let S = {e E(G) : e is incident with u}, 

where degGu = (G). Consider N(u). N(u) has no isolated vertices and so                    

α1(< N(u) >)  (G)–1. Let D be a line cover of N(u) with cardinality α1(< N(u) >).     

{u}  D is a dominating set forBG1(G). Hence, (BG1(G))  1+(G)–1 = (G). 

Remark 2.4:Let G be a graph without isolated vertices and pendant vertices, with p  5. 

Then (1) If degGu = 2 and u lies on a triangle, then (BG1(G)) = 2. If degGu = 2 and u is 

not on any triangle, then (BG1(G)) = 3. 

(2) If (G)  3, then (BG1(G))  (G). 

Theorem 2.6: If G  K2, then 4  (BG1(G))+(BG1(G))   4+k where k = min {(G), 

(G)}. 

Proof: Since G  K2, (BG1(G))  2, and (BG1(G)) = 2 or 3. 

 Therefore, 4  (BG1(G))+(BG1(G)) ---------------------------------------    (1) 

Also, (BG1(G))  3 and (BG1(G))  min {1+(G), (G)+1} 

Therefore, (BG1(G)) + (BG1(G))  4+k, where k = min {(G), (G)}   ------  (2) 

From (1) and (2), it is clear that, 4  (BG1(G))+(BG1(G))  4+k. 

Remark 2.5:(1) When G = K2, (BG1(G)) = 2 and (BG1(G)) = 1. Hence, 

(BG1(G))+(BG1(G)) = 3. (2) If (G) > 2, 4 (BG1(G))+(BG1(G))  3+k. 

Examples (1) If G has a pendant vertex then (BG1(G)) = 2 and (BG1(G)) = 2. 
 Hence, the lower bound is sharp. 
 
(2)  
 
 
 
 
 
 
 
 
      

e1 e2 

u 

G 
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Here, D = {u, e1, e2}. (BG1(G)) = 3, (G) = 2 and (G) = 2. 

(BG1(G)) = 3, since (G)  3. Hence, (BG1(G)) + (BG1(G)) =  6 = 4+2 = 4+k. 
Hence, the upper bound in the inequality is also sharp. 

3. Irredundant number of BG1(G) 
Next, properties related to irredundant sets of BG1(G) andBG1(G) can be studied. 

Proposition 3.1:(1) Set of all point vertices is an irredundant set of BG1(G) if and only if 
G = K3.  
(2) Set of all line vertices is an irredundant set of BG1(G) if and only if G = 2K2, K3 and 
K1,2. 

Proof  of (1): Let V(G) be irredundant in BG1(G). Let v  V(G). v has a private 
neighbor in BG1(G) if there exists an edge e not incident with v but incident with all other 

vertices, which is true for every v  V(G). This gives p = 3 and G = K3. Converse is 
obvious. 

Proof of (2): Let D = E(G) be irredundant in BG1(G). Take e  D. e has a private 

neighbor in BG1(G), if there exists u  V(G) such that e is not incident with u and all 

other edges are incident with u. This is true for all e E(G). Hence, G = 2K2, K3 or K1,2. 

Theorem 3.1:ir(BG1(G)) = 2 if G satisfies any one of the following conditions. 

(1) G is a graph with p  4. (2) G has a pendant vertex. (3) G has an isolated vertex. (4) G 
has a triangle with a vertex of degree two. 

Proof: Let G be a graph with p  4. If G has no pendant or isolated vertices, let                

D = {e1, e2}. e1, e2 have private neighbors inBG1(G), and hence D is irredundant. Also, 

(BG1(G)) = 2. Hence, ir(BG1(G)) = 2 [since ir(BG1(G))  (BG1(G))]. 
If G has a pendant vertex u, then {u, e}, where e is incident with u, is an 

irredundant set (maximal). Hence, ir(BG1(G)) = 2. 

If G has an isolated vertex u, D = {u, e}, where e E(G) is a maximal irredundant 

set with minimum cardinality. Hence, ir(BG1(G)) = 2. 

If G has a triangle with a vertex u of degree 2 in G, then inBG1(G), {u, e}, where 

e = u1, u2 E(G) and N(u) = {u1, u2} is irredundant. Hence the theorem is proved. 

Theorem 3.2: Let G be a graph without isolated vertices. Let diam(G)  3.        

(1) If G has a pendant vertex, then ir(BG1(G)) = 2.  

