International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 7, No. 1, January – March 2016, pp. 16 - 40

# Domination parameters of the Boolean graph BG<sub>1</sub>(G) and its complement

T.N.Janakiraman<sup>1</sup>, M.Bhanumathi<sup>2</sup> and S.Muthammai<sup>2</sup>

<sup>1</sup>Department of Mathematics, National Institute of Technology, Trichirapalli 620015, India. E-mail: janaki@nitt.edu <sup>2</sup>Government Arts College for Women, Pudukkottai-622001, India. E-mail: bhanu\_ksp@yahoo.com, muthammai\_s@yahoo.com

**Abstract:** Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G).  $B_{G, NINC, \overline{K}q}(G)$  is a graph with vertex set  $V(G) \cup E(G)$  and two vertices are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this graph by  $BG_1(G)$ , Boolean graph of G-first kind. In this paper, domination parameters of  $BG_1(G)$  and its complement are studied.

Key words: Boolean graph  $BG_1(G)$ .

## 1. Introduction

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [6], Buckley and Harary [4].

**Definition 1.1** [7]:A set  $S \subseteq V$  is said to be a *dominating set* in G, if every vertex in V-S is adjacent to some vertex in S. A dominating set D is an *independent dominating set*, if no two vertices in D are adjacent that is D is an independent set. A dominating set D is a *connected dominating set*, if < D > is a connected subgraph of G. A dominating set D is a *perfect dominating set*, if for every vertex  $u \in V(G)-D$ ,  $|N(u) \cap D|= 1$ . A dominating set D is a *total dominating set*, if < D > has no isolated vertices. A dominating set D is called an *efficient dominating set*, if the distance between any two vertices in D is at least three. A cycle C of a graph G is called a *dominating cycle* of C, if every vertex in V-C is adjacent to some vertex in C. A set  $D \subseteq V(G)$  is a *global dominating set*, if D is also a total dominating set D of a graph is a *total global dominating set*, if D is also a total dominating set D of a graph is a *total global dominating set*, if D is also a total dominating set D of a graph is a *total global dominating set*, if D is also a total dominating set D of a graph is a *total global dominating set*, if D is also a total dominating set of  $\overline{G}$ . A set  $D \subseteq V(G)$  is a *restrained dominating set*, if every vertex in V-S is adjacent to a vertex in S and other vertex in V-S.

**Definition 1.2** [11]: A set S of vertices is said to be *irredundant*, if for every vertex  $v \in S$ ,  $p_n[v, S] = N[v] - N[S - \{v\}] \neq \phi$ , that is, every vertex  $v \in S$  has a private neighbor.

Received: 22December, 2015; Revised: 28February, 2016; Accepted: 22March, 2016

International Journal of Engineering Science, Advanced Computing and Bio-Technology

The *irredundance number* ir(G) is the minimum cardinality of a maximal irredundant set in G.

**Definition 1.3** [12]:A set S of vertices is called a *neighborhood set* provided G is the union of the subgraphs induced by the closed neighborhoods of the vertices in S; that is,  $G = \bigcup \langle N[v] \rangle$ . The *neighborhood number*  $n_o(G)$  of a graph G equals the minimum cardinality of a neighborhood set.

**Definition 1.4** [7]: The *domination number*  $\gamma$  of G is defined to be the minimum cardinality of a dominating set in G. Similarly, one can define the perfect domination number  $\gamma_{p}$ , connected domination number  $\gamma_{c}$ , total domination number  $\gamma_{t}$ , independent domination number  $\gamma_{i}$ , efficient domination number  $\gamma_{e}$ , cycle domination number  $\gamma_{o}$ , global domination number  $\gamma_{g}$ , total global domination number  $\gamma_{tg}$ , restrained domination number  $\gamma_{r}$ .

An edge  $uv \in E(G)$  is a *dominating edge* of G, if all the vertices of G other than u and v are adjacent to either u or v.

**Definition 1.5**:Cockayne and Hedetniemi [5] defined the *domatic number* d(G) of a graph to be the maximum number of elements in a partition of V(G) into dominating sets. G is *domatically full* if  $d(G) = 1 + \delta(G)$ .

**Definition 1.6**:A vertex (point) and an edge are said to *cover*each other, if they are incident. A set of vertices, which cover all the edges of a graph G is called a (*vertex*) point *cover of G*, while a set of lines (edges), which covers all the vertices is a *line cover*. The smallest number of points in any point cover for G is called its *point covering number* and is denoted by  $\Omega_o(G)$  or  $\Omega_o$ . A set of points in G is *independent*, if no two of them are adjacent. The largest number of points in such a set is called the *pointindependence number* of G and is denoted by  $\beta_o(G)$  or  $\beta_o$ . Similarly,  $\alpha_1(G)$  or  $\alpha_1$  is the smallest number of lines in any line cover of G and is called its *line covering number*. A point cover is called *minimum*, if it contains  $\alpha_o$  points. A line cover is called *minimum*, if it contains  $\alpha_1$  points. Analogously, an independent set of lines (matching) of G has no two of its lines adjacent and the maximum cardinality of such a set is the *line independence number*  $\beta_1(G)$  or  $\beta_1$ . A set of independent edges covering all the vertices of a graph G is called a *1-factor* or a *perfect matching* of G.

Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). In [3, 8], it is defined that  $B_{G, NINC, Kq}(G)$  is a graph with vertex set  $V(G) \cup E(G)$  and two vertices are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this graph by  $BG_1(G)$ , Boolean graph of G-first kind. In this paper, domination parameters of  $BG_1(G)$  and its complement are studied.

We need the following theorems to study the domination parameters  $ofBG_1(G)$  and its complement.

**Theorem 1.1** [7]:ir(G)  $\leq \gamma(G) \leq \gamma_i(G) \leq \beta_0(G)$ . If  $\gamma(G) \geq 2$ ,  $\gamma(G) \leq \gamma_i(G) \leq \gamma_i(G)$ .

Theorem 1.2[7]: $\gamma_{tg}(G) < \gamma_t(G)+2$ .

**Theorem 1.3**[7]: Let D be a  $\gamma_g$ -set of G such that  $\langle D \rangle$  has no isolates and diam(G) = 3, then  $\gamma_{tg}(G) \leq \gamma_g(G) + 2$ .

Theorem 1.4[12]: $\gamma(G) \leq n_0(G) \leq \mathfrak{Q}_0(G)$ .

**Theorem 1.5** [9]: BG<sub>1</sub>(G) is self-centered with diameter two if and any if  $G \neq K_2$ .

## **2.** Domination Parameters of $BG_1(G)$ and $BG_1(G)$

In this section, domination parameters of  $BG_1(G)$  and  $BG_1(G)$  are studied. First domination parameters of  $BG_1(G)$  are studied.

Let G be a given graph. G is non-trivial. Therefore, G has at least one edge  $e = uv \in E(G)$ , where u,  $v \in V(G)$ . Consider  $D = \{u, v, e\}$ . D is a dominating set of BG<sub>1</sub>(G). Also, radius of BG<sub>1</sub>(G) is always greater than one. Hence,  $1 < \gamma(BG_1(G)) \leq 3$ .

If G has a pendant vertex  $u \in V(G)$  and  $e \in E(G)$  is incident with u in G, then D = {u, e} dominates all the vertices of BG<sub>1</sub>(G). Hence,  $\gamma(BG_1(G)) = 2$ . This set {u, e} is independent in  $BG_1(G)$ . It is also an irredundant set (maximal) in  $BG_1(G)$ . Again, every element in V–D has adjacent elements in V–D. Hence,  $\gamma_i(BG_1(G)) = \gamma_r(BG_1(G)) = 2$ . D is also an efficient dominating set for  $BG_1(G)$ .

Now, assume that G has no pendant vertices.

(1) Let G be a graph with  $\gamma(G) = 1$ : Then the radius of G is one. If diam(G) = 1, that is G  $= K_n$ ,  $n \ge 3$ , take  $e \in E(G)$ , e = uv, where  $u, v \in V(G)$ . The set  $D = \{u, v, e\}$  dominates BG<sub>1</sub>(G) and D is not independent. Hence,  $\gamma(BG_1(K_n)) = 3$ . If  $n \ge 4$ , D is restrained. If n = 3, D = E(G) is restrained and independent. Hence,  $\gamma_i(BG_1(K_3)) = \gamma_r(BG_1(K_3)) = 3$ .

When  $n \ge 4$ , let  $S = \{e \in E(G) : e \text{ is incident with } u \text{ in } G\}$ . Take  $D = \{u\} \cup S$ . Then D is a minimal independent dominating set of  $BG_1(K_n)$ , and is also restrained. Hence,  $\gamma_i(BG_1(G)) \le p$ .  $D = \{u, v, e\}$ , where  $e \in E(G)$  is a restrained dominating set of  $BG_1(G)$  and hence  $\gamma_r(BG_1(K_n)) = 3$ .

Next, if r(G) = 1 and diam(G) = 2, there exists non-adjacent vertices u and v in G. If there exists non-adjacent vertices u and v in G, which dominates G, then {u, v} dominates BG<sub>1</sub>(G). Hence,  $\gamma(BG_1(G)) = 2 = \gamma_i(BG_1(G))$ , otherwise,  $\gamma(BG_1(G)) = 3 = \gamma_r(BG_1(G)) = ir(BG_1(G))$ . ({u, v, x}, where  $e_G(x) = 1$  and u and v not adjacent in G is irredundant in BG<sub>1</sub>(G) and hence  $ir(BG_1(G)) = 3$ ).

If  $u \in V(G)$ ,  $S = \{e \in E(G):e \text{ is incident with } u \text{ in } G\}$ , then  $S \cup \{u\}$  is an independent dominating set for  $BG_1(G)$ . Hence,  $\gamma_i(BG_1(G)) \leq 1 + \delta(G)$ .

(2) Let  $\gamma(G) = 2$ : If there exists a dominating edge  $e = uv \in E(G)$  and  $\gamma_i(G) > 2$ , then  $\gamma(BG_1(G)) = 3$ , where  $D = \{u, v, e\}$  is a dominating set. D is also restrained. Hence,  $\gamma_r(BG_1(G)) = 3 = ir(BG_1(G)) = 3$ . If  $\gamma(G) = 2 = \gamma_i(G)$ , then  $\gamma(BG_1(G)) = 2 = \gamma_i(BG_1(G)) = ir(BG_1(G)) = \gamma_r(BG_1(G))$ . (The independent dominating set of G is again an independent dominating set for  $BG_1(G)$ ).

