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Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, NINC,Kq(G) is a 
graph with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, denote this graph 
by BG1(G), Boolean graph of G-first kind. In this paper, connectivity and traversability properties of 
BG1(G) and its complement are studied. 
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1. Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). 
For graph theoretic terminology refer to Harary [9], Buckley and Harary [8]. We need the 
following definitions and theorems. 

The connectivity  = (G) of a graph G is the minimum number of vertices whose 
removal results in a disconnected or trivial graph. The line connectivity or edge connectivity    

 = (G) of a graph G is the minimum number of edges whose removal results in a 
disconnected graph. 

 A graph G is n-connected if (G)  n and n-edge connected if (G)  n. 

 A regular graph with  =  for which the only minimum disconnecting sets of 

vertices consists of the neighborhoods of single vertex is called a super--graph. Similarly, 

a regular graph with  =  for which each minimum sized disconnecting sets of edges 

isolates a single vertex is called a super-  -graph. 

Theorem 1.1 [8] For any graph G, (G)  (G)  (G). 
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Theorem 1.2 [8] (i) If G is a graph of diameter two, then (G) = (G). 

(ii) If G has p vertices and (G)  p/2, then (G) = (G). 

Theorem 1.3 [8] Among all graphs with p points and q lines, the maximum connectivity is 

zero when q < p1 and is 2q/p, when q  p 1. 

Theorem 1.4 [8] A graph is n-connected if and only if at least n point disjoint paths join 
every pair of points. 

In a graph G any closed trial containing all vertices and edges of G is called an 
Eulerian trail. A graph is said to be Eulerian if it has an Eulerian trail. 

Theorem 1.5 [8] A connected graph G is an Eulerian graph, if and only if degree of each 
vertex of G is even. 

A graph G is called Hamiltonian if it has a spanning cycle.  Any spanning cycle of 
G is called Hamilton cycle. A Hamiltonian path in G is a path, which contains every vertex 
of G. Clearly, every Hamiltonian graph is 2-connected. 

Theorem 1.6 (Ore's Theorem) [7] Let G be a graph of order p (3). For each pair of non-

adjacent vertices v and w in G, if deg v+deg w  p, then G is Hamiltonian. 

Theorem 1.7 (Dirac's theorem) [7] Let G be a graph of order p ( 3). If deg v  p/2 for 
each vertex v in G, then G is Hamiltonian. 

The closure cl(G) of a graph G is the smallest graph H such that (1) G is a spanning 

subgraph of H, and (2) degH v + degH w  p for every pair of non-adjacent vertices v and w 
in H. 

 The closure cl(G) can be obtained from G by the recursive procedure of joining 
two vertices, whenever the sum of their degrees is at least p. 

Theorem 1.8 (Bondy and Chavatal) [7] G is Hamiltonian if and only if cl(G) is Hamiltonian. 

Theorem 1.9 [7] If cl(G) is a complete graph, then G is Hamiltonian. 

Motivation: The Line graphs [6], Middle graphs [1,2], Total graphs [4] and Quasi-total 
graphs [23] are very much useful in computer networks. In analogous to line graph, total 
graph, middle graph and quasi-total graph, thirty-two graphs can be defined using different 
adjacency relations. Out of these operations, eight were already studied. Among the 
remaining twenty-four graph operations, two are defined and analyzed in [10,11,12], six are 
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defined and studied in [3]. All the others have been defined and studied thoroughly. This is 
illustrated below. 

Defining a new graph from a given graph by using the adjacency relation between 
two vertices or two edges and incident relationship between vertices and edges is known as 
Boolean operation. It defines new structure from the given graph and adds extra 
information of the original graph. 

In Management and in social networks, the incident and non-incident relations of 
vertices and edges are used to define various networks. So these are very much applicable in 
socio-economical problems. In some cases, it is possible to retrieve the original graph from 
the Boolean graphs in polynomial time. So these graph operations may be used in graph 
coding or coding of some grouped signal. Also, it is possible to study the structure of original 
graphs through these Boolean graph operations. This motivates the study for the exploration 
of various Boolean operations and study of their structural properties. 

