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Abstract: A set D  V(G) is an eccentric dominating set if D is a dominating set of G and for every      
v  VD, there exists at least one eccentric vertex of v in D. The minimum cardinality of eccentric 
dominating set is called the eccentric domination number and is denoted by ed(G). In this paper, we 
have provided some new bounds for ed(G) and established the relation between ed(G), 0(G) and 
0(G). We have also characterized graphs for which ed(G) = p1 and p2. 
 
Keywords: eccentric dominating set, minimum eccentric dominating set. 
 
1. Introduction 
Graphs discussed in this paper are undirected and simple. For graph theoretic terminology 
refer to Harary[5], Buckley and Harary[3]. For a graph, let V(G) and E(G) denotes its 
vertex and edge set respectively. A graph with p vertices and q edges is called a (p, q) 
graph.  
 The concept of distance in graph plays a dominant role in the study of structural 
properties of graphs in various angles using related concept of eccentricity of vertices in 
graphs. The length of any shortest path between any two vertices u and v of a connected 
graph G is called the distance between u and v and it is denoted by dG(u, v). The distance 

between two vertices in different components of a disconnected graph is defined to be . 
For a connected graph G, The eccentricitye(v) of  v is the distance to a vertex farthest from 

v. Thus, e(v) = max{d(u, v) : u  V}.The radius rad(G) is the minimum eccentricity of the 
vertices, whereas the diameter diam(G) is the maximum eccentricity. 
 A vertex cover of a graph G is a set of vertices that covers all the edges. The vertex 

covering number 0(G) of G is minimum cardinality of a vertex cover. 
 A set S of vertices of G is independent if no two vertices in S are adjacent. The 

independent number 0(G) of G is the maximum cardinality of an independent set. 
 The concept of domination in graphs is originated from the chess games theory 
and that paved the way to the development of the study of various domination parameters 
and its relation to various other graph parameters.  
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A set D  V is said to be a dominating set in G, if every vertex in VD is 
adjacent to some vertex in D. The cardinality of minimum dominating set is called 

thedomination number and is denoted by (G). For details on γ(G), refer to [4]. 
Janakiraman, Bhanumathi and Muthammai [2, 6] introduced and studied the 

concept of eccentric dominating set. In [1], they have studied the eccentric domination in 

trees. A set D  V(G) is an eccentric dominating set if D is a dominating set of G and for 

every v  VD, there exists at least one eccentric vertex of v in D. The minimum 
cardinality of an eccentric dominating set is called the eccentric domination number and is 

denoted by ed(G).  An eccentric dominating set with cardinality ed(G) is known as 
minimum eccentric dominating set. An eccentric dominating set D is a minimal eccentric 

dominating set if no proper subset D D is an eccentric dominating set. 
The following results are needed to study the eccentric dominating set of a graph 

G. 

Theorem: 1.1[5] :For any graph G with even order n and no isolated vertices, (G) = n/2 

if and only if the components of G are the cycle C4 or the corona HK1 for any connected 
graph H. 

Theorem: 1.2[5] :If G is a connected graph with order n and(G)  2 and (G) = 
2

n 
  

, 

then G  AB. 
 
 
 

 
Graphs in family A. 

 
 

 
 

Graphs in family B. 
Figure 1.1 

Theorem: 1.3 [5] :(Pn) = 
3

n 
  

. 

Theorem: 1.4[5]:(Cn) = 
, 3 .
3

, 3 1 3 2.
3

n
if n k

n
if n k or k

 

      
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Theorem: 1.5[7]:ed(Kn) = 1. 

Theorem: 1.6[7]:ed(Km,  n) = 2. 

Theorem: 1.7[7]:ed(Pn)  = (Pn)  or  (Pn) + 1. 

Theorem: 1.8[7]: (i) ed(Cn) =  n/2 if n is even. 

         (ii) ed(Cn) = 

3 .
3

3 1 .
3

1 3 2 .
3

n
if n mand is odd

n
if n m and is odd

n
if n m and is odd





       
        

Theorem: 1.9[3]:If G is a connected graph with n vertices then ed(G)  2

3

n 
  

. 