(3) Let  $\gamma(G) = 3$ : In this case,  $\gamma(BG_1(G)) = 3$ . If G has at least three independent vertices, then  $\gamma_i(BG_1(G)) = 3$ , since they dominate  $BG_1(G)$ . In general,  $\gamma_i(BG_1(G)) \le 1 + \delta(G)$  and  $\gamma_r(BG_1(G)) = 3$ , since  $D = \{u, v, e\}$ , where  $e = uv \in E(G)$  is a restrained dominating set. D is also irredundant.

Thus, the following theorems are proved.

**Theorem 2.1:** If G has a pendant vertex, then  $\gamma(BG_1(G)) = 2$ .

Theorem 2.2:Let G be a graph without pendant and isolated vertices.

(1) If diam(G) = 1, then  $\gamma(BG_1(G)) = 3 = \gamma_r = ir(BG_1(G))$  and  $\gamma_i(BG_1(G)) \leq p$ .

(2) If r(G) = 1 and diam(G) = 2, and if there exists non-adjacent vertices  $u, v \in V(G)$  such that  $\{u, v\}$  dominates G, then  $\gamma(BG_1(G)) = \gamma_i(BG_1(G)) = \gamma_r(BG_1(G)) = ir(BG_1(G)) = 2$ .

(3) If  $\gamma(G) = 2 = \gamma_c(G)$  and  $\gamma_i(G) > 2$ , then  $\gamma(BG_1(G)) = \gamma_r(BG_1(G)) = ir(BG_1(G)) = 3$  and  $\gamma_i(BG_1(G)) \le 1 + \delta(G)$ .

(4) If  $\gamma(G) = 2 = \gamma_i(G)$ , then  $\gamma(BG_1(G)) = \gamma_i(BG_1(G)) = ir(BG_1(G)) = \gamma_r(BG_1(G)) = 2$ .

(5) If 
$$\gamma(G) \ge 3$$
, then  $\gamma(BG_1(G)) = \gamma_r(BG_1(G)) = \operatorname{ir}(BG_1(G)) = 3$  and  $\gamma_i(BG_1(G)) \le 1 + \delta(G)$ .

#### Remark 2.1:

1. If  $u \in V(G)$  and D is the set of all edges incident with u in G, then  $\{u\} \cup D$  is a dominating set of BG<sub>1</sub>(G), which is also independent. Hence,  $\gamma_i(BG_1(G)) \leq 1+\delta(G)$ .

2. D = V(G) is a dominating set of BG<sub>1</sub>(G) if and only if  $G \neq K_2$ .

3. D = E(G) is a dominating set of BG<sub>1</sub>(G) if and only if G  $\neq$  K<sub>1,n</sub>.

4. If  $D \subseteq V(G)$  is a dominating set of G, then D is a dominating set of  $BG_1(G)$  if and only if  $|D| \ge 3$  or |D| = 2 and is independent.

A D-partition of G is a partition of V(G) into dominating sets. The maximum order of a D-partition is called the domatic number of G. Now, we shall evaluate the domatic numbers of BG<sub>1</sub>(G), when  $G = C_n$ ,  $P_n$ ,  $K_{1,n}$ ,  $K_n$ ,  $K_{n,n}$  and  $nK_2$ .

**Proposition 2.1**:Domatic number of  $BG_1(C_n)$  is  $\lfloor (n+2)/2 \rfloor$ .

**Proof:** Let  $v_1, v_2, v_3, ..., v_n$  form a cycle  $C_n = G$  and let  $v_1v_2 = e_{12}, ..., v_{n-1}v_n = e_{(n-1)n}, v_nv_1 = e_{n1} \in E(G).$ 

**Case 1:** n is even, n = 2k.

$$\begin{split} D_1 &= \{v_1, \, e_{12}, \, e_{n1}\}, \, D_2 &= \{v_3, \, e_{23}, \, e_{34}\}, \, ... D_{n/2} &= \{v_{2k-1}, \, e_{(2k-2)(2k-1)}, \, e_{(2k-1)2k}\}, \, D_{(n+2)/2} &= \{v_{2k}, \, v_{2k-2}, \, ..., \, v_2\}, \, D_1, \, D_2, \, ..., \, D_{(n+2)/2} & \text{is a maximum domatic partition of } BG_1(G). \ Therefore, \, Domatic number of } BG_1(C_n) &= (n+2)/2 &= n/2+1. \end{split}$$

**Case 2:** n is odd = 2k+1.

Take  $D_1 = \{v_1, e_{12}, e_{n1}\}, D_2 = \{v_3, e_{23}, e_{34}\}, ..., D_{2k/2} = \{v_{2k-1}, e_{(2k-1)(2k-2)}, e_{(2k-1)2k}\}.$  $D_{(n+1)/2} = D_{2k/2+1} = \{v_{2k+1}, v_{2k}, v_{2k-2}, ..., v_2, e_{2k(2k+1)}\}.$   $D_1, D_2, ..., D_{n+1/2}$  is a domatic partition of BG<sub>1</sub>(G).

**Proposition 2.2**:Domatic number of BG<sub>1</sub>(P<sub>n</sub>) is  $\lfloor n+2/2 \rfloor$ .

**Proof:** Let  $v_1, v_2, \dots, v_n$  represent  $P_n = G$ .  $v_i v_{i+1} = e_{i(i+1)} \in E(G)$ . **Case 1:** n = 2k+1 (odd).

Consider  $D_1 = \{e_{12}, v_1\}, D_2 = \{v_3, e_{23}, e_{34}\}, ..., D_k = \{v_{2k-1}, e_{(2k-2)(2k-1)}, e_{(2k-1)2k}\}, D_{k+1} = \{v_2, v_4, ..., v_{n-1}, v_n, e_{2k(2k+1)}\}, D_1, D_2, ..., D_{k+1}$  is a domatic partition of  $BG_1(P_n)$ . Hence, domatic number of  $BG_1(P_n)$  is  $k+1 = \lfloor (n+2)/2 \rfloor \rfloor$ .

**Case 2:** n = 2k, even.

Consider  $D_1 = \{v_1, e_{12}\}, D_2 = \{v_3, e_{23}, e_{34}\}, \dots, D_{n/2} = \{v_{n-1}, e_{(n-2)(n-1)}, e_{(n-1)n}\}, D_{n/2+1} = \{v_2, v_4, \dots, v_n\}. D_1, D_2, \dots, D_{n/2+1}$  is a domatic partition of BG<sub>1</sub>(P<sub>n</sub>).

Hence, domatic number of  $BG_1(P_n)$  is (n/2)+1 = (n+2)/2.

**Proposition 2.3**:Domatic number of  $BG_1(K_{1,n}) = n$ . **Proof:** Let v be the central vertex of  $K_{1,n}$  and let  $v_1, v_2, ..., v_n$  be the other vertices.  $D_1 = \{v_1, e_1\}, D_2 = \{v_2, e_2\}, ..., D_n = \{e_n, v_n\}, e_j = vv_j \in E(G)$  is a domatic partition. Hence, domatic number of  $BG_1(K_{1,n})$  is n.

**Remark 2.2**:  $\delta(BG_1(K_{1,n})) = n-1$ . Hence,  $d(BG_1(K_{1,n})) = \delta(BG_1(K_{1,n}))+1 = n$ . Hence,  $BG_1(K_{1,n})$  is domatically full.

**Proposition 2.4**:Domatic number of  $BG_1(K_n)$  is  $\lfloor n/2 \rfloor$ .

**Proof:** Let  $v_1, v_2, ..., v_n$  be the vertices of  $K_n$  and  $v_i v_j = e_{ij} \in E(G)$ , i, j = 1, 2, ..., n. **Case 1:** n is even.

 $D_1 = \{v_1, v_2, e_{12}\}; D_2 = \{v_3, v_4, e_{34}\}; ...; D_{n/2} = \{v_{n+1}, v_2, e_{(n-1)n}, all other line vertices\}$  is a domatic partition of  $BG_1(K_n)$ . Hence, domatic number of  $BG_1(K_n) = n/2$ . **Case 2:** n is odd. Let n = 2k+1.

 $D_1 = \{v_1, v_2, e_{12}\}; D_2 = \{v_3, v_4, e_{34}\} \dots; D_k = \{v_{2k-1}, v_{2k}, v_{2k+1}, e_{(2k-1)2k}\} \cup \{\text{other line vertices}\}$ is a domatic partition of  $BG_1(K_n)$ . Therefore, domatic number of  $BG_1(K_n) = \lfloor n/2 \rfloor = k = (n-1)/2$ .

**Proposition 2.5**:Domatic number of  $BG_1(K_{n,n})$  is n.

**Proof:** Let  $u_i$ ,  $v_i$ , where i = 1, 2, ..., n be the vertices of  $K_{n,n}$  and  $e_{ij} = u_i v_j$ , i, j = 1, 2, ..., n.  $D_1 = \{u_1, v_1, e_{22}\}, D_2 = \{u_2, v_2, e_{33}\}, ..., D_{n-1} = \{u_{n-1}, v_{n-1}, e_{nn}\}, D_n = \{u_n, v_n, e_{11}\}$  and remaining line vertices} is a domatic partition of  $R(K_{n,n})$ . Hence, domatic number of  $BG_1(K_{n,n})$  is n.

**Proposition 2.6**:Domatic number of  $BG_1(nK_2) = n$ .

**Proof:** Let  $u_i, v_i, i = 1, 2, ..., n$  be the vertices of  $nK_2$  and let  $u_iv_i = e_i \in E(G)$ .  $D_1 = \{u_1, v_1, e_1\}; D_2 = \{u_2, v_2, e_2\}, ..., D_n = \{u_n, v_n, e_n\}$  is a domatic partition of  $BG_1(nK_2)$ . Hence, the domatic number of  $BG_1(nK_2)$  is n.

Now, we shall find the domination parameters of  $BG_1(G)$  for some classes of graphs and give the bounds for  $\gamma(\overrightarrow{BG}_1(G))$ .