(2) If G has no pendent vertices, then ir(BG1(G)) = 3. 
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Proof: Proof of (1) follows from Theorem 3.1. If v, u V(G) are not pendant in G, then 

D = {u, v, e}, where dG(u, v)  3 and e  E(G) is a maximal irredundant set with 

minimum cardinality. Hence, ir(BG1(G)) = 3. 

Following results are stated without proof, since they are easy to follow. 
Theorem 3.3: Let diam(G) = 2. (1) If G contains a triangle with a vertex u of degree two 
and e an edge not incident with u, then D = {u, e} is a maximal irredundant set 

forBG1(G).  

(2) If G has an edge e = uvV(G), which is not in any triangle, then D = {u, v, e} is 
maximal irredundant.  

(3) Let u V(G), with e(u)  1 and D = {e  E(G) : e is incident with u}. Then D is 

maximal irredundant inBG1(G).  

(4) If every edge of G is in a triangle for u V(G) with e(u)  1. D = {u}  D1, where D1 

is a minimal line cover of N(u) in G is maximal irredundant in BG1(G).  

Proposition 3.2: Let r(G) = 1. Let u V(G) such that e(u) = 1. Then (1) N(u) is a 

maximal irredundant set ofBG1(G).  

(2) Let D = {e E(G):e is incident with u}. Then D is also a maximal irredundant set 

ofBG1(G). 

Proposition 3.3:If G = Kn, any set containing (n1) point vertices is an irredundant 

subset ofBG1(G). 
Proposition 3.4: Let G be a graph without isolated vertices and let D be a minimal line 

cover for G. Then D is an irredundant set ofBG1(G) 

4. Independent domination ofBG1(G) 
We have already found out the independent domination number of BG1(G). Now, 

independent domination number ofBG1(G) can be studied. 

Theorem 4.1: i(BG1(G)) = 2 if and only if any one of the following is true.                  

(1) G = K2 mK1, m > 1. (2) G has an isolated vertex. (3) G has a pendant vertex u such 

that uvE(G) and degGv   2. (4) G has a vertex u lying on a triangle and degGu = 2. 

Proof: Assume i(BG1(G)) = 2, G  K2. Since (BG1(G))  1, (BG1(G)) = 2. Let D 

be an independent dominating set ofBG1(G). 

Case 1: D = {u, v} V(G). 
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Since D is independent, u and v are adjacent in G and u, v are not in any triangle in G. 

Also u, v dominates only one line vertex. Hence, G must be K2 mK1, m > 1. (Because for 

G = K2, (BG1(G)) = 1 = i(BG1(G))). 

Case 2: D = {e1, e2}  E(G). 

This is not possible, since line vertices form a complete graph inBG1(G). 

Case 3: D = {u, e}, where u V(G) and e  E(G). 
Since D is independent in G, e is not incident with u. 
Sub case 3.1: u is isolated. 
In this case, e may be any line vertex. 
Sub case 3.2: degGu = 1. 

If degGu = 1. u is pendant in G. Let e1 = uv  E(G). InBG1(G), u cannot dominate v. 
Therefore, D is an independent dominating set implies that e must be incident with v. 

Hence, degGv  2. 
Sub case 3.3:degGu = 2. 

Let N(u) = {v, w} in G. InBG1(G), u dominates all the point vertices except v and w. 
Hence, e must be incident with both v and w. 

Sub case 3.4:degGu  3. 
In this case, D cannot be a dominating set. 
 This proves (1), (2), (3) and (4). Converse is obvious. 

Proposition 4.1:i(BG1(G))  i(G) or i(G)+1. 

Proof: Let D be an independent dominating set with cardinality i(G) forG. If D is a 

point cover for G, then D is an independent dominating set ofBG1(G), otherwise           

D  {e}, where e  E(G) is not incident with any element of D, is an independent 

dominating set forBG1(G). Hence, i(BG1(G)) i(G) or i(G)+1. 

Remark 4.1: If G is a graph with p  4, then i(BG1(G)) = 2 or 3. 

Theorem 4.2: Let G be a graph not satisfying the conditions of the Theorem 4.1. (1) If G 

has an edge not lying in any triangle, then i(BG1(G)) = 3.     

(2) If each edge of G is lying on a triangle, then i(BG1(G)) (G)+1. 

Proof: Let G be a graph not satisfying any conditions of Theorem 4.1. Then i(BG1(G)) 
> 2. 
Case 1: G has an edge not lying in any triangle.  
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Let e = uvE(G), such that e is not lying in any triangle. u and v dominates all point 

vertices inBG1(G). Take D = {u, v, e1}, where e1 is not incident with u and v in G. D is an 

independent dominating set forBG1(G). Hence, i(BG1(G)) = 3. 