In [3], the Boolean graph BG1(G) of a graph G is defined as follows. Let G be a 

simple (p, q) graph with vertex set V(G) and edge set E(G). BG, NINC,Kq(G) is a graph with 

vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G or to a vertex and an edge not incident to it in G. For simplicity, 
denote this graph by BG1(G), Boolean graph of G-first kind.  

BG1(G) has pq vertices, p point vertices with degree q and q line vertices with 

degree p2. BG1(G) is always bi-regular and is regular if and only if q = p2; clearly, in this 

case G is disconnected. It is easy to determine that BG1(G) has q(p1) edges andBG1(G) 

has (q(q+1)/2)+(p(p1)/2) edges. In this paper, connectivity and traversability properties of 
BG1(G) and its complement are studied. 

2. Connectivity of BG1(G) and )(1 GBG  

In this section, connectivity of BG1(G) andBG1(G) are discussed. Vertex 

connectivity and edge connectivity of BG1(G) andBG1(G) are found out.  

Proposition 2.1 Let G be a connected non-trivial (p, q) graph with p  3. Then BG1(G) is 
connected. 

Proof: p  3 and G is connected implies G has at least two edges. Hence, in BG1(G) every 
line vertex is adjacent to some point vertex. Hence, G is connected implies BG1(G) is also 
connected. 

 

 

G/G/Kp/Kp 

       Incident (INC)/ 
Non-incident (NINC) 

  

L(G)/L(G)/Kq/Kq 
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Theorem 2.1 BG1(G) is disconnected if and only if G = K2, 2K2, nK1 and K2  nK1. 
Proof: Let BG1(G) be a disconnected graph. If G has more than two edges, then BG1(G) is 
connected. Hence, BG1(G) is disconnected implies G has at most two edges. Therefore, there 

are two possibilities. Clearly, for q = 1, G = K2 or K2  nK1 and for q = 2, G = 2K2 or            

2K2  nK1. If G has at least two edges which are adjacent or if p > 4, q  2, then BG1(G) is 

connected. Therefore, G = K2, 2K2, K2  nK1. Proof of the converse is obvious. 

Theorem 2.2 Let G be a connected (p, q) graph such that BG1(G) is connected. If BG1(G) 
has a cut point, then it is a point vertex only. 
Proof: Let x be a cut vertex of BG1(G). Suppose x is not a point vertex, then x is a line vertex 
of BG1(G). x is a cut vertex implies that there exists two vertices u and v such that every 

path connecting u and v must contain x. Let a path connecting u and v be u = u1 u2 … ui1 

x ui+1 … un = v.  Since x is a line vertex, ui1, ui+1 must be point vertices and in G, x is not 

incident with ui1 and ui+1. Since G is connected there is at least one path joining ui1 and 

ui+1 in G. Let it be ui1 v1 … vk ui+1. Then u = u1 u2 … ui1 v1 v2 … vk ui+1 ... un is a path in 
BG1(G) not containing the vertex x. This is a contradiction to our assumption. Therefore, x 
must be a point vertex.  

Theorem 2.3 Let G and BG1(G) be connected graphs. Then BG1(G) has a cut vertex if and 
only if G = K3 or K1,2. 
Proof: Assume BG1(G) has a cut vertex. By the previous proposition, this cut vertex is a 
point vertex.  Suppose G is a connected graph having more than three vertices. Then two 
vertices in BG1(G) are connected by more than one path. That is BG1(G) is two connected. 
Therefore, G must contain at most three vertices if BG1(G) has a cut point. Hence, G = K3 
or K1,2 as G and BG1(G) are connected. 