**Proposition 2.7**: $\gamma(BG_1(G)) = 1$  if and only if  $G = K_2$ . **Proof:** Clearly  $\gamma(BG_1(K_2)) = 1$ .

On the other hand, assume  $\gamma(BG_1(G)) = 1$ . Hence,  $r(BG_1(G)) = 1$ .  $BG_1(G)$  is self-centered with diameter two except when  $G = K_2$ . This proves the result.

**Proposition 2.8:** If  $G \neq K_2$  and has a pendant vertex, then  $\gamma(BG_1(G)) = 2 = \gamma_c(BG_1(G))$ .

**Proof:** Let x be a pendant vertex of G and let  $e = xy \in E(G)$ ,  $y \in V(G)$ . Consider, D = {x, e} in  $BG_1(G)$ . D is a connected minimal dominating set in  $BG_1(G)$ , since e is adjacent to every other line vertices and x, y; x is adjacent to all other point vertices except y in  $BG_1(G)$ . Therefore,  $\gamma(BG_1(G)) = 2 = \gamma_c(BG_1(G))$ .

**Proposition 2.9:** If G has an isolated vertex, then  $\gamma(BG_1(G)) = 2$ .

**Proof:** Let  $u \in V(G)$  be an isolated vertex of G. Consider  $D = \{u, e\}$ , where  $e \in E(G)$ . D is an independent dominating set of  $BG_1(G)$ , since u dominates all the point vertices and e dominates all the line vertices of  $BG_1(G)$ . Hence,  $\gamma(BG_1(G)) = 2 = \gamma_i(BG_1(G))$ .

**Proposition 2.10**: If  $G \neq K_2$  and  $p \leq 4$ , then  $\gamma(BG_1(G)) = 2$ .

**Proof:** As  $G \neq K_2$ , clearly  $\gamma(BG_1(G)) > 1$ . If G has a pendant vertex or isolated vertex, then  $\gamma(\overline{BG_1(G)}) = 2$ . If G has no isolated vertices, there exists  $e_1$ ,  $e_2 \in E(G)$  such that  $\{e_1, e_2\}$  is a line cover for G. Hence,  $D = \{e_1, e_2\}$  is a dominating set of  $\overline{BG_1(G)}$ . This proves the proposition.

**Theorem 2.3**: $\gamma(BG_1(G)) = 2$  if and only if any one of the following is true.

(1) G has a pendant vertex (G  $\neq$  K<sub>2</sub>). (2) p  $\leq$  4. (3) G has an isolated vertex. (4) G contains a triangle with at least one vertex of degree two in G.

**Proof:** Assume  $\gamma(BG_1(G)) = 2$ . Let D be a dominating set of  $BG_1(G)$  with cardinality two.

Case 1:  $D = {u, v} \subseteq V(G)$ 

D dominates BG<sub>1</sub>(G). Hence, all other point vertices and line vertices in BG<sub>1</sub>(G) are adjacent to u or v or both. This gives  $\gamma((\overrightarrow{G})) \leq 2$ .

**Sub case 1.1:** 
$$\gamma$$
(G) = 1

In this case, G has an isolated vertex u. But  $D = \{u, v\}$ . Hence, in  $BG_1(G)$ , u is adjacent to all point vertices and v is adjacent to all line vertices. Hence, all edges are incident with v in G. Hence,  $G = K_{1,n} \cup mK_1$ .

**Sub case 1. 2:** $\gamma$ (G) = 2.

In this case, G has no vertex, which is adjacent to both u and v, and all edges are incident with u or v or both in G. That is, G is a double star or  $G = K_{1,n} \cup K_{1,m}$ . So, in this case 1, G has a pendant vertex.

**Case 2:**  $D = \{e_1, e_2\} \subseteq E(G)$ .

This gives  $e_1$ ,  $e_2$  are incident with all point vertices. Hence  $p \leq 4$ .

**Case 3:**  $D = \{u, e\}$ , where  $u \in V(G)$  and  $e \in E(G)$ .

In this case, e is adjacent to all line vertices in  $BG_1(G)$  and is adjacent to exactly two point vertices  $v_1, v_2$ , where  $e = v_1v_2 \in E(G)$ . Therefore, remaining point vertices must be adjacent to u in  $BG_1(G)$ . Hence,  $deg_Gu$  is at most 2.

Now,  $\deg_G u = 0$  implies that u is isolated in G;  $\deg_G u = 1$  implies u is pendant in G;  $\deg_G u = 2$  implies u is adjacent to  $v_1$  and  $v_2$  such that  $v_1v_2 = e \in E(G)$ , that is G contains a triangle with a vertex of degree two in G.

Converse follows from the previous propositions.

**Remark 2.3**: From the definition of  $BG_1(G)$ , the following results follow:

(1) If D is dominating set of  $\overline{G}$ , then D  $\cup$  {e} is a dominating set of  $\overline{BG_1(G)}$ . Hence,  $\gamma(\overline{BG_1(G)}) \leq \gamma(\overline{G})+1$ .

(2) If  $D \subseteq E(G)$  is a line cover of G, then D dominates  $BG_1(G)$ . Converse is also true. Hence,  $\gamma(BG_1(G)) \leq \mathbf{Q}_1(G)$ .

(3) If there exists a minimal point cover D of G such that  $N(v) \cap D \neq D$  for  $v \in V-D$ , then D is a dominating set of  $BG_1(G)$ .  $\gamma(BG_1(G)) \leq \mathbf{Q}_0(G)$ . Here, D is a global dominating set of G. The converse is also true.

(4) The set of all point vertices is a dominating set for  $BG_1(G)$ .

(5) The set of all line vertices is a dominating set of  $BG_1(G)$  if and only if G has no isolated vertices.

(6) If  $u \in V(G)$  and  $D \subseteq E(G)$  contains all the edges incident with u in G,  $D \cup \{u\}$  is a dominating set of  $BG_1(G)$ . Hence,  $\gamma(BG_1(G)) \leq 1 + \delta(G)$ .

Generally,  $\gamma(BG_1(G)) \leq \min \{1+\gamma(G), \mathbf{Q}_1(G), 1+\delta(G)\}.$ 

(7) D is dominating set of G, D dominates  $BG_1(G)$  if and only if D is global dominating set of G and is also a point cover of G.

Now, assume that G is a graph without isolated vertices and pendant vertices. Also, assume that  $p \ge 5$ .

**Theorem 2.4**: Let G be a graph such that  $diam(G) \ge 3$ .

(1) If G contains a triangle with at least one vertex of degree 2 in G then  $\gamma(BG_1(G)) = 2$ =  $\gamma_i(BG_1(G))$ .

(2) If G contains no triangle with at least one vertex of degree 2 in G, then  $\gamma(BG_1(G))=3$ . **Proof:**Diam(G)  $\geq 3$ .

Case 1: G contains a triangle with one vertex of deg 2 in G.

Let u, v, w form this triangle and let  $deg_G u = 2$ , Let  $e = vw \in E(G)$ . D = {u, e} dominates BG<sub>1</sub>(G), since u dominates all point vertices except u and w and e dominates v, w and all line vertices. Hence,  $\gamma(BG_1(G)) = 2$ .

Case 2: G has no triangle with a vertex of deg 2 in G.

 $Diam(G) \ge 3$ . Therefore, there exists u,  $v \in V(G)$  such that  $d_G(u, v) \ge 3$ . Then  $D = \{u, v\}$ dominates  $\overset{-}{G}$  and hence {u, v, e}, e  $\in E(G)$  dominates  $\overset{-}{BG}_1(G)$ . {u, v, e} is connected, if e is incident with u or v. Hence,  $\gamma(BG_1(G)) = 3 = \gamma_c(BG_1(G))$ .

This proves the theorem.

Theorem 2.5: Let G be a graph with diameter two. (1) If G contains a triangle with at least one vertex of degree 2 in G, then  $\gamma(BG_1(G)) = 2$ .

(2) If (1) is not true and if G has an edge e not in any triangle, then  $\gamma(BG_1(G)) = 3$ .

(3) If  $\delta(G) = 2$  such that  $\deg_G u = 2$  and u is not in any triangle, then  $\gamma(BG_1(G)) = 3$ .

(4)  $\gamma(BG_1(G)) = 1 + \alpha_1(N(v))$ , where  $deg_G v = \delta(G)$ .

**Proof:** Assume that diameter of G is 2.

**Proof of (1):** Similar to the proof of Theorem 2.4.

**Proof of (2):** Let  $e = uv \in E(G)$  such that e is not in any triangle. D = {u, v, e} dominates BG<sub>1</sub>(G). Hence,  $\gamma(BG_1(G)) \leq 3$ . Therefore,  $\gamma(BG_1(G)) = 3$  by Theorem 2.4. **Proof of (3):** Let deg<sub>G</sub>u =  $\delta(G)$  = 2, u is not in any triangle. Let v, w be adjacent to u in G and v, w be not adjacent in G. Hence  $D = \{u, e_1, e_2\}$ , where  $e_1 = uv$ ,  $e_2 = uw \in E(G)$  is a minimal dominating set of  $BG_1(G)$ . Hence,  $\gamma(BG_1(G)) = 3$ .

**Proof of (4):** If the hypothesis of (1), (2) and (3) are not true, then let  $\delta(G) = \deg_{G} u$ . Let D be the set of edges incident with u. Then  $D \cup \{u\}$  is a dominating set of BG<sub>1</sub>(G). Hence,  $\gamma(BG_1(G)) \leq 1 + \delta(G)$ . Since every edge of G is in a triangle,

 $\langle N(u) \rangle$  has no isolated vertices. Consider a line cover of  $\langle N(u) \rangle$  in G. Then  $\{u\} \cup$  (Line cover of  $\langle N(u) \rangle$  form a dominating set for BG<sub>1</sub>(G).

Therefore,  $\gamma(BG_1(G)) \leq 1 + \alpha_1(\langle N(u) \rangle)$ .

**Proposition 2.11:** If  $G = K_n$ , then  $\gamma(BG_1(G)) = \begin{cases} n/2, n \text{ is even.} \\ (n+1)/2, n \text{ is odd.} \end{cases}$ 

Proof: In G, all vertices are adjacent to each other. Consider any minimal line cover for G. If  $G = K_n$ ,  $\mathbf{a}_1(G) = n/2$  or (n+1)/2 and this minimal line cover is the minimal dominating set for  $BG_1(G)$  with minimum cardinality. This proves the proposition.

