International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 6, No. 2, April – June 2015, pp. 28 - 40

Domination Numbers on theBoolean Function Graph $B(K_p, INC, K_q)$ of a Graph

 $\mathrm{T}.$ $\mathrm{N}.$ Janakiraman $^{\mathrm{l}}$ and $\mathrm{S}.$ Muthammai $^{\mathrm{2}}$

1 National Institute of Technology, Tiruchirappalli – 620 015, India. E. Mail: *janaki@nitt.edu, tnjraman2000@yahoo.com 2 Government Arts College for Women, Pudukkottai- 622 001, India.* E. Mail: *muthammai.sivakami@gmail.com*

Abstract: *For any graph* G*, let* V(G) *and* E(G) *denote the vertex set and edge set of* G *respectively. The Boolean function graph* $B(K_n, \text{INC}, K_q)$ *of G is a graph with vertex set* $V(G) \cup E(G)$ *and two vertices in* $B(K_{\alpha}, \text{INC}, K_q)$ are adjacent if and only if they correspond to two adjacent vertices of G*, two nonadjacent vertices of G or to a vertex and an edge incident to it in* G*, For brevity, this graph is denoted by* $B_4(G)$ *In this paper, various domination numbers of* $B_4(G)$ *are determined.*

Key Word: *Boolean Function Graph, domination number*

1. Introduction

l

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A vertex and an edge are said to cover each other if they are incident. A set of vertices which covers all the edges of a graph is called a point cover for G, while a set of edges which covers all the vertices is a line cover. The smallest number of vertices in any point cover for G is called a point covering number and is denoted by $\alpha_{0}(G)$ or α_{0} . Similarly, $\alpha_{1}(G)$ or α_{1} is the smallest number of edges in any line cover of G and is called its line covering number. A set of vertices in G is independent if no two of them are adjacent. The largest number of vertices in such a set is called the point independence number of G and is denoted by $\beta_0(G)$ or β_0 . Analogously, an independent set of edges of G has no two of its edges adjacent and the maximum cardinality of such a set is the line independence number $\beta_1(G)$ or β_1 . A set of independent edges covering all the vertices of a graph G is called *perfect matching*. An edge $e = (u, v)$ is a *dominating edge* in a graph G, if every vertex of G is adjacent to at least one of u and v, where u, $v \in V(G)$.

 The concept of domination in graphs was introduced by Ore [25]. A set $D \subseteq V(G)$ is said to be a *dominating set* of G, if every vertex in $V(G)$ –D is adjacent to some vertex in D. D is said to be a minimal dominating set if $D-\{u\}$ is not a dominating set, for any $u \in D$. The *domination number* $\gamma(G)$ of G is the minimum cardinality of a

Received: 11 January, 2015; Revised: 25 March, 2015; Accepted: 18 April, 2015

dominating set. We call a set of vertices a γ - set, if it is a dominating set with cardinality $\gamma(G)$. Different types of dominating sets have been studied by imposing conditions on dominating sets. A dominating set D is called a *connected (independent) dominating* set, if the induced subgraph <D> is connected [29] (independent) . D is called a total dominating set, if every vertex in V(G) is adjacent to some vertex in D [2]. By γ_c^2 , γ_i^2 and γ_t^2 , we mean the minimum cardinality of a connected dominating set, independent dominating set and total dominating set respectively.

Sampathkumar and Pushpalatha [28] introduced the concept of point-set domination number of a graph. A set $D \subseteq V(G)$ is called a *point-set dominating set* (psdset), if for every set $T \subseteq V(G) - D$, there exists a vertex $v \in D$ such that the subgraph $\langle T \cup \{v\} \rangle$ induced by $T \cup \{v\}$ is connected. The point-set domination number $\gamma_{\text{ns}}(G)$ is the minimum cardinality of a psd-set of G. Kulli and Janakiram introduced the concept of split [23] and nonsplit [24] domination in graphs. A dominating set D of a connected graph G is a *split* (non-split) dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is disconnected (connected). The split (non-split) domination number $\gamma_{s}(G)$ ($\gamma_{ns}(G)$) of G is the minimum cardinality of a split (non-split) dominating set. Sampathkumar $[26]$ introduced the concept of global domination in graphs. Kulli and Janakiram [22] introduced the concept of total global domination in graphs. Pushpalatha [26] introduced the concept of global point-set domination in graphs.

 A dominating set of G is a *global dominating set* [27], if it is a dominating set of both G and its complement G For a co-connected graph $G = (V, E)$, a set $D \subset V(G)$ is said to be a *global point set dominating set* [26], if it is a psd-set of both G and G . The *global domination number* $\gamma_g(G)$ of G *is* defined as the minimum cardinality of a global dominating set. The *total global dominating number* $\gamma_{t_0}(G)$ of G and *global point set domination number* $\gamma_{\rho\rho}(G)$ of G is defined similarly.

Using L(G), the line graph of G, G, incident and non-incident, complementary operations, complete and totally disconnected structures, thirty-two graph operations can be obtained. As already total graphs, semi-total edge graphs, semi-total vertex graphs and quasi-total graphs and their complements (8 graphs) are defined and studied, Janakiraman, Muthammai and Bhanumathi [7 – 21] studied all other similar remaining graph operations and called as Boolean Function and Boolean Graphs.

The *Boolean Function graph* $B(K_n, INC, K_q)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B(K, JNC, K_q)$ are adjacent if and only if they correspond to two adjacent vertices of G, two nonadjacent vertices of G or to a vertex and an edge incident to it in G. For brevity, this graph is denoted by $B_4(G)$. In this paper,

various domination numbers for the graph $B₄(G)$ are determined. For graph theoretic terminology, Harary [4] is referred.