Case 2: Every edge of G is lying in some triangle and G  K1. 

Let degGu = (G). InBG1(G), u dominates all point vertices in V(G)–N(u). Since, every 
edge is lying on a triangle, <N(u) > has no isolated vertices. Consider a minimal 

independent dominating set for <N(u) >. Let it be D1. If G  Kn, then D1 {u} is an 

independent dominating set ofG. D = D1 {u}  {e}, where e is not incident with 

elements of D1, is an independent dominating set ofBG1(G)  and DD1+1+1  

((G)–1)+1+1 = (G)+1. 
Case 3: G = Kn 

Let e = v1v2E(G) and v1, v2, ..., vn V(G). D = {e, v3, v4, ...,vn} is an independent 

dominating set forBG1(G). Hence, i(BG1(G))  n–1  (G)+1. 
 This proves the theorem. 

5. Connected, total and cycle domination of BG1(G) andBG1(G) 

In this section, connected, total and cycle domination of BG1(G) and its complement are 
studied. 

Observations: (1) If G has a pendant vertex with p > 2 and q  2, then c(BG1(G)) = 3. If 

u is pendant, v is adjacent to u in G, then D = {u, v}  {e}, where e uvE(G) is a 
dominating set.  

(2) Let G be a connected graph with p  3 and (G) = 2. Then c(BG1(G)) = 3. [D = {u1, 
u2, u3}, where {u1, u2} is a connected dominating set of G and u3 is adjacent to u1 or u2 or 
D = {u1, u2, e}, where e is not incident with u1, u2 if {u1, u2} is not a connected dominating 
set of G].  

(3) If c(G) > 3 and G has no pendant vertex, then c(BG1(G))  4. [The connected 

dominating set D is given by D = {u, v, w, e}, e = uvE(G), where {u, v, w} is a connected 

set of G]. c(BG1(G)) is at least 3. (4) D V(G) such that D = 2 cannot be a connected 
dominating set of BG1(G). 

Theorem 5.1: If G  K2, 2K2, then t(BG1(G))  4. 

Proof: Let e = uvE(G) and let w be adjacent to u or v in G. Then  < D > = < {u, v, e, w} 

> is connected. Hence, D is a connected dominating set of BG1(G) and hence c(BG1(G)) 
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 4 and t(BG1(G))  4. If G = 2K2, then BG1(G) is disconnected and t(BG1(G)) = 4. If   

G = nK2 for n > 2, c(BG1(G)) = 4 = t(BG1(G)). This proves the theorem.  

Theorem 5.2:o(BG1(G)) = 3 if and only if o(G) = 3. 

Proof: If o(G) = 3, then G has a dominating set D = {u, v, w}, where u, v, w form a C3 in 

G. This D is also a dominating set for BG1(G). Hence, o(BG1(G)) = 3. 

(Here, < D > is an induced cycle). Conversely, assume that o(BG1(G)) = 3. Then there 

exists D = {x, y, z}  V(BG1(G)) such that D is a cycle dominating set of BG1(G). 

Case1: x, y, z V(G). 

Since, G is an induced subgraph of BG1(G), o(G) = 3. 

Case2: x, y V(G) and z  E(G). 
x, y and z form a C3 in BG1(G). Thus, in G, z is not incident with x and y. Also in G, x and 

y are adjacent. Take e = xyE(G). In BG1(G), e is not dominated by D. Hence, this case is 
not possible. Similarly, other cases are also not possible. 

This proves the theorem. 

Theorem 5.3: Let G be a graph with p > 4, o(BG1(G)) = 4 if and only if o(G)  3 and 
any one of the following is true. (1) G has a vertex of degree at least 3.  
(2) There exists two non-adjacent vertices u and v in G and two edges e1 and e2 not 
incident with both u and v such that either they are not adjacent or they are incident at w, 
where w is adjacent to u or v.  

Proof: Assume o(G)  3 and (1) or (2) is true. Since o(G)  3, o(BG1(G))  3. Now, 
assume that G has a vertex vo of degree at least 3. Let N(vo) = {v1, v2, v3} and                      

ei = vovi E(G). In BG1(G), D = {v0, e1, v2, v3} is a cycle dominating set. Hence   

o(BG1(G)) = 4.  

If (2) is true, D = {u, v, e1, e2} is a cycle dominating set in BG1(G). Therefore, o(BG1(G)) = 
4. 