**Proposition 2.12**: $\gamma$ (BG<sub>1</sub>(G))  $\leq \delta$ (G), if  $\delta$ (G)  $\geq$  3.

**Proof:** If there exists  $e \in E(G)$  such that e is not in any triangle, then  $D = \{u, v, e\}$ , where  $e = uv \in E(G)$  dominates  $BG_1(G)$ . Hence,  $\gamma(BG_1(G)) \leq 3$ . If there exists no such e in G, that is if every edge lies in some triangle, then let  $S = \{e \in E(G) : e \text{ is incident with } u\}$ , where  $deg_G u = \delta(G)$ . Consider N(u). N(u) has no isolated vertices and so  $\alpha_1(< N(u) >) \leq \delta(G)-1$ . Let D be a line cover of N(u) with cardinality  $\alpha_1(< N(u) >)$ .  $\{u\} \cup D$  is a dominating set for  $BG_1(G)$ . Hence,  $\gamma(BG_1(G)) \leq 1+\delta(G)-1 = \delta(G)$ .

**Remark 2.4**:Let G be a graph without isolated vertices and pendant vertices, with  $p \ge 5$ . Then (1) If deg<sub>G</sub>u = 2 and u lies on a triangle, then  $\gamma(\overrightarrow{BG}_1(G)) = 2$ . If deg<sub>G</sub>u = 2 and u is not on any triangle, then  $\gamma(\overrightarrow{BG}_1(G)) = 3$ . (2) If  $\delta(G) \ge 3$ , then  $\gamma(\overrightarrow{BG}_1(G)) \le \delta(G)$ .

**Theorem 2.6:** If  $G \neq K_2$ , then  $4 \leq \gamma(\overrightarrow{BG_1(G)}) + \gamma(\overrightarrow{BG_1(G)}) \leq 4 + k$  where  $k = \min \{\delta(G), \gamma(\overrightarrow{G})\}$ .

**Proof:** Since  $G \neq K_2$ ,  $\gamma(BG_1(G)) \ge 2$ , and  $\gamma(BG_1(G)) = 2$  or 3.

Therefore,  $4 \leq \gamma(BG_1(G)) + \gamma(BG_1(G))$  .....(1) Also,  $\gamma(BG_1(G)) \leq 3$  and  $\gamma(BG_1(G)) \leq \min \{1+\delta(G), \gamma(G)+1\}$ Therefore,  $\gamma(BG_1(G)) + \gamma(BG_1(G)) \leq 4+k$ , where  $k = \min \{\delta(G), \gamma(G)\}$  .....(2) From (1) and (2), it is clear that,  $4 \leq \gamma(BG_1(G)) + \gamma(BG_1(G)) \leq 4+k$ .

**Remark 2.5:**(1) When  $G = K_2$ ,  $\gamma(BG_1(G)) = 2$  and  $\gamma(BG_1(G)) = 1$ . Hence,  $\gamma(BG_1(G)) + \gamma(BG_1(G)) = 3$ . (2) If  $\delta(G) > 2$ ,  $4 \leq \gamma(BG_1(G)) + \gamma(BG_1(G)) \leq 3 + k$ .

**Examples** (1) If G has a pendant vertex then  $\gamma(BG_1(G)) = 2$  and  $\gamma(BG_1(G)) = 2$ . Hence, the lower bound is sharp.





Here, D = {u,  $e_1$ ,  $e_2$ }.  $\gamma(\overrightarrow{BG_1(G)}) = 3$ ,  $\delta(G) = 2$  and  $\gamma(\overrightarrow{G}) = 2$ .  $\gamma(BG_1(G)) = 3$ , since  $\gamma(G) \ge 3$ . Hence,  $\gamma(BG_1(G)) + \gamma(BG_1(G)) = 6 = 4 + 2 = 4 + k$ . Hence, the upper bound in the inequality is also sharp.

#### 3. Irredundant number of $BG_1(G)$

Next, properties related to irredundant sets of  $BG_1(G)$  and  $BG_1(G)$  can be studied.

**Proposition 3.1**:(1) Set of all point vertices is an irredundant set of  $BG_1(G)$  if and only if  $G = K_3$ .

(2) Set of all line vertices is an irredundant set of  $BG_1(G)$  if and only if  $G = 2K_2$ ,  $K_3$  and K<sub>1,2</sub>.

of (1): Let V(G) be irredundant in BG<sub>1</sub>(G). Let  $v \in V(G)$ . v has a private Proof neighbor in  $BG_1(G)$  if there exists an edge e not incident with v but incident with all other vertices, which is true for every  $v \in V(G)$ . This gives p = 3 and  $G = K_3$ . Converse is obvious.

**Proof of (2):** Let D = E(G) be irredundant in  $BG_1(G)$ . Take  $e \in D$ . e has a private neighbor in BG<sub>1</sub>(G), if there exists  $u \in V(G)$  such that e is not incident with u and all other edges are incident with u. This is true for all  $e \in E(G)$ . Hence,  $G = 2K_{22}$ ,  $K_3$  or  $K_{1,2}$ .

**Theorem 3.1**:ir(  $BG_1(G)$ ) = 2 if G satisfies any one of the following conditions.

(1) G is a graph with  $p \leq 4$ . (2) G has a pendant vertex. (3) G has an isolated vertex. (4) G has a triangle with a vertex of degree two.

**Proof:** Let G be a graph with  $p \leq 4$ . If G has no pendant or isolated vertices, let  $D = \{e_1, e_2\}$ .  $e_1$ ,  $e_2$  have private neighbors in  $BG_1(G)$ , and hence D is irredundant. Also,  $\gamma(BG_1(G)) = 2$ . Hence, ir( $BG_1(G)) = 2$  [since ir( $BG_1(G)$ )  $\leq \gamma(BG_1(G))$ ].

If G has a pendant vertex u, then {u, e}, where e is incident with u, is an irredundant set (maximal). Hence, ir(  $BG_1(G)$ ) = 2.

If G has an isolated vertex u,  $D = \{u, e\}$ , where  $e \in E(G)$  is a maximal irredundant set with minimum cardinality. Hence, ir(  $BG_1(G)$ ) = 2.

If G has a triangle with a vertex u of degree 2 in G, then in  $BG_1(G)$ , {u, e}, where  $e = u_1, u_2 \in E(G)$  and  $N(u) = \{u_1, u_2\}$  is irredundant. Hence the theorem is proved.

**Theorem 3.2**: Let G be a graph without isolated vertices. Let diam(G)  $\geq$  3.

- (1) If G has a pendant vertex, then ir(  $BG_1(G)$ ) = 2.
- (2) If G has no pendent vertices, then ir(  $BG_1(G)$ ) = 3.

**Proof:** Proof of (1) follows from Theorem 3.1. If v,  $u \in V(G)$  are not pendant in G, then  $D = \{u, v, e\}$ , where  $d_G(u, v) \geq 3$  and  $e \in E(G)$  is a maximal irredundant set with minimum cardinality. Hence, ir( $BG_1(G)$ ) = 3.

Following results are stated without proof, since they are easy to follow.

**Theorem 3.3:** Let diam(G) = 2. (1) If G contains a triangle with a vertex u of degree two and e an edge not incident with u, then  $D = \{u, e\}$  is a maximal irredundant set for  $BG_1(G)$ .

(2) If G has an edge  $e = uv \in V(G)$ , which is not in any triangle, then  $D = \{u, v, e\}$  is maximal irredundant.

(3) Let  $u \in V(G)$ , with  $e(u) \neq 1$  and  $D = \{e \in E(G) : e \text{ is incident with } u\}$ . Then D is maximal irredundant in  $BG_1(G)$ .

(4) If every edge of G is in a triangle for  $u \in V(G)$  with  $e(u) \neq 1$ .  $D = \{u\} \cup D^1$ , where  $D^1$  is a minimal line cover of N(u) in G is maximal irredundant in  $BG_1(G)$ .

**Proposition 3.2:** Let r(G) = 1. Let  $u \in V(G)$  such that e(u) = 1. Then (1) N(u) is a maximal irredundant set of  $BG_1(G)$ .

(2) Let D = {e  $\in E(G)$ :e is incident with u}. Then D is also a maximal irredundant set of  $BG_1(G)$ .

**Proposition 3.3:**If  $G = K_n$ , any set containing (n-1) point vertices is an irredundant subset of  $BG_1(G)$ .

**Proposition 3.4**: Let G be a graph without isolated vertices and let D be a minimal line - cover for G. Then D is an irredundant set of  $BG_1(G)$ 

### 4. Independent domination of $BG_1(G)$

We have already found out the independent domination number of  $BG_1(G)$ . Now, independent domination number of  $BG_1(G)$  can be studied.

**Theorem 4.1:**  $\gamma_i(BG_1(G)) = 2$  if and only if any one of the following is true. (1)  $G = K_2 \cup mK_1$ , m > 1. (2) G has an isolated vertex. (3) G has a pendant vertex u such that  $uv \in E(G)$  and  $\deg_G v \ge 2$ . (4) G has a vertex u lying on a triangle and  $\deg_G u = 2$ . **Proof:** Assume  $\gamma_i(BG_1(G)) = 2$ ,  $G \neq K_2$ . Since  $\gamma(BG_1(G)) \neq 1$ ,  $\gamma(BG_1(G)) = 2$ . Let D be an independent dominating set of  $BG_1(G)$ . **Case 1:**  $D = \{u, v\} \subseteq V(G)$ . Since D is independent, u and v are adjacent in G and u, v are not in any triangle in G.

Also u, v dominates only one line vertex. Hence, G must be  $K_2 \cup mK_1$ , m > 1. (Because for

 $G = K_2, \gamma(BG_1(G)) = 1 = \gamma_i(BG_1(G))).$ 

**Case 2:** D =  $\{e_1, e_2\} \subseteq E(G)$ .

This is not possible, since line vertices form a complete graph in  $BG_1(G)$ .

**Case 3:**  $D = \{u, e\}$ , where  $u \in V(G)$  and  $e \in E(G)$ .

Since D is independent in G, e is not incident with u.