Theorem: 1.10[7]:ed( 4C ) = 2, ed( 5C ) = 3 anded( nC ) = 
3

n 
  

, n  6. 

 

2. Some New Results onEccentric Domination in Graphs 
Let G be a (p, q) graph. First, we shall find the relation between γed(G), 0(G) 

and 0(G). 

Lemma: 2.1:Let G be a connected graph with rad(G) = 1 and diam(G) = 2. Then γed(G) 

 0 03 3
.

2 2

p    
  

Proof: If G is connected, then γ(G)  0(G). Any maximum independent set dominate 

the graph G. Let S be a maximum independent set.Then S is a dominating set and VS is 
also a dominating set. 
 Let G be a connected graph with rad(G) = 1 and diam(G) = 2. e(u) = 2 whenever 

u  S. If v  VS, then it is adjacent to atleast one element of S. Suppose v is adjacent to 

every element of S and if e(v) = 1, then u  S is an eccentric vertex of v. If e(v) = 2 and is 

adjacent to every element of S, then eccentric vertex of v is in VS. Hence, at most 

2

V S
 vertices from VS are needed to dominate G eccentrically. Thus, γed(G)  0+ 

0

2

p 
 = 0

2

p 
. 

 S is a dominating set. Let v VS such that e(v) = 1. v dominates G. Since S is 

independent, any w  S is eccentric to all the vertices of S. Consider the remaining 
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p10 vertices of VS. They may have eccentric vertices in VS itself. Let D be a 

subset of VS, which contains eccentric vertices of elements of VS. Then {u, w}  D is 

an eccentric dominating set of G. Thus, γed(G)  2+ 01

2

p  
. That is γed(G) 

 0 3

2

p  
.  

 VS is also a dominating set for G and w  S is eccentric to all vertices of S. 

Hence, (VS)  {w} is an eccentric dominating set of G. Thus, γed(G)  p0+1. 

 So, γed(G)  min 0 0
0

3
, 1,

2 2

p p
p

      
 

.  

Hence, γed(G)  0 3

2

p  
 = 0 3

2

 
. 

 This bound is sharp, for the following graph G. 
Example: 2.1: 
   
  
    
 
 
 

G 
Figure 2.1 

D1 = {v1, v2, v4} is a minimum eccentric dominating set of G.  

D2 = {v3, v4, v5} is an independent set of G. Here, γed(G) = 3, 0(G) = 3, p = 6. 
 

Lemma: 2.2:Let G be a 2-self-centered graph. Then γed(G)  0(G). 

Proof: Let S be a maximum independent set. D = VS dominates all the vertices of G and 

u  S is eccentric to all other vertices of S. Hence, γed(G)  |D|+1 = p0+1 = 0+1. 

Case (i):If VS is also independent, then G is a bipartite graph. Also, G is 2-self-centered. 

Hence, G is a complete bipartite graph. Therefore, γed(G) = 2. 

Case (ii):If VS is not independent, there exists u, v  VS such that uv  E(G) and 

every vertex in S is adjacent to at least two vertices of VS. Hence, γ(G)  |D|1. This 

implies that γed(G)  |D|1+1 = |D|. Therefore, γed(G)  p0 = 0. Hence, in all the 

cases, γed(G)  0, where G is 2 self-centered. 
 
 

v1 

v2  v3 
v4 

v5 

v6 
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Example: 2.2: 
 Let G = C5. Let v1 v2 v3 v4 v5 v1 represent the cycle C5. D1 = {v1, v3, v4} is a 

minimum eccentric dominating set and also a vertex covering of G. γed(G) = 0(G) = 3. 
 

Lemma: 2.3:Let G be a graph with diam(G) > 2. Then γed(G)  min 0 0,
2 2

p p   
 
 

. 

Proof: Let G be a graph with diam(G) > 2. Let S be a maximum independent set, S is a 

dominating set and VS is also a dominating set. Thus, γed(G)  0+
0

2

p 
 and γed(G) 

 (p0)+(0/2) = 0 0 02 ( )
.

2 2 2

p p p p     
   

 Therefore, γed(G)  0

2

p 
and γed(G) 

2
op 

. 

 Hence, γed(G)  min 0,
2 2

op p   
 
 

. 