Remark 2.1 If q  3, then BG1(G) is two connected. If G is connected and p  4, then 
BG1(G) is two connected. Let G be a graph with at least two adjacent edges, then BG1(G) is 

connected. If G = 2K2  K1, then BG1(G) has a cut point. 

Proposition 2.2 Let G be a (p, q) graph. Then (BG1(G))  (BG1(G))  min {p2, q} 

Proof: By Theorem 1.1, (BG1(G))  (BG1(G))  (BG1(G)), Hence,                     

(BG1(G))  (BG1(G))  min {p2, q}. 

Lemma 2.1 Let G be a connected graph. Then in BG1(G) any two point vertices are 

connected by at least p2 edge disjoint paths. 
Proof: Take any two point vertices x and y in BG1(G). 
Case 1: x and y are adjacent in G. 
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Assume that x and y have k common adjacent vertices in G. Denote them by v1, v2, v3, ..., 
vk. Then there are k+1 paths containing point vertices, namely, x y; x vi y; i = 1, 2, 3, ..., k. 

Among the remaining pk2 point vertices let u1, u2, ..., um be not adjacent to both x and 

y in G. Then there exists at least m1 distinct edges ei in G not incident with x and y (since 

G is connected). Thus, x ei y, i = 1, 2, ..., m1 is a path in BG1(G). Now, BG1(G) has               

pk2m remaining point vertices. Among these, some may be adjacent to x and others 
adjacent to y in G. Suppose, u is adjacent to x and not to y in G, then x u ex y, where ex = 

xv1  E(G) is a path in BG1(G), otherwise y u ey x, where ey = yv1  E(G) is a path in 

BG1(G). Thus, in this way, there are  pk2m edge disjoint paths joining x and y in 

BG1(G). Therefore, totally there are at least k+1+m1+ pk2m = p2 edge disjoint 
paths joining x and y in BG1(G). 
Case 2: x and y are not adjacent in G. 
As in case 1, the result can be proved. 

Lemma 2.2 Let G be a connected graph. Then in BG1(G) any two line vertices are connected 

by at least p2 edge disjoint paths. 

Proof: Let x, y be two line vertices of BG1(G). In G, there are at least p4 vertices not 

incident with both the edges x and y. Thus, there are p4 edge disjoint paths x v y in BG1(G). 
Case 1: x and y are adjacent in G. 

Let x = uv1 and y = uv2  E(G). Now, x v2 v1 y (if v2 and v1 are adjacent in G) or x v2 u v1 y 

is a path in BG1(G). Also, since p  4 there exists another vertex v3 such that x v3 y is a path 

in BG1(G). Thus, totally there are at least p2 edge disjoint paths joining x and y in BG1(G). 
Case 2: x and y are not adjacent in G. 

Let x = u1v1 and y = u2v2  E(G). Now, x v2 ... u1 y (or x v2 ... v1 y or x u2 ... v1y or x u2 ... u1 

y) is a path in BG1(G), where v2 ... u1 is a path in G. Also, since G  2K2  mK1 there exists 
at least one more edge e in G. Hence, if e = u1v2, x u2 e v1 y is a path in BG1(G). Thus, there 

are at least p2 edge disjoint paths joining x and y in BG1(G). In all other cases, that is, if e 
= uv for u, v in V(G) also, the same result is true.  This proves the lemma. 

Lemma 2.3 Let G be a connected graph and let u  V(G) and e  E(G). Then in BG1(G), 

e and u are connected by at least p2 edge disjoint paths. 
Proof: 
Case 1: e is incident with u in G. 

Let e = uv  E(G). In BG1(G), e and u are not adjacent. Let degG u = m in G. Then there 

are m1 paths of length two from u to e in BG1(G) (such as u ui e). Since G is connected,   
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p  p1. Hence, there are at least pm1 edges not incident with u, pm1 vertices not 

adjacent to u in G. So there are at least pm1 line vertices adjacent to u in BG1(G). Hence, 

there are pm1 paths such as u ei vj e in BG1(G). Thus, totally there are at least                  

(m1)+(pm1) = p2 paths (edge disjoint) joining u and e in BG1(G). 
Case 2: e is not incident with u in G. 