Sub case 3.1: u is isolated.

In this case, e may be any line vertex.

Sub case 3.2:  $\deg_{C} u = 1$ .

If deg<sub>G</sub>u = 1. u is pendant in G. Let  $e_1 = uv \in E(G)$ . In BG<sub>1</sub>(G), u cannot dominate v. Therefore, D is an independent dominating set implies that e must be incident with v.

Hence,  $\deg_G v \ge 2$ .

Sub case 3.3:deg<sub>G</sub>u = 2.

Let  $N(u) = \{v, w\}$  in G. In BG<sub>1</sub>(G), u dominates all the point vertices except v and w. Hence, e must be incident with both v and w.

Sub case 3.4:deg<sub>G</sub>  $u \ge 3$ .

In this case, D cannot be a dominating set.

This proves (1), (2), (3) and (4). Converse is obvious.

**Proposition 4.1:** $\gamma_i(BG_1(G)) \leq \gamma_i(G)$  or  $\gamma_i(G)+1$ .

**Proof:** Let D be an independent dominating set with cardinality  $\gamma_i(G)$  for G. If D is a point cover for G, then D is an independent dominating set of  $BG_1(G)$ , otherwise  $D \cup \{e\}$ , where  $e \in E(G)$  is not incident with any element of D, is an independent dominating set for BG<sub>1</sub>(G). Hence,  $\gamma_i(BG_1(G)) \leq \gamma_i(G)$  or  $\gamma_i(G)+1$ .

**Remark 4.1**: If G is a graph with  $p \le 4$ , then  $\gamma_i(BG_1(G)) = 2$  or 3.

Theorem 4.2: Let G be a graph not satisfying the conditions of the Theorem 4.1. (1) If G has an edge not lying in any triangle, then  $\gamma_i(BG_1(G)) = 3$ .

(2) If each edge of G is lying on a triangle, then  $\gamma_i(BG_1(G)) \leq \delta(G)+1$ .

**Proof:** Let G be a graph not satisfying any conditions of Theorem 4.1. Then  $\gamma_i(BG_1(G))$ > 2.

Case 1: G has an edge not lying in any triangle.

Let  $e = uv \in E(G)$ , such that e is not lying in any triangle. u and v dominates all point vertices in  $BG_1(G)$ . Take  $D = \{u, v, e_1\}$ , where  $e_1$  is not incident with u and v in G. D is an independent dominating set for  $BG_1(G)$ . Hence,  $\gamma_i(BG_1(G)) = 3$ .

**Case 2:** Every edge of G is lying in some triangle and  $G \neq K_1$ .

Let deg<sub>G</sub>u =  $\delta(G)$ . In BG<sub>1</sub>(G), u dominates all point vertices in V(G)-N(u). Since, every edge is lying on a triangle,  $\langle N(u) \rangle$  has no isolated vertices. Consider a minimal independent dominating set for  $\langle N(u) \rangle$ . Let it be D<sub>1</sub>. If G  $\neq$  K<sub>n</sub>, then D<sub>1</sub> $\cup$  {u} is an independent dominating set of  $\overline{G}$ . D = D<sub>1</sub> $\cup$  {u}  $\cup$  {e}, where e is not incident with elements of D<sub>1</sub>, is an independent dominating set of  $\overline{BG_1(G)}$  and  $|D| \leq |D_1| + 1 + 1 \leq (\delta(G)-1)+1+1 = \delta(G)+1$ .

Case 3:  $G = K_n$ 

Let  $e = v_1v_2 \in E(G)$  and  $v_1, v_2, ..., v_n \in V(G)$ .  $D = \{e, v_3, v_4, ..., v_n\}$  is an independent dominating set for  $BG_1(G)$ . Hence,  $\gamma_i(BG_1(G)) \leq n-1 \leq \delta(G)+1$ .

This proves the theorem.

## 5. Connected, total and cycle domination of $BG_1(G)$ and $BG_1(G)$

In this section, connected, total and cycle domination of  $BG_1(G)$  and its complement are studied.

**Observations:** (1) If G has a pendant vertex with p > 2 and  $q \ge 2$ , then  $\gamma_c(BG_1(G)) = 3$ . If u is pendant, v is adjacent to u in G, then  $D = \{u, v\} \cup \{e\}$ , where  $e \neq uv \in E(G)$  is a dominating set.

(2) Let G be a connected graph with  $p \ge 3$  and  $\gamma(G) = 2$ . Then  $\gamma_c(BG_1(G)) = 3$ . [D = {u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>}, where {u<sub>1</sub>, u<sub>2</sub>} is a connected dominating set of G and u<sub>3</sub> is adjacent to u<sub>1</sub> or u<sub>2</sub> or D = {u<sub>1</sub>, u<sub>2</sub>, e}, where e is not incident with u<sub>1</sub>, u<sub>2</sub> if {u<sub>1</sub>, u<sub>2</sub>} is not a connected dominating set of G].

(3) If  $\gamma_c(G) > 3$  and G has no pendant vertex, then  $\gamma_c(BG_1(G)) \leq 4$ . [The connected dominating set D is given by  $D = \{u, v, w, e\}$ ,  $e = uv \in E(G)$ , where  $\{u, v, w\}$  is a connected set of G].  $\gamma_c(BG_1(G))$  is at least 3. (4)  $D \subseteq V(G)$  such that |D| = 2 cannot be a connected dominating set of  $BG_1(G)$ .

**Theorem 5.1**: If  $G \neq K_2$ ,  $2K_2$ , then  $\gamma_t(BG_1(G)) \leq 4$ .

**Proof:** Let  $e = uv \in E(G)$  and let w be adjacent to u or v in G. Then  $\langle D \rangle = \langle \{u, v, e, w\}$ > is connected. Hence, D is a connected dominating set of BG<sub>1</sub>(G) and hence  $\gamma_c(BG_1(G))$   $\leq 4$  and  $\gamma_t(BG_1(G)) \leq 4$ . If G = 2K<sub>2</sub>, then BG<sub>1</sub>(G) is disconnected and  $\gamma_t(BG_1(G)) = 4$ . If  $G = nK_2$  for n > 2,  $\gamma_c(BG_1(G)) = 4 = \gamma_t(BG_1(G))$ . This proves the theorem.

**Theorem 5.2**: $\gamma_0(BG_1(G)) = 3$  if and only if  $\gamma_0(G) = 3$ .

**Proof:** If  $\gamma_0(G) = 3$ , then G has a dominating set  $D = \{u, v, w\}$ , where u, v, w form a  $C_3$  in G. This D is also a dominating set for BG<sub>1</sub>(G). Hence,  $\gamma_0(BG_1(G)) = 3$ .

(Here,  $\langle D \rangle$  is an induced cycle). Conversely, assume that  $\gamma_0(BG_1(G)) = 3$ . Then there exists D = {x, y, z}  $\subseteq$  V(BG<sub>1</sub>(G)) such that D is a cycle dominating set of BG<sub>1</sub>(G). **Case1:** x, y,  $z \in V(G)$ .

Since, G is an induced subgraph of BG<sub>1</sub>(G),  $\gamma_0$ (G) = 3.

**Case2:** x,  $y \in V(G)$  and  $z \in E(G)$ .

x, y and z form a  $C_3$  in  $BG_1(G)$ . Thus, in G, z is not incident with x and y. Also in G, x and y are adjacent. Take  $e = xy \in E(G)$ . In BG<sub>1</sub>(G), e is not dominated by D. Hence, this case is not possible. Similarly, other cases are also not possible.

This proves the theorem.

**Theorem 5.3**: Let G be a graph with p > 4,  $\gamma_0(BG_1(G)) = 4$  if and only if  $\gamma_0(G) \neq 3$  and any one of the following is true. (1) G has a vertex of degree at least 3.

(2) There exists two non-adjacent vertices u and v in G and two edges  $e_1$  and  $e_2$  not incident with both u and v such that either they are not adjacent or they are incident at w, where w is adjacent to u or v.

**Proof:** Assume  $\gamma_0(G) \neq 3$  and (1) or (2) is true. Since  $\gamma_0(G) \neq 3$ ,  $\gamma_0(BG_1(G)) \neq 3$ . Now, assume that G has a vertex  $v_0$  of degree at least 3. Let  $N(v_0) = \{v_1, v_2, v_3\}$  and  $e_i = v_0 v_i \in E(G)$ . In  $BG_1(G)$ ,  $D = \{v_0, e_1, v_2, v_3\}$  is a cycle dominating set. Hence  $\gamma_0(BG_1(G)) = 4.$ 

If (2) is true, D = {u, v,  $e_1, e_2$ } is a cycle dominating set in BG<sub>1</sub>(G). Therefore,  $\gamma_0(BG_1(G)) =$ 4.

Conversely, assume that  $\gamma_0(BG_1(G)) = 4$ .  $\gamma_0(BG_1(G)) = 4$  implies that  $\gamma_0(BG_1(G))$ 

 $\neq$  3 and hence  $\gamma_0(G) \neq$  3 by Theorem 5.2.

Case 1: All vertices in the cycle dominating set D are point vertices.

Let  $D = \{u, v, w, z\} \subseteq V(G)$ . D is also a cycle dominating set of G. Since  $p \ge 5$ , there exists another vertex x in G, which is adjacent to any one of this four vertices (say u). [x cannot be in another component, since D is a dominating set of  $BG_1(G)$ ]. Thus,  $deg_G u \ge 3$ . Case 2: D contains one line vertex and three point vertices

Let  $D = \{u, v, w, e\}$ ,  $e \in E(G)$ . Let u v w e u be an induced  $C_4$ . In this case,  $\{u, v, w\}$  is not a cycle dominating set of G; u, w are not adjacent; e is not incident with u and w; and e

must be incident with v, (otherwise, e and v are adjacent in  $BG_1(G)$ ). Thus,  $deg_G v \ge 3$ . Case 3: D contains two point vertices and 2 line vertices.