 Conversely, assume that o(BG1(G)) = 4. o(BG1(G)) = 4 implies that o(BG1(G)) 

 3 and hence o(G)  3 by Theorem 5.2.  
Case 1: All vertices in the cycle dominating set D are point vertices. 

Let D = {u, v, w, z}  V(G). D is also a cycle dominating set of G. Since p  5, there exists 
another vertex x in G, which is adjacent to any one of this four vertices (say u). [x cannot 

be in another component, since D is a dominating set of BG1(G)]. Thus, degGu  3. 
Case 2: D contains one line vertex and three point vertices 
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Let D = {u, v, w, e}, e  E(G). Let u v w e u be an induced C4. In this case, {u, v, w} is not 
a cycle dominating set of G; u, w are not adjacent; e is not incident with u and w; and e 

must be incident with v, (otherwise, e and v are adjacent in BG1(G)). Thus, degGv  3. 
Case 3: D contains two point vertices and 2 line vertices. 
Let D = {u, v, e1, e2}. Here u e1 v e2 u is a C4,where e1, and e2 are not incident with u and v 
in G. Also, as D is a dominating set, either e1, e2 are not adjacent in G or they are incident 
at a vertex, which is adjacent to u or v. This proves the theorem. (Other cases are not 
possible) 

Remark 5.1: (1) For all connected graphs, which are not a path or cycle, o(BG1(G))  4.  

(2) If G = Pn mK1, or Cn  mK1, or Pn Cn mK1, for n > 3 and m  2, then 

o(BG1(G)) = 4.  

(3) If G = C3 mK1for m 2, then o(BG1(G)) = 5 and if G = P3 mK1for m 2, then 

o(BG1(G)) = 6.  

(4) If G = P4 or P5 or C5, then o(BG1(G)) = 5.  

(5) If G = Pn or Cn for n  5, then o(BG1(G)) = 4.  

(6) If G = P4 K1 or C4 K1, then o(BG1(G)) = 5. 

(7) If G = P5  K1 or C5 K1, then o(BG1(G)) = 4. 

Next, we shall find out the connected, total and cycle domination numbers ofBG1(G). 
 

Theorem 5.4: If G  K2 and G has a pendant vertex, or p  4, then c(BG1(G)) = 2 = 

t(BG1(G)) and  o(BG1(G)) = 3. 

Proof: Case 1: Let p  4 and let G has no pendant vertex.  

Then D = {e1, e2} is a connected dominating set forBG1(G). D = {e1, e2, e3} or  {u, e1, e2} is 

a cycle dominating set. Hence, o(BG1(G) ) = 3. 
Case 2:  G has a pendant vertex u. 

Let e = uvE(G) be incident with u in G. Then D = {u, e} is a connected dominating set 

forBG1(G). D = {u, v, e} is a cycle dominating set forBG1(G). Hence, c(BG1(G)) = 2 

= t (BG1(G)) and o(BG1(G)) = 3. 

Theorem 5.5: If G is a graph with (p > 4), no pendant vertex and has an isolated vertex, 

then c(BG1(G)) = t(BG1(G)) = 3 and o(BG1(G)) = 4.  

Proof: Let u be an isolated vertex in G and v not isolated. Let e = vwE(G). D = {u, v, e} 
is connected dominating set and there exists no connected dominating set with cardinality 
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two. {u, v, e, w} is a cycle dominating set. Hence, c(BG1(G) ) = t(BG1(G)) = 3 and 

o(BG1(G)) = 4.  

Now, let us assume that G has no isolated vertices and has no pendant vertices with p  5.  

Theorem 5.6: If diam(G)  3, then (1) c(BG1(G)) = t(BG1(G)) = 3. (2) o(BG1(G)) 
= 4. 

Proof: Let u, v V(G) such that of dG(u, v)  3. ThenG has a dominating edge uv. 
Consider D = {u, v, e}, where e is incident with u or v in G. D is a connected dominating 

set forBG1(G) and there exists no connected dominating set with cardinality two. Hence, 

c(BG1(G)) = t(BG1(G)) = 3. Let e1E(G), e2 E(G) such that e1 is incident with u 

and e2 is incident with v in G. Then D = {u, v, e1, e2} is a cycle dominating set forBG1(G). 

Therefore, o(BG1(G)) = 4. 