Example: 2.3: 
 

G 
 
 
 
 

 
 
 

Figure 2.2 
D1 = {v2, v3, v5, v6, v8, v9, v11, v12, v14, v15, v17, v18} is a minimum eccentric dominating set 

and also an independent set of G. γed(G) = 0(G) = 12 = (p+0)/2. 

D2 = {v1, v4, v7, v10, v13, v16} is a vertex covering of G. 0(G) = 6. 
 
 From Lemmas 2.1, 2.2 and 2.3, we have the following theorem: 

Theorem: 2.1: For any connected graph G, γed(G)  min 0,
2 2

op p   
 
 

. 

 Bounds of γed(G) in terms of number of vertices of G is given in the following 
lemmas. 
 

Lemma: 2.4:Let G be a graph with radius one and diameter two. Then, γed(G)  p/2. 
Proof: Let G be a graph with radius one and diameter two. Consider the following cases: 

v1 

v2 
v3 

v4 

v5 
v6 

v7 

v10 

v11 

v13 

v16 

v17 

v18 
v8 

v9 

v12 v14 
v15 
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Case (i): G has a pendent vertex 

Then clearly γed(G) = 2. Thus if p  4, then γed(G)  p/2. 
Case (ii): G has no pendent vertex 

Let u be a vertex of minimum degree. Then deg u = (G)p2 and e(u) = 2. In 

this case γed(G)  (((G)t)/2)+1  ((p2t)/2)+1  (p1)/2, where t is the number of 
vertices with eccentricity 1.  

 

Lemma: 2.5:Let G be a self-centered graph of diameter 2 with p  6. Then, γed(G)  p/2. 
Proof: Since G is a self-centered graph with diameter 2, degree of any vertex of G is less 

than or equal to p2. If degree of every vertex of G is equal to p2, then G = Kp1 factor 

and γed(G) = p/2. Hence assume that (G)  p3. 

Case (i): there exists u  V(G) such that (G) = deg u = p3. 

 Since, deg u = p3 there are exactly two vertices w1, w2 in N2(u). Also, degree of 

those vertices is  p3. 
Sub case (i): w1, w2 in N2(u) are adjacent. 

 deg w1 = p3 or p2. Therefore, w1 is adjacent to at least p4 vertices of N1(u). 

Similarly, w2 is adjacent to at least p4 vertices of N1(u). Hence, w1 and w2 are non-

adjacent to at most one vertex of N1(u). Thus u with (p3)/2 vertices of N1(u) form an 

eccentric dominating set. Thus, γed(G)  1+(p3)/2 = (p1)/2. 
Sub Case (ii): w1, w2 in N2(u) are non adjacent. 

 In this case, w1 and w2 are adjacent to all the p3 vertices of N1(u). Hence, again 

γed(G)  1+(p3)/2 = (p1)/2. 

Case (ii): there exists u  V(G) such that (G) = deg u < p3. 

 Let deg u = k < p3. 
Sub Case (i): Suppose k = 2. 
 Since G is 2 self-centered, any two vertices of G lie on a common cycle of 

maximum length four or five. Hence, w  N2(u) is adjacent to at least one vertex in 

N1(u). Thus, exactly three vertices {u}  N1(u) dominate G eccentrically. Hence, γed(G)  

3  p/2 when p  6. 
Sub case (ii): Suppose k > 2. 
 Again, since G is 2 self-centered, any two vertices of G lie on a common cycle of 
maximum length four or five. Also a vertex and its eccentric vertex lie on a common cycle 
of length 4 or 5. Let x and y be any two adjacent vertices of u. These three vertices lie on a 
common cycle of length four or five. If u and x (or y) lie on a cycle of length four, then   
{u, x} dominates the vertices of this cycle eccentrically, otherwise {u, x, y} dominates the 
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vertices of this cycle eccentrically. Hence, if there are more cycles, additionally at most one 
(in the case of C4) or two (in the case C5) vertices are needed to dominate the vertices of 

this cycle. So, in general a γed-set of G contains at most p/2 vertices. Therefore, γed(G)  
p/2. 