Let  $D = \{u, v, e_1, e_2\}$ . Here  $u e_1 v e_2 u$  is a  $C_4$ , where  $e_1$ , and  $e_2$  are not incident with u and v in G. Also, as D is a dominating set, either  $e_1$ ,  $e_2$  are not adjacent in G or they are incident at a vertex, which is adjacent to u or v. This proves the theorem. (Other cases are not possible)

**Remark 5.1**: (1) For all connected graphs, which are not a path or cycle,  $\gamma_o(BG_1(G)) \leq 4$ .

(2) If  $G = P_n \cup mK_1$ , or  $C_n \cup mK_1$ , or  $P_n \cup C_n \cup mK_1$ , for n > 3 and  $m \ge 2$ , then  $\gamma_n(BG_1(G)) = 4$ .

(3) If  $G = C_3 \cup mK_1$  for  $m \ge 2$ , then  $\gamma_0(BG_1(G)) = 5$  and if  $G = P_3 \cup mK_1$  for  $m \ge 2$ , then  $\gamma_0(BG_1(G)) = 6$ .

(4) If  $G = P_4$  or  $P_5$  or  $C_5$ , then  $\gamma_0(BG_1(G)) = 5$ .

(5) If  $G = P_n$  or  $C_n$  for  $n \ge 5$ , then  $\gamma_o(BG_1(G)) = 4$ .

(6) If  $G = P_4 \cup K_1$  or  $C_4 \cup K_1$ , then  $\gamma_o(BG_1(G)) = 5$ .

(7) If  $G = P_5 \bigcup K_1$  or  $C_5 \bigcup K_1$ , then  $\gamma_o(BG_1(G)) = 4$ .

Next, we shall find out the connected, total and cycle domination numbers of  $BG_1(G)$ .

**Theorem 5.4:** If  $G \neq K_2$  and G has a pendant vertex, or  $p \leq 4$ , then  $\gamma_c(BG_1(G)) = 2 = \gamma_t(\overline{BG_1(G)})$  and  $\gamma_o(\overline{BG_1(G)}) = 3$ .

**Proof: Case 1:** Let  $p \le 4$  and let G has no pendant vertex.

Then D =  $\{e_1, e_2\}$  is a connected dominating set for BG<sub>1</sub>(G). D =  $\{e_1, e_2, e_3\}$  or  $\{u, e_1, e_2\}$  is a cycle dominating set. Hence,  $\gamma_0(\overrightarrow{BG}_1(G)) = 3$ .

**Case 2:** G has a pendant vertex u.

Let  $e = uv \in E(G)$  be incident with u in G. Then  $D = \{u, e\}$  is a connected dominating set for  $\overrightarrow{BG_1(G)}$ .  $D = \{u, v, e\}$  is a cycle dominating set for  $\overrightarrow{BG_1(G)}$ . Hence,  $\gamma_c(\overrightarrow{BG_1(G)}) = 2$  $= \gamma_t(\overrightarrow{BG_1(G)})$  and  $\gamma_o(\overrightarrow{BG_1(G)}) = 3$ .

**Theorem 5.5:** If G is a graph with (p > 4), no pendant vertex and has an isolated vertex, then  $\gamma_c(BG_1(G)) = \gamma_t(BG_1(G)) = 3$  and  $\gamma_o(BG_1(G)) = 4$ .

**Proof:** Let u be an isolated vertex in G and v not isolated. Let  $e = vw \in E(G)$ . D = {u, v, e} is connected dominating set and there exists no connected dominating set with cardinality

two. {u, v, e, w} is a cycle dominating set. Hence,  $\gamma_c(BG_1(G)) = \gamma_t(BG_1(G)) = 3$  and  $\gamma_0(BG_1(G)) = 4.$ 

Now, let us assume that G has no isolated vertices and has no pendant vertices with  $p \ge 5$ .

**Theorem 5.6:** If diam(G)  $\geq$  3, then (1)  $\gamma_c(BG_1(G)) = \gamma_t(BG_1(G)) = 3.$  (2)  $\gamma_o(BG_1(G))$ = 4.

**Proof:** Let u,  $v \in V(G)$  such that of  $d_G(u, v) \ge 3$ . Then G has a dominating edge uv. Consider  $D = \{u, v, e\}$ , where e is incident with u or v in G. D is a connected dominating set for  $BG_1(G)$  and there exists no connected dominating set with cardinality two. Hence,  $\gamma_{c}(BG_{1}(G)) = \gamma_{t}(BG_{1}(G)) = 3$ . Let  $e_{1} \in E(G)$ ,  $e_{2} \in E(G)$  such that  $e_{1}$  is incident with u and  $e_2$  is incident with v in G. Then  $D = \{u, v, e_1, e_2\}$  is a cycle dominating set for  $BG_1(G)$ . Therefore,  $\gamma_{o}(BG_{1}(G)) = 4$ .

**Theorem 5.8:** (1) If diam(G) = 2 and G contains a triangle with at least one vertex of degree 2 in G and every edge of G lies in a triangle, then  $\gamma_c(BG_1(G)) = \gamma_t(BG_1(G)) =$  $\gamma_{\rm o}(\rm BG_1(G))=3.$ 

(2) If diam(G) = 2 and G has an edge e not in any triangle, then  $\gamma_c(BG_1(G)) =$  $\gamma_t(BG_1(G)) = \gamma_o(BG_1(G)) = 3.$ 

(3) If diam(G) = 2 and G has no triangle with a vertex of degree 2 and every edge of G lies in a triangle, then  $\gamma_c(BG_1(G)) = \gamma_t(BG_1(G)) = \gamma_o(BG_1(G)) \le 2 + \mathbf{Q}_1(\langle N(v) \rangle).$ 

**Proof of (1):** If G contains a triangle with one vertex u of degree 2 in G. Let  $N(u) = \{v, w\}$ and  $e = v w \in E(G)$ ,  $e_1 = uv$ ,  $e_2 = uw \in E(G)$ . Consider  $D = \{u, e\}$ . D dominates  $BG_1(G)$ .  $\{u, e, e_1\}$  dominates BG<sub>1</sub>(G) and is connected.  $\{u, e_1, e_2\}$  is a cycle dominating set.

**Proof of (2):** If G has an edge e = uv not in any triangle,  $D = \{u, v, e\}$  dominates BG<sub>1</sub>(G), where D forms a cycle.

**Proof of (3):** Let  $v \in V(G)$  such that  $\deg_G v = \delta(G)$ . Since every edge of G lies on a triangle,  $\langle N(v) \rangle$  has no isolated vertex. Let D be a line cover of  $\langle N(v) \rangle$  in G. D<sub>1</sub> = {v}  $\bigcup$  D is a dominating set for BG<sub>1</sub>(G) and D<sub>2</sub> = D<sub>1</sub>  $\bigcup$  {e}, where e is incident with v, is a connected dominating set for  $BG_1(G)$  and  $D_3 = \{e, e_1\} \cup D_1$ , where e, e<sub>1</sub> are incident with v is a cycle dominating set for  $BG_1(G)$  (not induced). This proves the theorem.

**Theorem 5.9:** If  $G = K_n$ , then  $\gamma(BG_1(G)) = \gamma_t(BG_1(G)) = \gamma_c(BG_1(G)) = n/2$  or (n+1)/2.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

## 6. Global domination number of $BG_1(G)$

Following theorems and propositions deal with the global domination number of  $BG_1(G)$ . Some bounds for global domination number are also found out.

Theorem 6.1: Let G be a graph without isolated vertices. Then  $\gamma_{g}(BG_{1}(G)) \leq 1+\delta(G)$ . **Proof:** Let  $u \in V(G)$  such that  $\deg_{G}u = \delta(G)$ . Let  $D = \{e \in E(G) : e \text{ is incident with } u \text{ in } G\}$ . Then  $D \cup \{u\}$  is a dominating set for  $BG_{1}(G)$  and  $BG_{1}(G)$ . Hence,  $\gamma_{e}(BG_{1}(G)) \leq 1+\delta(G)$ .

**Remark 6.1**: If G has a pendant vertex, then  $\gamma_g(BG_1(G)) = 2$ .

**Theorem 6.2**: If G has an isolated vertex, then  $\gamma_g(BG_1(G)) \leq 4$ .

**Proof:** Let  $u \in V(G)$  be an isolated vertex of G. {u, e},  $e \in E(G)$  dominates  $BG_1(G)$ . If  $e = vw \in E(G)$ , {v, w, e} dominates  $BG_1(G)$ . Therefore, {u, v, w, e} is a global dominating set for  $BG_1(G)$ . Hence,  $\gamma_g(BG_1(G)) \leq 4$ .

**Remark 6.2**: If G has a pendant vertex and has some isolated vertices, then  $\gamma_g(BG_1(G)) = 3$  or 4.

**Proposition 6.1:** For  $p \ge 5$ , if G has no pendant vertex and if G has a vertex of degree 2 lying on a triangle; or if G has an edge e not lying on a triangle, then  $\gamma_g(BG_1(G)) = 3$ . **Proof:** Let v be the vertex of degree two lying in a triangle. N(v) = {v<sub>1</sub>, v<sub>2</sub>}, e = v<sub>1</sub>v<sub>2</sub>  $\in E(G)$ . {v, e} dominates  $BG_1(G)$ . Let  $u \in V(G)$  be not adjacent to v. Then {u, v, e} dominates  $BG_1(G)$ . Hence,  $\gamma_g(BG_1(G)) = 3$ . Let  $uv = e \in E(G)$  such that e is not lying on any triangle. Then D = {u, v, e} dominates  $BG_1(G)$  and  $BG_1(G)$ . Hence,  $\gamma_g(BG_1(G)) = 3$ .

**Proposition 6.2:** If  $G = K_n$ , then  $\gamma_g(BG_1(G)) = n/2 + 2$  or (n+1)/2 + 2. **Proof:** Follows from Proposition 2.11 and Theorem 2.2.

**Proposition 6.3**: If diam(G)  $\geq$  3, then  $\gamma_g(BG_1(G)) \leq 4$ .

**Proof:** Let u,  $v \in V(G)$  such that  $d_G(u, v) \ge 3$ . Let w be adjacent to u and let  $e = uw \in E(G)$ . Then  $\{u, v, w, e\}$  is a global dominating set. Hence,  $\gamma_g(BG_1(G)) \le 4$ .

**Proposition 6.4**: Let D be a minimal dominating set for G. Then (1) D is a dominating set for BG<sub>1</sub>(G) if and only if  $|D| \ge 3$  or |D| = 2 and D is independent. (2) D

dominates  $BG_1(G)$  if and only if D is a global dominating set for G and D is a line cover for G.