In this case, e u is a path and there are at least m2 paths u ui e such that there are m1 
paths of length one or two joining u and e in BG1(G). So as in the previous case, the result 
can be proved. This proves the lemma. 

Theorem 2.4 If G is a connected graph, then (BG1(G)) = p2 = (BG1(G)). 

Proof: By Lemmas 2.1, 2.2 and 2.3 (BG1(G))  p2. From Proposition 2.2,            

(BG1(G))  (BG1(G))  p2. Hence, the theorem is proved. 

Theorem 2.5 If G = G1  mK1, where G1 is connected and BG1(G) is connected and             

G1  K2, 2K2, then (BG1(G)) = min {q, p2}. 
Proof: Proof is similar to the proof of the previous theorem. 

Theorem 2.6 Let G be a disconnected graph with more than one non-trivial component. 

Then (BG1(G)) = min {q, p2} = (BG1(G)) if and only if G  K1,n  K2, 2K1,2 and             

G  2K2  nK1   
Proof: As in Lemma 2.1 and 2.2 it can be proved that in BG1(G) any two point vertices are 

connected by k = min {p2, q} edge disjoint paths and any point vertex and line vertex are 

also connected by k = min {p2, q} edge disjoint paths. Also, if e1 and e2 are two edges in 
the same component of G, then in BG1(G) they are connected by k disjoint paths. Now, take 

e1, e2 in different components of G. In BG1(G), e1 and e2 are both adjacent to p4 point 

vertices. Thus, there are p4 edge disjoint paths joining e1 and e2 in BG1(G). Consider            
e1 = u1v1 and e2 = u2v2. Any other path joining e1 and e2 in BG1(G), may contain the vertices 
u1, v1, u2,  v2, e1, e2 and no other point vertex. The paths may have the form e2 v1 e3 v2 e1; e2 u1 

e3 u2 e1; e2 u1 e4 u2 e1. (Since G  2K2, e1 and e2 are always joined by p3 edge disjoint paths 

in BG1(G).) Hence, e1 and e2 are connected by p2 edge disjoint paths in BG1(G) only when 
there is at least four edges in G with the condition that e3 is not incident with v1, v2 and e4 
is not incident with u2 and u1 or vice versa.-----I or at least three edges in G such that the 
third edge is not adjacent to both e1 and e2 in G. This is true for any two edges of G. Hence, 
G must satisfy any one of the following conditions: (1) G must have more than two non-
trivial components. (2) G may have two non-trivial components with at least three edges, 
with the condition that for any two edges there exists another edge not adjacent to both of 
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these edges. (3) G may have two non-trivial components with at least four edges satisfying 
I. (4) All the edges of G are in the same component of G. 

 Hence, (BG1(G)) = min {q, p2}, only when q  p3 or G satisfies the above 

conditions. That is G  K1,n  K2, 2K1,2 or 2K2  nK1. 

Remark 2.2 (1) When G = K1,n  K2 , BG1(G) is p3 connected. If G = 2K2  nK1, BG1(G) 

is q1 connected.  

(2) When BG1(G) is  connected and q = p2, BG1(G) is super--graph and super                 

 -graph.  

(3) If G = G1  mK1, where G1 is a connected graph on more than two vertices and                   

q = p2, then BG1(G) is super--graph and super-  -graph. 

Next, connectivity ofBG1(G) can be studied. 

Proposition 2.3  (BG1(G)) = min {p1, q+1}  (BG1(G)).   

Proof:  From Theorems 1.1, and 1.2,  (i) (G)  (G)  (G).  

(ii) If G is a graph of diameter two, then (G) = (G). 