Theorem 5.8: (1) If diam(G) = 2 and G contains a triangle with at least one vertex of 

degree 2 in G and every edge of G lies in a triangle, then c(BG1(G)) = t(BG1(G)) = 

o(BG1(G)) = 3.  

(2) If diam(G) = 2 and G has an edge e not in any triangle, then c(BG1(G)) = 

t(BG1(G)) = o(BG1(G)) = 3.  
(3) If diam(G) = 2 and G has no triangle with a vertex of degree 2 and every edge of G lies 

in a triangle, then c(BG1(G)) = t(BG1(G)) = o(BG1(G))  2+α1(<N(v)>). 
Proof of (1): If G contains a triangle with one vertex u of degree 2 in G. Let N(u) = {v, w} 

and e = v w  E(G), e1 = uv, e2 = uw E(G). Consider D = {u, e}. D dominatesBG1(G). 

{u, e, e1} dominatesBG1(G) and is connected. {u, e1, e2} is a cycle dominating set. 

Proof of (2): If G has an edge e = uv not in any triangle, D = {u, v, e} dominatesBG1(G), 
where D forms a cycle. 

Proof of (3): Let v V(G) such that degGv = (G). Since every edge of G lies on a 
triangle,  <N(v) > has no isolated vertex. Let D be a line cover of  < N(v) > in G. D1 = {v} 

 D is a dominating set forBG1(G) and D2 = D1  {e}, where e is incident with v, is a 

connected dominating set forBG1(G) and D3 = {e, e1}  D1, where e, e1 are incident with 

v is a cycle dominating set forBG1(G) (not induced). This proves the theorem. 

Theorem 5.9: If G = Kn, then (BG1(G)) = t(BG1(G)) = c(BG1(G)) = n/2 or (n+1)/2. 
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6. Global domination number of BG1(G) 

Following theorems and propositions deal with the global domination number of BG1(G). 
Some bounds for global domination number are also found out. 

Theorem 6.1: Let G be a graph without isolated vertices. Then g(BG1(G))  1+(G). 

Proof: Let u V(G) such that degGu = (G). Let D = {e E(G) : e is incident with u in 

G}. Then D  {u} is a dominating set for BG1(G) andBG1(G). Hence,              

g(BG1(G))  1+(G). 

Remark 6.1:If G has a pendant vertex, then g(BG1(G)) = 2. 

Theorem 6.2: If G has an isolated vertex, then g(BG1(G))  4. 

Proof: Let u V(G) be an isolated vertex of G. {u, e}, e  E(G) dominatesBG1(G). If      

e = vwE(G), {v, w, e} dominates BG1(G). Therefore, {u, v, w, e} is a global dominating 

set for BG1(G). Hence, g(BG1(G))  4.  

Remark 6.2: If G has a pendant vertex and has some isolated vertices, then g(BG1(G)) = 3 
or 4. 

Proposition 6.1: For p  5, if G has no pendant vertex and if G has a vertex of degree 2 

lying on a triangle; or if G has an edge e not lying on a triangle, then g(BG1(G)) = 3. 

Proof: Let v be the vertex of degree two lying in a triangle. N(v) = {v1, v2}, e = v1v2 E(G).   

{v, e} dominatesBG1(G). Let u V(G) be not adjacent to v. Then {u, v, e} dominates 

BG1(G). Hence, g(BG1(G)) = 3. Let uv = e E(G) such that e is not lying on any triangle. 

Then D = {u, v, e} dominates BG1(G) andBG1(G). Hence, g(BG1(G)) = 3. 

Proposition 6.2: If G = Kn, then g(BG1(G)) = n/2 +2 or (n+1)/2 +2. 
Proof: Follows from Proposition 2.11 and Theorem 2.2. 

Proposition 6.3:If diam(G)  3, then g(BG1(G))  4. 

Proof: Let u, v V(G) such that dG(u, v)  3. Let w be adjacent to u and let                     

e = uwE(G). Then {u, v, w, e} is a global dominating set. Hence, g(BG1(G))  4. 

Proposition 6.4: Let D be a minimal dominating set for G. Then (1) D is a dominating set 

for BG1(G) if and only if |D|  3 or |D| = 2 and D is independent. (2) D 
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dominatesBG1(G) if and only if D is a global dominating set for G and D is a line cover 
for G. 

Proof of (1): As (BG1(G)) > 1, |D| > 1. Also, if |D| = 2 and < D > is connected, then the 
edge in D can not be dominated by D in BG1(G). This proves (1). 
Proof of (2): Proof is obvious.                              