**Proof of (1):** As  $\gamma(BG_1(G)) > 1$ , |D| > 1. Also, if |D| = 2 and  $\langle D \rangle$  is connected, then the edge in D can not be dominated by D in  $BG_1(G)$ . This proves (1). Proof of (2): Proof is obvious.

Proposition 6.5: Let D be a global dominating set of G. Then D is a global dominating set of BG<sub>1</sub>(G) if and only if (1)  $|D| \ge 3$  or |D| = 2 and D is independent. (2) D is a point cover for G.

**Proof:** Follows from Proposition.6.4.

**Remark 6.2**: In Proposition 6.5, |D| = 2 and D is independent is true only when G is disconnected, otherwise D cannot be a dominating set of  $BG_1(G)$  or  $BG_1(G)$ .

Theorem 6.3:  $\gamma_g(BG_1(G)) \leq \gamma_g(G)+1$ .

**Proof:** Let D be a global dominating set of G. Then it is clear that  $|D| \ge 2$ . If |D| = 2, then take  $D_1 = \{u, v, e\}$ , for  $u, v \in D$  and e edge in  $\langle D \rangle$ . Clearly,  $D_1$  dominates  $BG_1(G)$ and BG<sub>1</sub>(G). If  $|D| \ge 3$ , then D<sub>1</sub> = D  $\cup$  {e} for e  $\in$  E(G) dominates BG<sub>1</sub>(G) and BG<sub>1</sub>(G). This proves the theorem.

#### 7. Total global domination of $BG_1(G)$

A total dominating set D of a graph is a total global dominating set, if D is also a total dominating set of G. In this section, bounds for total domination number of  $BG_1(G)$  are found out.

**Theorem 7.1:** Let G be a graph without isolated vertices and diam(G) > 1. Then  $\gamma_{tg}(BG_1(G)) \leq \delta(G) + 3.$ 

**Proof:** Let  $u \in V(G)$  such that  $\deg_G u = \delta(G)$ . Let  $D = \{e \in E(G) : e \text{ is incident with } u\}$ . Let  $e = uv \in E(G)$  and  $w \in V(G)$  is such that it is adjacent to v, not to u. Let  $D_1 = D \cup \{u, v, v\}$ w]. Then  $D_1$  is a global dominating set of  $BG_1(G)$  and  $BG_1(G)$  and is also a total dominating set in BG<sub>1</sub>(G) and BG<sub>1</sub>(G). Hence,  $\gamma_{tg}(BG_1(G)) \leq \delta(G)+3$ .

**Remark 7.1**: If  $G \neq K_2$ , and connected with  $\delta(G) = 1$ , then  $\gamma_{tg}(BG_1(G)) \leq 4$ .

**Proposition 7.1**: If G is a connected graph with diam(G)  $\geq$  3, then  $\gamma_{tg}(BG_1(G)) \leq$  5.

**Proof:** If diam(G)  $\geq$  3, then there exists a path u v w z in G. Let e = uv, e<sub>1</sub> = vw. Consider D = {u, v, z, e, e<sub>1</sub>}  $\subseteq$  V(BG<sub>1</sub>(G)). D is a total dominating set for BG<sub>1</sub>(G) and BG<sub>1</sub>(G). Therefore,  $\gamma_{tg}(BG_1(G)) \leq 5$ .

**Proposition 7.2:** Let  $G \neq K_2$ . If there exists  $e \in E(G)$  such that e is not lying in a triangle in G, then  $\gamma_{te}(BG_1(G)) \leq 4$ .

**Proof:** Let u,  $v \in V(G)$  such that  $e = uv \in E(G)$  and  $G \neq K_2$  and e is not lying on a triangle. D = {u, v, e} dominates BG<sub>1</sub>(G) and BG<sub>1</sub>(G). D<sub>1</sub> = {u, v, e, w}, w not incident with e, is a total global dominating set of BG<sub>1</sub>(G). Therefore,  $\gamma_{tg}(BG_1(G)) \leq 4$ .

**Proof:** Let  $v \in V(G)$  such that  $\deg_G v = 2$  and v lies in a triangle, then  $\gamma_{tg}(BG_1(G)) \leq 4$ . **Proof:** Let  $v \in V(G)$  such that  $\deg_G v = 2$  and v lies in a triangle formed by  $v, v_1, v_2$ .  $D = \{v, e\}$ , where  $e = v_1v_2 \in E(G)$  dominates  $BG_1(G)$ . Now, let u be any other vertex, which is not adjacent to v in G. Then  $D_1 = \{u, v, e\}$  dominates  $BG_1(G)$  and is a total dominating set. Therefore,  $D_2 = \{u, v, e, e_1\}$ , where  $e_1 = vv_1 \in E(G)$  is a total dominating set for  $BG_1(G)$ and  $BG_1(G)$ . Therefore,  $\gamma_{tg}(BG_1(G)) \leq 4$ .

**Proposition 7.4**: If diam(G) = 1,  $\gamma_{tg}(BG_1(G)) = (p/2)+3$  or ((p+1)/2)+3.

**Proof:** Let diam(G) = 1. Hence, G = K<sub>n</sub>. Let e = uv  $\in$  E(G). D = {u, v, e} dominates BG<sub>1</sub>(G). D<sub>1</sub> = {u, v, e}  $\cup$  D<sub>2</sub>, where D<sub>2</sub>  $\subseteq$  E(G) is a line cover of G. D<sub>1</sub> dominates  $\overrightarrow{BG_1}(G)$  and D<sub>1</sub> is total. Therefore, S = {u, v, e}  $\cup$  D<sub>2</sub> $\cup$  {w}, where e  $\in$  D<sub>2</sub> is a total dominating set for BG<sub>1</sub>(G) and  $\overrightarrow{BG_1}(G)$ . Therefore,  $\gamma_{tg}(BG_1(G)) \leq (p/2)+3$  or ((p+1)/2)+3.

**Proposition** 7.5: Let G be a graph with no pendant vertices and diam(G) = 2. Then  $\gamma_{t\sigma}(BG_1(G)) \leq (\delta(G)+5)/2.$ 

**Proof: Case 1:**  $e \in E(G)$  is not lying on a triangle.

D = {u, v, e}, e = uv  $\in$  E(G) dominates BG<sub>1</sub>(G) and BG<sub>1</sub>(G). w  $\in$  V(G) is not adjacent to u or v, D<sub>1</sub> = {u, v, e, w} is a total dominating set. Therefore,  $\gamma_{tg}(BG_1(G)) \leq 4$ . **Case 2:** Every edge of G is lying on a triangle.

Let D be a line cover of  $\langle N(v) \rangle$ , where deg<sub>G</sub>v =  $\delta(G)$ . Take  $D_1 = D \cup \{v\} \cup \{u\}$ . This is a total dominating set of BG<sub>1</sub>(G) and BG<sub>1</sub>(G). Therefore,  $\gamma_{tg}(BG_1(G)) \leq (\delta(G)/2)+2$  or  $((\delta(G)+1)/2)+2 \leq (\delta(G)+5)/2$ .

**Theorem 7.2**: (1) If diam(G) = 1, then  $\gamma_{te}(BG_1(G)) \leq (p/2)+3$  or ((p+1)/2)+3.

(2) If diam(G) = 2, then  $\gamma_{tg}(BG_1(G)) \leq \min \{4, (\delta(G)+5)/2\}.$ 

(3) If diam(G)  $\geq$  3, then  $\gamma_{tg}(BG_1(G)) \leq$  5.

Proof: Follows from Propositions 7.1, 7.2, 7.3, 7.4 and 7.5.

## 8. Efficient domination of BG<sub>1</sub>(G) and BG<sub>1</sub>(G)

If  $G \neq K_2$ ,  $BG_1(G)$  is self-centered with diameter two. Therefore,  $BG_1(G)$  has no efficient domination. Also, if p > 4 and G has no pendant vertices, then  $BG_1(G)$  is self-centered with diameter two. So, if p > 4 and G has no pendant vertices, then  $BG_1(G)$  has no efficient domination.

**Proposition 8.1**: If G has a pendant vertex, then  $\gamma_{e}(BG_{1}(G)) = 2$ .

**Proof:** Let  $u \in V(G)$  be pendant in G and  $e \in E(G)$  be incident with u in G.  $D = \{u, e\}$  is an efficient dominating set of BG<sub>1</sub>(G), since D is a dominating set for BG<sub>1</sub>(G) and d(u, e) = 3 in BG<sub>1</sub>(G). Hence,  $\gamma_e(BG_1(G)) = 2$ .

**Proposition 8.2:** If p = 4 and G has no pendant vertices, then  $BG_1(G)$  has no efficient domination.

**Proof:** Since p = 4 and G has no pendant vertices, G is any one of  $K_3 \cup K_1$ ,  $K_4$ ,  $C_4$  or  $K_4$ —e. In all these cases,  $BG_1(G)$  has no efficient domination.

**Proposition 8.3:** If p = 3 and G has no pendant vertices, then  $\gamma_e(BG_1(G)) = 3$ . **Proof:** In this case,  $G = K_3$  and the set of all point vertices is a dominating set and distance between any two line vertices is three. Therefore,  $\gamma_e(BG_1(G)) = 3$ .

**Theorem 8.1**: (1)  $\gamma_e(BG_1(G)) = 2$  if and only if G has a pendant vertex.

(2)  $\gamma_{e}(BG_{1}(G)) = 3$  if and only if  $G = K_{3}$ .

(3) If  $G \neq K_3$  and has no pendant vertices, then BG<sub>1</sub>(G) has no efficient domination.

**Proof of (1):** Let  $\gamma_{e}(BG_{1}(G)) = 2$ . Let D be an efficient dominating set of  $BG_{1}(G)$ .

**Case1:**  $D = {u, v} \subseteq V(G).$ 

D is a dominating set of BG<sub>1</sub>(G). Hence,  $d_G(u, v) \ge 2$ . This implies  $d(u, v) \ge 3$  in BG<sub>1</sub>(G) and u and v have no common non-incident edge in G. Hence, G is of the form  $K_{1,m} \cup K_{1,n}$  or  $K_{1,m} \cup nK_1$ . Thus, G has pendant vertices.