(iii) If G has p points and (G)  [p/2], then (G) = (G). ConsiderBG1(G). InBG1(G), 

degree of a point vertex is p1, degree of a line vertex is q+1 andBG1(G) is always of 

diameter two. Hence, (BG1(G)) = (BG1(G)) = min{p1, q+1}. Therefore,                    

min {p1, q+1}  (BG1(G)).   

Remark 2.3 When G = K2,BG1(G) = K1,2 and hence (BG1(G)) = 1, otherwise 

(BG1(G))  2.  

Proposition 2.4BG1(G) has a cut point if and only if G = K2. 
Proof: Follows from Remark 2.3.  

Theorem 2.7 Let G be a (p, q) graph. Then (BG1(G)) = min {p1, q+1} = (BG1(G)).   

Proof: As in Theorem 2.4, it can be proved that (BG1(G))  min {p1, q+1}. Hence, by 

Proposition 2.3, (BG1(G)) = min{p1, q+1} = (BG1(G)).  
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3. Traversability of BG1(G) andBG1(G) 

In this section, traversability properties of the graphs BG1(G) andBG1(G) are discussed. 

First theorem gives the characterization for BG1(G) andBG1(G) to be Eulerian. 

Theorem 3.1 Let G be a (p, q) graph. Then (1) BG1(G) is Eulerian if and only if p and q are 

even. (2)BG1(G) is Eulerian if and only if p and q are odd. 

Proof of (1): If BG1(G), degree of  point vertex is q and degree of a line vertex is p2. Hence, 

BG1(G) is Eulerian if and only if p2 and q are even that is p and q are even. 
Proof of (2):  Similar to that of (a).  

Now, the properties of BG1(G) related to Hamiltonian graphs are studied. 

Proposition 3.1 If BG1(G) is Hamiltonian, then q  p.  
Proof: In BG1(G), every line vertex is adjacent to point vertices only and no two line vertices 

are adjacent. Hence, if BG1(G) is Hamiltonian, then q  p. 

Proposition 3.2 (1) BG1(K1,n) is not Hamiltonian.  
(2) BG1(K1,n+x) is not Hamiltonian. 
Proof: Let G = K1,n, then BG1(G) has n+1 point vertices and n line vertices and in BG1(G), 
the central vertex of G is not adjacent to any line vertices. Similarly, in BG1(K1,n+x), p = n+1, 
q = n+1 and the central vertex of G is adjacent to only one line vertex x only. Hence, BG1(G) 
is not Hamiltonian. 

Proposition 3.3 Let G be a graph with r(G) = 1, then BG1(G) is not Hamiltonian. 

Proof: Let G be a (p, q) graph with r(G) = 1. If BG1(G) is Hamiltonian, then q  p. 

Therefore, G must have p or p1 edges and since r(G) = 1, G = K1,n or K1,n+x. But, by the 
previous proposition BG1(K1,n) and BG1(K1,n+x) are not Hamiltonian.  This proves the result. 

Next theorem gives the necessary and sufficient condition for BG1(G) to be 
Hamiltonian. 

Theorem 3.2 Let G be a connected (p, q) graph with p  4 and r(G) > 1. Then BG1(G) is 

Hamiltonian if and only if q  p, that is, if q = p or p1. 

Proof: Suppose BG1(G) is Hamiltonian, q  p by Proposition 3.1. 

 On the other hand, Let r(G) >1 and q  p. Let us prove the theorem by induction 
on p. When p = 4, since G is connected, q = 3 or 4. When q = 4, G = C4 and clearly BG1(C4) 
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is Hamiltonian. When q = 3, G = P4 and BG1(P4) is also Hamiltonian. For p > 4, assume 

that the result is true for every G, with p1 vertices, r(G)  2 and q  p1. 

 Now, consider a graph G, connected with p vertices, r(G) > 1 and q = p or p1. 

Since q = p or p1, any one of the following is true. (1) G is a cycle (2) G is uni-cyclic. (3) 
G is a tree. 
Case 1: G is  a cycle. 
When G is a cycle Cn, all the vertices of BG1(G) lie on C2n. Hence, BG1(G) is Hamiltonian. 
Case 2: G is uni-cyclic. 