Proposition 6.5: Let D be a global dominating set of G. Then D is a global dominating set 

of BG1(G) if and only if (1) |D|  3 or |D| = 2 and D is independent. (2) D is a point cover 
for G. 
Proof:  Follows from Proposition.6.4. 
 
Remark 6.2: In Proposition 6.5, |D| = 2 and D is independent is true only when G is 

disconnected, otherwise D cannot be a dominating set of BG1(G) orBG1(G). 

Theorem 6.3: g(BG1(G)) g(G)+1.  

Proof: Let D be a global dominating set of G. Then it is clear that |D|  2. If |D| = 2, then 

take D1 = {u, v, e}, for u, v  D and e edge in < D >. Clearly, D1 dominates BG1(G) 

andBG1(G). If |D|  3, then D1 = D  {e} for e E(G) dominates BG1(G) andBG1(G). 
This proves the theorem. 

7. Total global domination of BG1(G) 
A total dominating set D of a graph is a total global dominating set, if D is also a total 

dominating set ofG. In this section, bounds for total domination number of BG1(G) are 
found out. 

Theorem 7.1: Let G be a graph without isolated vertices and diam(G) > 1. Then 

tg(BG1(G))  (G)+3. 

Proof: Let u V(G) such that degGu = (G). Let D = {e E(G) : e is incident with u}. Let 

e = uvE(G) and w  V(G) is such that it is adjacent to v, not to u. Let D1 = D  {u, v, 

w}. Then D1 is a global dominating set of BG1(G) andBG1(G) and is also a total 

dominating set in BG1(G) andBG1(G). Hence, tg(BG1(G))  (G)+3. 

Remark 7.1:If G  K2, and connected with (G) = 1, then tg(BG1(G))  4. 

Proposition 7.1: If G is a connected graph with diam(G)  3, then tg(BG1(G))  5.  



 
 

35 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Proof: If diam(G)  3, then there exists a path u v w z in G. Let e = uv, e1 = vw. Consider 

D = {u, v, z, e, e1} V(BG1(G)). D is a total dominating set for BG1(G) andBG1(G). 

Therefore, tg(BG1(G))  5. 

Proposition 7.2: Let G  K2. If there exists e E(G) such that e is not lying in a triangle 

in G, then tg(BG1(G))  4. 

Proof: Let u, v V(G) such that e = uv E(G) and G  K2 and e is not lying on a 

triangle. D = {u, v, e} dominates BG1(G) andBG1(G). D1 = {u, v, e, w}, w not incident 

with e, is a total global dominating set of BG1(G). Therefore, tg(BG1(G))  4. 

Proposition 7.3: If G has a vertex of degree two lying on a triangle, then tg(BG1(G))  4. 

Proof: Let v V(G) such that degGv = 2 and v lies in a triangle formed by v, v1, v2. D = {v, 

e}, where e = v1v2E(G) dominatesBG1(G). Now, let u be any other vertex, which is not 
adjacent to v in G. Then D1 = {u, v, e} dominates BG1(G) and is a total dominating set. 

Therefore, D2 = {u, v, e, e1}, where e1 = vv1E(G) is a total dominating set for BG1(G) 

andBG1(G). Therefore, tg(BG1(G))  4. 

Proposition 7.4: If diam(G) = 1, tg(BG1(G)) = (p/2)+3 or ((p+1)/2)+3. 

Proof: Let diam(G) = 1. Hence, G = Kn. Let e = uvE(G). D = {u, v, e} dominates BG1(G). 

D1 = {u, v, e}  D2, where D2  E(G) is a line cover of G. D1 dominatesBG1(G) and D1 

is total. Therefore, S = {u, v, e}  D2 {w}, where e  D2 is a total dominating set for 

BG1(G) andBG1(G). Therefore, tg(BG1(G))  (p/2)+3 or ((p+1)/2)+3. 

Proposition 7.5: Let G be a graph with no pendant vertices and diam(G) = 2. Then 

tg(BG1(G))  ((G)+5)/2. 

Proof: Case 1: e E(G) is not lying on a triangle.  

D = {u, v, e}, e = uvE(G) dominates BG1(G) andBG1(G). w V(G) is not adjacent to u 

or v, D1 = {u, v, e, w} is a total dominating set. Therefore, tg(BG1(G))  4. 
Case 2:  Every edge of G is lying on a triangle.  

Let D be a line cover of <N(v) >, where degGv = (G). Take D1 = D  {v}  {u}. This is a 

total dominating set of BG1(G) andBG1(G). Therefore, tg(BG1(G))  ((G)/2)+2 or 

(((G)+1)/2)+2  ((G)+5)/2. 