**Case 2:**  $D = \{u, e\}.$ 

D is a dominating set implies u is pendant and e is incident with it in G.

**Case 3:**  $D = \{e_1, e_2\} \subseteq E(G)$ .

37 International Journal of Engineering Science, Advanced Computing and Bio-Technology

D dominates  $BG_1(G)$  and  $d(e_1, e_2) \ge 3$  in  $BG_1(G)$ . Therefore, q = 2 and  $e_1$ ,  $e_2$  has no common non-incident vertex in G. Therefore,  $G = 2K_2$  or  $K_{1,2}$ . If  $G = K_{1,2}$ , then D is not a dominating set. Hence,  $G = 2K_2$ . Therefore, G has a pendant vertex. Converse follows from Proposition 8.1.

**Proof of (2):** Assume  $\gamma_e(BG_1(G)) = 3$ . Let D be a minimal efficient dominating set with cardinality 3 for BG<sub>1</sub>(G).

Case 1: D = {u, v, w}  $\subseteq$  V(G).

D is efficient implies distance between any two elements of D in G is at least 3 and there is no edge not incident with any two elements of D in G. This is not possible.

**Case 2:**  $D = \{u, v, e\}$   $u, v \in V(G), e \in E(G)$ .

D is efficient implies u and v are at distance at least 3 in G and e is incident with u and v, which is not possible.

**Case 3:** D = {u,  $e_1, e_2$ }.

D is efficient implies,  $e_1$ ,  $e_2$ , are incident with u in G. But,  $d(e_1, u) = d(e_2, u) = 2$  in BG<sub>1</sub>(G). Therefore, this is also not possible.

**Case 4:** D =  $\{e_1, e_2, e_3\}$ .

D is a dominating set implies q = 3 in G. D is efficient implies any two elements of D cannot have a common non-incident point vertex in G. Hence,  $G = K_3$  only.

Converse follows from Proposition 8.3.

Proof of (3): Already proved.

## 9. Restrained domination of $BG_1(G)$ and $BG_1(G)$

Following results deal with the **restrained domination** of  $BG_1(G)$ .

**Proposition 9.1:** If  $G \neq K_2$  and  $p \leq 4$ , then  $\gamma_r(BG_1(G)) = 2$ . **Proof: Case 1:** G has a pendant vertex u.

 $D = \{u, e\}, e = uv \in E(G)$  is a restrained dominating set of  $BG_1(G)$ .

Case 2: G has no pendant vertex and no isolated vertex.

If  $G = C_3$ ,  $D = \{u, e\}$ , where  $u \in V(G)$  and e not incident with u in G and in other cases,  $\{e_1, e_2\}$ , where  $e_1, e_2$  are independent edges of G is a restrained dominating set.

**Case 3:** G has an isolated vertex u.

 $D = \{u, e\}$  is a restrained dominating set. Hence, in all cases,  $\gamma_r(BG_1(G)) = 2$ .

**Proposition 9.2:** Let G be a graph with at least four vertices. If G has a pendant vertex or isolated vertex, then  $\gamma_r(BG_1(G)) = 2$ .

**Proof:** If u is pendant in G, then {u, e}, where  $e = uv \in E(G)$  is a restrained dominating set of  $BG_1(G)$ . If v is an isolated vertex, then {v, e}, where  $e \in E(G)$  is a restrained dominating set of  $BG_1(G)$ . Hence,  $\gamma_r(BG_1(G)) = 2$ .

Now, assume that G is a graph without isolated vertices and pendant vertices and  $p \ge 5$ . Following theorems give the restrained domination of  $BG_1(G)$ . Since they are easy to follow, statements are given without proof.

**Theorem 9.1**:(1) Let diam(G)  $\geq$  3. If G contains a triangle with at least one vertex of degree two in G, then  $\gamma_r(\overrightarrow{BG}_1(G)) = 2$ ; otherwise,  $\gamma_r(\overrightarrow{BG}_1(G)) = 3$ .

(2) Let diam(G)  $\leq 2$ . If G contains a triangle with at least one vertex of degree two in G, then  $\gamma_r(\overrightarrow{BG}_1(G)) = 2$ ; If G has no such triangle and has an edge e, which is not in any triangle then  $\gamma_r(\overrightarrow{BG}_1(G)) = 3$ ; otherwise,  $\gamma_r(\overrightarrow{BG}_1(G)) = 1 + \alpha_1(\langle N(v) \rangle)$ , where  $\deg_G v = \delta(G)$ .

(3) If G = K<sub>n</sub>, then  $\gamma_r(BG_1(G)) = n/2$  or (n+1)/2.

**Remark 9.1**: (1)  $\gamma_r(BG_1(G)) = \gamma(BG_1(G)).$ 

(2) If  $q \ge 2$  and D is restrained dominating set of G, then  $D \cup \{e\}$  is a restrained dominating set of  $BG_1(G)$ .

(3) If  $q \ge 2$ , the set of all point vertices is a restrained dominating set of BG<sub>1</sub>(G).

(4) Set of all line vertices is a restrained dominating set if and only if radius of G is greater than one.

(5) Let D be a restrained dominating set of G. D is a restrained dominating set of  $BG_1(G)$  if and only if D is a point cover for G.

# 10. Neighborhood Number of BG<sub>1</sub>(G) and BG<sub>1</sub>(G)

Neighborhood number of  $BG_1(G)$  and  $BG_1(G)$  have been studied here. Bounds for  $n_0(BG_1(G))$  and  $n_0(BG_1(G))$  are found out.

**Proposition 10.1:** (1) If  $G \neq K_2$ , then set of all point vertices is a neighborhood set for BG<sub>1</sub>(G).

(2) If  $G \neq K_2 \cup mK_1$  and q > 1, then set of all line vertices is a neighborhood set of BG<sub>1</sub>(G).

**Proof of (1):** Since set of all line vertices is independent in  $BG_1(G)$ , set of all point vertices covers all the edges of  $BG_1(G)$ . Hence, it is a neighborhood set of  $BG_1(G)$ .

**Proof of (2):** Since  $G \neq K_{1,n} \cup mK_1$  and q > 1, for any two adjacent vertices u, v in G, there exists an edge not incident with u and v. Hence, in BG<sub>1</sub>(G), all the edges of BG<sub>1</sub>(G) is covered by the neighborhood of line vertices. Therefore, D = E(G) is a neighborhood set of BG<sub>1</sub>(G).

**Theorem 10.1**: $n_o(BG_1(G)) \le \min \{p, q\}$ , if  $G \ne K_{1,n} \cup mK_1$ . **Proof:** Proof follows from Proposition 10.1.

Theorem 10.2: Let G be a graph without isolated vertices.

(1) If  $G = K_n$ , then  $n_o(BG_1(G)) = \mathbf{\alpha}_1(G)$ .

(2) If  $G \neq K_n$ ,  $\mathbf{Q}_1(G) \leq n_o(BG_1(G)) \leq p-1$ .

**Proof of (1):** Let G = K<sub>n</sub>. Consider a line cover D of G.  $\bigcup_{x \in D} < N[x] >$ covers all the edges in K<sub>q</sub> and edges joining point vertices to line vertices.

Hence,  $BG_1(G) = \bigcup < N[x] >$ . Hence,  $n_o(BG_1(G)) \leq \boldsymbol{\alpha}_1(G)$ .

**Proof of (2):** Let  $G \neq K_n$ . Consider  $e = uv \in E(G)$ ;  $u, v \in V(G)$ . Let  $D = V(G) - \{u, v\}$  and  $S = \{e\} \cup D. < N[e] > covers all the edges in <math>BG_1(G)$  joining line vertices and edges joining e to u and v and edges joining elements of D to other line vertices and < N[x] >, where  $x \in D$  covers all the edges of  $\overline{G}$ . Hence,  $\overline{BG_1(G)} = \bigcup < N[x] >$ . Therefore,  $n_o(\overline{BG_1(G)}) \leq p-1$ . Also,  $n_o(\overline{BG_1(G)}) \geq \alpha_1(G)$  for G. Hence,  $\alpha_1(G) \leq n_o(\overline{BG_1(G)}) \leq p-1$ .

**Conclusion:** In this paper, we have studied connected, efficient, independent, restrained, total and cycle dominations of  $BG_1(G)$  and its Complement. Irredundance and neighborhood numbers are also studied. Other domination parameters and properties are also studied and submitted.

## **References**:

- Robert B. Allen, RenuLasker and Stephen Hedetniemi, A note on total domination, Discrete Mathematics 49 (1984) 7-13. North Holland.
- [2] Robert B. Allen and RenuLasker, On domination and independent domination numbers of a graph, Discrete Mathematics 23 (1978) 73-76, North Holland.
- [3] Bhanumathi, M., (2004) "A Study on some Structural properties of Graphs and some new Graph operations on Graphs" Thesis, Bharathidasan University, Tamil Nadu, India.
- [4] Buckley, F., and Harary, F., Distance in graphs, Addison-Wesley Publishing company (1990).
- [5] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Net works, 7: 247-261.1977

- [6] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
- [7] Teresa W. Haynes, Stephen T. Hedetiniemi, Peter J. Slater. Fundamentals of domination in graphs. Marcel Dekkar Inc. 1998.
- [8] Janakiraman, T.N., Bhanumathi, M., Muthammai, S., Edge partition of the Boolean graph BG<sub>1</sub>(G), Journal of Physical Sciences, Vol. 12, 2008, 97-107.
- [9] T.N.Janakiraman, M.Bhanumathi, S.Muthammai, Boolean graph BG<sub>1</sub>(G) of a graph G, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 6, Issue 1, pp.1-16.
- [10] T.N.Janakiraman, M.Bhanumathi, S.Muthammai, Connectivity and traversability of the Boolean graph BG1(G) of a graph G, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Vol 6, No.3, pp. 62-73.
- [11] Kale, P.P., and Deshpande, N.V., On line independence, Domination, irredundance and neighborhood numbers of a graph. Indian J. pure. appl. Math., 21(8), 695-698, Aug 1990.
- [12] Sampathkumar, E., and Prabha S. Neeralagi, The neighborhood number of a graph. Indian J. pure. appl. Math., 16(2): 126-132. February, 1985.