 In a similar way, we can prove that γed(G)  p/2, if G is any k self-centered graph. 
Thus, we have the following theorem: 

Theorem: 2.2:Let G be a self-centered graph with p  6. Then, γed(G)  p/2. 
 

Theorem: 2.3:Let G be a cubic graph on 6 vertices. Then γ(G) = γed(G) = 2. 

Proof: Let u  V(G). N1(u) contains three vertices and N2(u) contains 2 vertices since deg 

u = 3 for all u  V(G). Also,<N1(u)> is not complete, since if it is complete, v  N1(u) 

has no adjacent vertices in N2(u) for all v  N1(u), which is a contradiction. 
 Now, let N2(u) = {w1, w2}. 
Case (i):<N2(u)> is independent. 
 w1 is not adjacent to w2. Therefore w1 is adjacent to all vertices of N1(u) and is 
eccentric to u and w2. Similarly, w2 is adjacent to all of N1(u) and is eccentric to u and w1. 

Hence, elements in N1(u) has eccentric vertices in N1(u) only and for v  N1(u), v is 

adjacent to w1 and w2 and v is adjacent to u. Hence, deg v in N1(u) = 321 = 0. But 
N1(u) contains 3 elements. Therefore, v is not adjacent to exactly two elements of N1(u). 

Hence, exactly one vertex w  N1(u) is an eccentric vertex of elements of N1(u). Hence, 

{u, w} is an eccentric dominating set of G. Therefore, γed(G) = 2. 
Case (ii):<N2(u)> = K2.  
 w1 is adjacent to w2. w1 is adjacent to exactly 2 vertices of N1(u)and w2is adjacent 
to exactly 2 vertices of N1(u). Hence, a vertex w of N1(u)is adjacent to w1 and w2 and has 

eccentric vertices in N1(u) only, and for v  N1(u), v is adjacent to one of w1 or w2 and is 

adjacent to u. Hence, degree of v in N1(u) is 311 = 1. N1(u) contains 3 elements.  
Therefore, v is not adjacent to exactly one element w of N1(u). Hence, {u, w} is an 

eccentric dominating set of G. Therefore, γed(G) = 2. 
 
 
 
 

 
 
 

Figure 2.3 

u 

v  w 

w1  w2 

x 
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Remark: 2.1: Let G be a (p3) regular graph with p > 5. Then, by Theorem 1.10, γed(G)  

p/2, since in this case G = .nC  
 

Theorem: 2.4:Let G be a connected p4 regular graph. Then γed(G)  p/2 for p  6. 

Proof: G is a p4 regular graph. Therefore p is even. 

 When p = 6,G = C6 and γed(G) = 3 = p/2. 

 Let u  V(G). Since G is (p4) regular, N1(u) contains (p4) vertices and N2(u) 
contains exactly three vertices. (If N2(u) contains two vertices then N3(u) contains one 
vertex, whose degree is one or two, a contradiction). Hence,G is two self-centered, when p 

 8. 
 Now, we claim that <N1(u)> is not complete. 

 Suppose, <N1(u)> is complete, <N1(u)> = Kp4 and if v  N1(u) then v is adjacent 

to u. This implies that, deg v  p5+1 = p4. But deg v = p4 implies that v has no 

adjacent vertices in N2(u). This is true for all v  N1(u), which is a contradiction, since G 
is connected. Hence, <N1(u)> is not complete. 

 Let N2(u) = {w1, w2, w3}. Since deg w1 = p4, it is adjacent to all vertices of N1(u); 

or is adjacent to w2 or w3 and any p5 vertices of N1(u); or is adjacent to both w2 and w3 

and any p6 vertices of N1(u). 
Case (i):<N2(u)> is independent. 
 w1, w2 and w3 are pair wise disjoint. Therefore, w1 is adjacent to all vertices of 
N1(u) and is eccentric to u, w2 and w3. Similarly, w2(w3) is adjacent to all of N1(u) and is 
eccentric to u, w1 and w3(w2). Hence, elements in N1(u) has eccentric points in N1(u) only 

and for v  N1(u), v is adjacent to w1, w2 and w3 and v is adjacent to u. Hence, degree of v 

in N1(u) = p431 = p8. But N1(u) contains p4 elements. Hence, v is not adjacent to 

exactly three elements of N1(u).Therefore, at most (p4)/2 vertices from N1(u) is needed 

to dominate G eccentrically. {u}  S, where S  N1(u) containing (p4)/2 such vertices 

is an eccentric dominating set. Hence, γed(G)  1+(p4)/2  p/2. 