Theorem 7.2: (1) If diam(G) = 1, then tg(BG1(G))  (p/2)+3 or ((p+1)/2)+3. 
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 (2) If diam(G) = 2, then tg(BG1(G))   min {4, ((G)+5)/2}. 

 (3) If diam(G)  3, then tg(BG1(G))  5. 
Proof: Follows from Propositions 7.1, 7.2, 7.3, 7.4 and 7.5. 

8. Efficient domination of BG1(G) andBG1(G) 
If G  K2,BG1(G) is self-centered with diameter two. Therefore,BG1(G) has no efficient 
domination. Also, if p > 4 and G has no pendant vertices, then BG1(G) is self-centered 
with diameter two. So, if p > 4 and G has no pendant vertices, then BG1(G) has no 
efficient domination.  

Proposition 8.1: If G has a pendant vertex, then e(BG1(G)) = 2.  

Proof: Let u  V(G) be pendant in G and e  E(G) be incident with u in G. D = {u, e} is 
an efficient dominating set of BG1(G), since D is a dominating set for BG1(G) and d(u, e) 

= 3 in BG1(G). Hence, e(BG1(G)) = 2. 

Proposition 8.2: If p = 4 and G has no pendant vertices, then BG1(G) has no efficient 
domination. 

Proof: Since p = 4 and G has no pendant vertices, G is any one of K3  K1, K4, C4 or 

K4e. In all these cases, BG1(G) has no efficient domination. 

Proposition 8.3: If p = 3 and G has no pendant vertices, then e(BG1(G)) = 3. 
Proof: In this case, G = K3 and the set of all point vertices is a dominating set and distance 

between any two line vertices is three. Therefore, e(BG1(G)) = 3. 

Theorem 8.1: (1) e(BG1(G)) = 2 if and only if G has a pendant vertex.                

(2) e(BG1(G)) = 3 if and only if G = K3.  

(3) If G  K3 and has no pendant vertices, then BG1(G) has no efficient domination. 

Proof of (1): Let e(BG1(G)) = 2. Let D be an efficient dominating set of BG1(G). 

Case1: D = {u, v} V(G).  

D is a dominating set of BG1(G). Hence, dG(u, v)  2. This implies d(u, v)  3 in BG1(G) 

and u and v have no common non-incident edge in G. Hence, G is of the form K1,m K1,n 

or K1,m nK1. Thus, G has pendant vertices. 
Case 2: D = {u, e}.  
D is a dominating set implies u is pendant and e is incident with it in G. 

Case 3: D = {e1, e2}  E(G). 
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D dominates BG1(G) and d(e1, e2)  3 in BG1(G). Therefore, q = 2 and e1, e2 has no 
common non-incident vertex in G. Therefore, G = 2K2 or K1,2. If G = K1,2, then D is not a 
dominating set. Hence, G = 2K2. Therefore, G has a pendant vertex. Converse follows 
from Proposition 8.1.  

Proof of (2): Assume e(BG1(G)) = 3. Let D be a minimal efficient dominating set with 
cardinality 3 for BG1(G).  

Case 1: D = {u, v, w}  V(G). 
D is efficient implies distance between any two elements of D in G is at least 3 and there is 
no edge not incident with any two elements of D in G. This is not possible. 

Case 2:  D = {u, v, e}  u, v  V(G), e  E(G). 
D is efficient implies u and v are at distance at least 3 in G and e is incident with u and v, 
which is not possible. 
Case 3:  D = {u, e1, e2}. 
D is efficient implies, e1, e2, are incident with u in G. But, d(e1, u) = d(e2, u) = 2 in BG1(G). 
Therefore, this is also not possible. 
Case 4: D = {e1, e2, e3}.    
D is a dominating set implies q = 3 in G. D is efficient implies any two elements of D 
cannot have a common non-incident point vertex in G. Hence, G = K3 only. 
 Converse follows from Proposition 8.3. 
Proof of (3): Already proved. 

9. Restrained domination of BG1(G) andBG1(G) 

Following results deal with the restrained domination ofBG1(G).  

Proposition 9.1: If G  K2 and p  4, then r(BG1(G)) = 2. 
Proof: Case 1: G has a pendant vertex u. 

D = {u, e}, e = uvE(G) is a restrained dominating set ofBG1(G). 
Case 2: G has no pendant vertex and no isolated vertex. 