In this case, G has at least one pendant vertex. Remove that pendant vertex vp  V(G) such 

that vp is adjacent to vp1 and degree vp1 is maximum. Let ep =  vp1vp  E(G). The new 

graph G1, obtained has p1 vertices and p2 or p1 edges and r(G1) > 1 or                               

G1 = K1,n+x, n = p2. 
 If r(G1) > 1, then BG1(G1) is Hamiltonian by induction. Therefore, BG1(G1) has a 

cycle involving v1, v2, …, vp1, and e1, e2, …, eq1. Since vp is a pendant vertex it is not 

adjacent to v1, v2, …, vp2, and e1, e2, …, eq1 are not incident with vp. Hence, replace the 

path in the cycle involving vs ea vt eb by vs ep vt ea vp eb. Thus, a Hamiltonian cycle 
in BG1(G) is obtained. 
 If G1 = K1,n+x, clearly BG1(G) is Hamiltonian. 
Case 3: G is a tree. 
In this case, G has at least two pendant vertices. So as in the previous case, remove a pendant 

vertex and obtain G1, which is a tree with r(G1) > 1 or G1 = K1,p1. If r(G1) > 1, it can be 

proved that BG1(G) is Hamiltonian as in the previous case and if G1 = K1,p1, then BG1(G) 
is clearly Hamiltonian. This proves the theorem. 

Next theorem proves thatBG1(G) is Hamiltonian when G  K2. 

Theorem 3.3 Let G be a (p, q) graph with p  3, thenBG1(G) is Hamiltonian. 

Proof: Degree of a point vertex is p1 and line vertex is q+1 inBG1(G).  Consider any two 

non-adjacent vertices inBG1(G). Suppose these vertices are point vertex u and another 

line vertex e. Then deg u = p1 and deg e = q+1 inBG1(G). Hence, deg u+deg e = p+q, 

number of vertices inBG1(G). Join these two vertices, again consider a point vertex with 

degree p1 and line vertex with degree q+1 which are not adjacent inBG1(G) and join 
them. Proceeding like this, a new graph which contains Kp,q as a spanning subgraph is 
obtained.--(A).   

 In this new graph, consider any two point vertices; they are of degree  q. 
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Case 1: G  Kn 

Then there exist point vertices u and v not adjacent such that deg u+deg v  p+q. Join 

u and v. Proceeding in this way, a complete graph Kp+q is obtained. Hence,BG1(G) is 
Hamiltonian. 

Case 2: G = Kn for n  3. Then q = n(n1)/2  n. From step (A), the new graph obtained 

is Hamiltonian. Hence, when p  3,BG1(G) is Hamiltonian by Theorem 1.8. 

Conclusion 
  Maximum connectivity graphs play an important role in the design of reliable 
networks. A reason for this is its relation to the reliability and vulnerability of large-scale 
computer and telecommunication networks. When designing a communication network, 
one not only wants to maximize the connectivity and edge-connectivity, but also to 
minimize the diameter as well as the number of edges. By minimizing the diameter, 
transmission times are kept small and the possibility of distortion due to a weak signal is 
avoided. Minimizing the number of edges will keep down the cost of building the network. 

In general one cannot simultaneously maximize  and  while minimizing |E(G)| and 

diam(G). Let G be a connected graph with p vertices and q edges. Consider H = G  tK1 

such that q = p+t2. So, BG1(H) is q regular and is q connected such that G is an induced 
subgraph of BG1(H). Hence these Boolean graphs can be treated as reliable networks. In 
Management and in social networks, the incident and non-incident relations of vertices and 
edges are used to define various networks. So these are very much applicable in                 
socio-economical problems. 

Other properties such as edge partition and domination parameters of BG1(G) are 
studied and submitted. 
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