Case (ii):<N2(u)> = K2 K1. w1 and w2 are adjacent. 

 In this case, w1 and w2 are adjacent to exactly p5 vertices of N1(u) and is 
eccentric to u and w3 is adjacent to all vertices of N1(u) and is eccentric to u, w1 and w2. 

Hence, elements in N1(u) has eccentric vertices in N1(u). Let v  N1(u).Consider the 
following sub cases: 
Sub Case (i):v is adjacent to w1 and w2 and v is adjacent to u. 
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 In this case, degree of v in N1(u) is p413 = p8. But N1(u) contains p4 
elements. Therefore, v is not adjacent to exactly three elements in N1(u).  
Sub Case (ii):v is adjacent to w1 or w2 and v is adjacent to u.  

 In this case, degree of v in N1(u) is p4111 = p7. But N1(u) contains p4 
elements. Therefore, v is not adjacent to exactly two elements in N1(u). Therefore, at most  

(p4)/2 vertices from N1(u) is needed to dominate G eccentrically. {u}  S, where S  

N1(u) containing (p4)/2  such vertices is an eccentric dominating set. Hence, γed(G)  

1+(p4)/2   p/2. 
Case (iii):<N2(u)> = K3. w1, w2 and w3are adjacent to each other. 

 <N2(u)> is complete. Therefore, w1, w2 and w3 are adjacent to exactly p6 vertices 

of N1(u) and is eccentric to u. Let v  N1(u), consider the following sub cases: 
Sub Case (i): v is adjacent to w1, w2 and v is adjacent to u. 

 In this case, degree of v in N1(u) is p421 = p7. Therefore, v is not adjacent 
to exactly two vertices in N1(u). 
Sub Case (ii): v is adjacent to w1 and v is adjacent to u. 

 In this case, degree of v in N1(u) is p411 = p6. Therefore, v is not adjacent 
to exactly one vertex in N1(u). 
Sub Case (iii): v is adjacent to all the three vertices of N2(u) and v is adjacent to u. 

 In this case, degree of v in N1(u) is p431 = p8. Therefore, v is not adjacent 
to exactly three vertices in N1(u). 

Therefore, at most (p4)/2 vertices from N1(u) is needed to dominate G eccentrically. 

{u}S{w1}, where S  N1(u) containing (p4)/2 such vertices is an eccentric 

dominating set. Hence, γed(G)  1+1+(p4)/2  = p/2. 
Case (iv):<N2(u)> = K1,2. w2is adjacent to w1 and w3. 

 In this case, w1 and w3 are adjacent to exactly p5 vertices of N1(u) and is 

eccentric to u, w2 is adjacent to exactly p6 vertices of N1(u) and is eccentric to u. Let v  
N1(u). Consider the following sub cases: 
Sub Case (i): v is adjacent to w1 or w2 and v is adjacent to u. 

 In this case, degree of v in N1(u) is p4111 = p7. But N1(u) contains p4 
vertices. Hence, v is not adjacent to exactly two elements of N1(u).  
Sub Case (ii): v is adjacent to w1 and w2 and v is adjacent to u. 

 In this case, degree of v in N1(u) is p421 = p7. Therefore, v is not adjacent 
to exactly two vertices in N1(u). 
Sub Case (iii): v is adjacent to all the three vertices of N2(u). 
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 In this case, degree of v in N1(u) is p431 = p8. Therefore, v is not adjacent 
to exactly three vertices in N1(u). 

Hence, at most (p4)/2 vertices from N1(u) is needed to dominate G eccentrically. 

{u}S{w2}, where S  N1(u) containing (p4)/2 such vertices is an eccentric 

dominating set. Hence, γed(G)  1+1+(p4)/2  = p/2 

 So, in all the cases, γed(G)  p/2. Hence the theorem follows. 
Remark: Theorem 2.4 can also be proved using Lemma: 2.5 

Corollary: 2.4: If G is a connected 4-regular graph on 8 vertices, then γed(G)  4. 