If G = C3, D = {u, e}, where u V(G) and e not incident with u in G and in other cases, 
{e1, e2}, where e1, e2 are independent edges of G is a restrained dominating set. 
Case 3: G has an isolated vertex u. 

D = {u, e} is a restrained dominating set. Hence, in all cases, r(BG1(G)) = 2. 

Proposition 9.2: Let G be a graph with at least four vertices. If G has a pendant vertex or 

isolated vertex, then r(BG1(G)) = 2. 
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Proof: If u is pendant in G, then {u, e}, where e = uvE(G) is a restrained dominating set 

ofBG1(G). If v is an isolated vertex, then {v, e}, where e  E(G) is a restrained 

dominating set ofBG1(G). Hence, r(BG1(G)) = 2. 

 Now, assume that G is a graph without isolated vertices and pendant vertices and 

p  5. Following theorems give the restrained domination ofBG1(G). Since they are easy 
to follow, statements are given without proof. 

Theorem 9.1:(1) Let diam(G)  3. If G contains a triangle with at least one vertex of 

degree two in G, then r(BG1(G)) = 2; otherwise, r(BG1(G)) = 3.  

(2) Let diam(G)  2. If G contains a triangle with at least one vertex of degree two in G, 

then r(BG1(G)) = 2; If G has no such triangle and has an edge e, which is not in any 

triangle then r(BG1(G)) = 3; otherwise, r(BG1(G)) = 1+α1(<N(v)>), where            

degGv = (G).  

(3) If G = Kn, then r(BG1(G)) = n/2 or (n+1)/2. 

Remark 9.1: (1) r(BG1(G)) = (BG1(G)).  

(2) If q  2 and D is restrained dominating set ofG, then D  {e} is a restrained 

dominating set ofBG1(G). 

(3) If q  2, the set of all point vertices is a restrained dominating set ofBG1(G). 
(4) Set of all line vertices is a restrained dominating set if and only if radius of G is greater 
than one. 

(5) Let D be a restrained dominating set ofG. D is a restrained dominating set 

ofBG1(G) if and only if D is a point cover for G. 

10. Neighborhood Number of BG1(G) andBG1(G) 
Neighborhood number of BG1(G) andBG1(G) have been studied here. Bounds for 

no(BG1(G)) and no(BG1(G)) are found out. 

Proposition 10.1: (1) If G  K2, then set of all point vertices is a neighborhood set for 
BG1(G).  

(2) If G  K2 mK1 and q > 1, then set of all line vertices is a neighborhood set of 
BG1(G). 
Proof of (1): Since set of all line vertices is independent in BG1(G), set of all point vertices 
covers all the edges of BG1(G). Hence, it is a neighborhood set of BG1(G). 
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Proof of (2): Since G  K1,n mK1 and q > 1, for any two adjacent vertices u, v in G, 
there exists an edge not incident with u and v. Hence, in BG1(G), all the edges of BG1(G) 
is covered by the neighborhood of line vertices. Therefore, D = E(G) is a neighborhood set 
of BG1(G).  

Theorem 10.1:no(BG1(G))  min {p, q}, if G  K1,n  mK1. 
Proof: Proof follows from Proposition 10.1. 
 
Theorem 10.2: Let G be a graph without isolated vertices. 

(1) If G = Kn, then no(BG1(G)) = α1(G). 

(2) If G Kn, α1(G)   no(BG1(G))  p1. 
Proof of (1): Let G = Kn. Consider a line cover D of G.   ⋃ ൏ ܰሾݔሿ ൐୶ୈ covers all the 
edges in Kq and edges joining point vertices to line vertices.  

Hence,BG1(G) = < N[x] >. Hence, no(BG1(G)) α1(G).  

Proof of (2): Let G  Kn. Consider e = uvE(G); u, v  V(G). Let D = V(G)–{u, v} and S 

= {e}  D. < N[e] > covers all the edges inBG1(G) joining line vertices and edges joining 
e to u and v and edges joining elements of D to other line vertices and < N[x] >, where      

x  D covers all the edges ofG. Hence,BG1(G) = <N[x]>. Therefore,           

no(BG1(G))  p1. Also, no(BG1(G)) α1(G) for G.  

Hence, α1(G)  no(BG1(G))  p1. 

Conclusion: In this paper, we have studied connected, efficient, independent, restrained, 
total and cycle dominations of BG1(G) and its Complement. Irredundance and 
neighborhood numbers are also studied. Other domination parameters and properties are 
also studied and submitted. 
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