In the following theorems, we have characterized graphs for which γed(G) = p1, 

p2, where p is the number of vertices of G. 
 

Theorem: 2.5:Let G be a connected graph. Then γed(G) = p1 if and only if G  K2 or 
K1,2. 

Proof: If G = K2, then γed(G) = 1. Hence, γed(G) = p1. If G = K1,2, then γed(G) = 2. 

Hence, γed(G) = p1. 

Conversely, assume that, γed(G) = p1. Then there exists an eccentric dominating set D 

containing p1 vertices. By Theorem 1.9, γed(G)  (2p)/3. Therefore, we get, p1  

(2p)/3. That is 3p3  2p. Therefore, p  3 and it follows that, G  K2 or K1,2. 
 

Theorem: 2.6:Let G be a connected graph. Then γed(G) = p2 if and only if G is any one 

of the following graphs: K3, C4, P5, C5, K4e, K1,3, K1+K1+K2, K1+K1+K1+2K1, Bull graph, 

Fan graph(F4), 2K +K1+K1+ 2K . 

Proof: For all graphs in the theorem, γed(G) = p2. 

Conversely, let G be a connected graph with γed(G) = p2. By Theorem 1.9, γed(G)  
(2p)/3. 

Thus, we get p2  (2p)/3. That is 3p6  2p. Therefore, p  6, and it follows that, G is 
one of the graph in the stated theorem. 

Next, necessary condition for γed(G) = pk, where k = 1, 2, 3, .... is given.  
 

Theorem: 2.7:Let G be a connected graph. If γed(G) = pk, where k = 1, 2, 3, ..., then p  
3k. 

Proof: By Theorem 1.9, γed(G)  (2p)/3. Thus, we get pk  (2p)/3. That is 3p3k  2p. 

This implies that p  3k. 
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Theorem: 2.8:Let G be a graph with p  6 vertices. Then γed(G) = p3 if and only if G is 
any one of the graphs given in Figure 2.4 a and Figure 2.4 b. 

Proof: Let G be a connected graph with γed(G) = p3. By Theorem 1.9, γed(G)  (2p)/3. 

Thus, we get, p3  (2p)/3. That is p  9. When p  6, the graphs given in Figure 2.4 a 

and Figure 2.4 b are the only graphs with γed(G) = p3 = 3 

In the following theorem, the upper bound of γed(G) is obtained in terms of order 
and size of G. 

 
 
 
 

  
 
 
 
 
 
 
    
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 a 
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Figure 2.4 b 
 

Theorem: 2.9:For any connected graph G with p  2, γed(G)  2qp+1. Further, the 

equality holds if and only if G  K2 or K1,2. 

Proof: For any graph G, γed(G)  p1 = 2(p1)(p1)  2qp+1.  
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Further, if γed(G) = 2qp+1, then 2qp+1  p1 and q  p1. Hence, q = p1. 

Therefore, G is a tree. By Theorem 2.4, γed(G)  K2, K1,2. Hence, the result is proved. 
 

Theorem: 2.10:For any connected (p, q) graph G, γed(G)+(G)  2p2 (p  2). Also, the 

equality holds if and only if G  K2 or K1,2. 

Proof: For any graph with p vertices, (G)  p1 and γed(G)  p1.  

Hence, γed(G)+(G)  2p2. When G  K2 or K1,2, γed(G)+(G) = 2p2. 

 Conversely, assume that, γed(G)+(G) = 2p2. The only possibility is γed(G) = 

p1 and (G) = p1. Hence, by Theorem 2.4, we get G  K2 or K1.2. 
 

Theorem: 2.11:For any connected (p, q) graph G, γed(G)+(G) = 2p3 if and only if G is 

any one of the following:K3, K4e, K1,3, K1+K1+K2 and Fan graph F4. 

Proof: For the graphs given in the theorem, γed(G)+(G) = 2p3. 

 Conversely, assume that γed(G)+(G) = 2p3. The possible cases are 

(i) γed(G) = p1 and (G) = p2 and 

(ii) γed(G) = p2 and (G) = p1. 

Case (i): By Theorem 2.4, γed(G) = p1 if and only if G  K2 or K1,2. 

 In this case, (G) = p1. Therefore, this case is not possible. 

Case (ii):By Theorem 2.5, γed(G) = p2 if and only if G is any one of the following 
graphs: 

K3, C4, P5, C5, K4e, K1,3, K1+K1+K2, K1+K1+K1+2K1, Bull graph, Fan graph F4, 

2K +K1+K1+ 2K . 

If G is any one of the graphs C4, P5, C5, K1+K1+K1+2K1, Bull graph, 2K +K1+K1+ 2K , 

then (G)  p1. These cases are not possible. Therefore, G is one of the graphs in the 
stated theorem. 
 

In the following, Nordhaus-Gaddum type results for eccentric domination 
number are established. 

 

Theorem: 2.12:Let G be a (p, q)(p  4) graph such that both G and its complement G are 

connected. Then (i) 4 γed(G) + γed(G )  2(p2). (ii) 4 γed(G) . γed(G )  2(p2)2. 

Proof: (i) By Theorem 2.4, γed(G) = p1 if and only if G  K2 orK1,2. But in this case, 

G is disconnected. Therefore, γed(G)  p2. Hence, γed(G) + γed(G )  2(p2). 
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For the lower bound, γed(G) = 1 if and only if G is a complete graph. In this case, G  is 

disconnected. Therefore, γed(G)  2. Hence, γed(G) + γed(G )  4. 
(ii) Proof follows similarly. 
 Lower bound is attained, if G is a path on 4 vertices and upper bound is attained, 
if G is a cycle on 5 vertices. 
 

Theorem: 2.13:Let G be a (p, q), p  4 graph such that both G and its complement G are 

connected. Then (i) 4  γed(G) + γed(G )  4p/3. (ii) 4  γed(G) . γed(G )  4p2/9. 

Proof: (i) By Theorem 1.9, γed(G)  (2p)/3. Hence, γed(G) + γed(G )  4p/3. For the 

lower bound, γed(G) = 1 if and only if G is a complete graph. In this case, G  is 

disconnected. Therefore, γed(G)  2. Hence, γed(G) + γed(G )  4. 
(ii) Proof is similar as in case(i). 
  

We have characterized graphs for which γ(G) = γed(G) = p/2 in the following theorem: 

Theorem: 2.14:For a connected graph G with even number of vertices p and (G)  2, 

γ(G) = γed(G) = p/2 if and only if G is C4 or HK1 for some connected graph H. 

Proof: When G = C4, γed(G) = 2 = p/2. Let G = HK1, where H is a connected graph on 

p/2 vertices. V(H) is a γ-set for G and the set of all pendant vertices in G is a minimum 

eccentric dominating set. Hence, γed(G) = p/2. 

Conversely, assume that γ(G) = γed(G) = p/2. Since G is a graph with (G)  2, p is even, 

by Theorem 1.1,we get G is C4 or HK1 for some connected graph H. 
 

Theorem: 2.15:(i) G is a connected graph with (G)  2 and γ(G) = γed(G) = 
2

p 
  

 if and 

only if G is any one of the graphs given in Figure 2.5. 

(ii) G is a connected graph with γ(G) = 
2

p 
  

 and γed(G) = 
2

p 
  

+1 if and only if G is   

C5. 

Proof: (i) Let G be a connected graph with (G)  2 and γ(G) = γed(G) = 
2

p 
  

. By 

Theorem 1.2, γ(G) = 
2

p 
  

 implies G is any one of the graphs in Figure 1.1. Therefore, 

the graphs given in Figure 2.5 are the only graphs with γ(G) = γed(G) = 
2

p 
  

. 
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Figure 2.5 

 (ii)Suppose G is C5. It is clear that γ(G) = 
2

p 
  

 and γed(G) = 
2

p 
  

+1. 

Conversely, assume that γ(G) = 
2

p 
  

 and γed(G) = 
2

p 
  

+1. By Theorem 1.2, C5 is the 

only graph with γ(G) = 
2

p 
  

 and γed(G) = 
2

p 
  

+1. 
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