2. Prior Results

In this section, we list some results with indicated references, which will be used in the subsequent main results. Let G be any (p, q) graph.

Theorem 2.1.[28]

Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is a point-set dominating set of G if and only if for every independent set W in V-S, there exists a vertex u in S such that $W \subseteq N_c(u) \cap (V - S)$.

Theorem 2.2. [22]

 A total dominating set T of G is a total global dominating set if and only if for each vertex $v \in V$, there exists a vertex $u \in T$ such that v is not adjacent to u.

Theorem 2.3.[26]

For a graph G, a set $S \subseteq V(G)$ is a global point-set dominating set if and only if the following conditions are satisfied.

(i). For every independent set W in V-S, there exists u in S such that $W \subseteq N_c(u) \cap (V - S)$ in G; and

(ii). For every set $D \subseteq V - S$ such that <D> is complete in G, there exists v in S such that $D \cap N(v) = \phi$ in G.

Observation 2.4.[21]

- 1. K is an induced subgraph of $B_4(G)$ and the subgraph of $B_4(G)$ induced by q vertices is totally disconnected.
- 2. Number of vertices in $B_4(G)$ is p + q, since $B_4(G)$ contains vertices of both G and the line graph L(G) of G.

3. Number of edges in B₄(G) is
$$
\left(\frac{p(p-1)}{2}\right) + 2q
$$

- 4. For every vertex $v \in V(G)$, $d_{R(G)}(v) = p 1 + d_G(v)$
	- (a). If G is complete, then $d_{B_4(G)}(v) = 2(p 1)$.
	- (b). If G is totally disconnected, then $d_{B_n(G)}(v) = p 1$.
	- (c). If G has at least one edge, then $2 \le d_{B(G)}(v) \le 2(p 1)$

```
and d_{B_+(G)}(v) = 1 if and only if G \cong 2K_1.
```
5. For an edge $e \in E(G)$, $d_{B(G)}(e) = 2$. $B_4(G)$ is always connected.

3. Main results

Domination, Connected and Total domination numbers in $B_4(G)$ **.**

In the following, the graphs G for which the domination number $\gamma(B_4(G))$ is 1 or 2 are found.

It is to be noted that $V(B_4(G)) = V(G) \cup V(L(G))$

Observation 3.1.

 $\gamma(\mathsf{B}_{4}(\mathsf{G})) = 1$ if and only if $G \cong nK_1, K_{1,m}$ or $nK_1 \cup K_{1,m}$, $n,m \geq 1$.

Theorem 3.1.

For any graph G, $\gamma(B_4(G)) = 2$ if and only if there exists a point cover of G containing two vertices.

Proof:

Let D be a dominating set of $B_4(G)$ such that $|D| = \gamma(B_4(G))$. Let $D = \{u, v\}$, where $u, v \in V(B_4(G))$

Case (1): $u, v \in V(G)$

Then $D \subseteq V(B_4(G)) \cap V(G)$ and $V(B_4(G))$ – D contains vertices in V(G) – D and the vertices corresponding to the edges of G.

Let $x \in V(B_4(G))$ be a vertex corresponding to an edge, say e in G. Then e must be incident with a vertex in D. That is, each edge in G is incident with a vertex in D. Therefore, D is a point cover of G.

Case (2): $u \in V(G)$ and $v \in V(L(G))$

Then all the vertices in $V(B_4(G)) - D$ are adjacent to atleast one of u and v. Since, vertices of L(G) in V($B_4(G)$) are independent, a vertex of L(G) in V($B_4(G)$) – D is adjacent to u only. That is, each edge in G is incident with a vertex in D. Therefore, D is a point cover of G.

Case (3): $u, v \in V(L(G))$

In this case, $G \cong 2K_2$.

From Case (1) to Case (3), D is a point cover of G.

Conversely, let there exist a point cover D of G such that $|D|=2$. Then D is a dominating set of $B_4(G)$. Since, $\gamma(B_4(G)) \neq 1$, $\gamma(B_4(G)) = 2$.

In the following, relationships between $\gamma(B(G))$ and point covering number of G is found.

Theorem 3.2.

For any graph G, $\gamma(B(G)) = \alpha_0(G)$.

Proof:

 Let D be a minimum point cover of G. Then D covers all the edges of G. Therefore, $D \subseteq V(B(G))$ dominates all the vertices in B₄(G) corresponding to the edges in G. Also, since any two vertices of G in $B_4(G)$ are adjacent in $B_4(G)$, D dominates the vertices in $V(G) \cap V(B_4(G))$. Hence, D is a dominating set of $B_4(G)$ and $\gamma(B_4(G)) \leq \alpha_0(G)$

Let D be a minimum dominating set of $B_4(G)$. To prove D is a point cover of $B_4(G)$. Case (1): $D \subset V(G)$

 Then D dominates all the vertices corresponding to the edges in G. That is, each edge in G is incident with atleast one vertex in D. Therefore, D is a point cover of G. **Case** (2): $D \subseteq V(L(G))$

Let $D_1 = \{v \in V(G): v \text{ is incident an edge corresponding to a vertex in } L(G)\}.$ Then D_1 is a point cover of G.

Case (3):
$$
D \subseteq V(G) \cup V(L(G))
$$

Let D_1 be the set defined as in Case 2 and D_2 be the of vertices in $D \cap V(G)$. Then $D_1 \cup D_2$ is a point cover of G.

From Case (1) to Case (3), $\alpha_0(G) \le \gamma(B_4(G))$.

Hence, $\gamma(B_4(G)) = \alpha_0(G)$.

Theorem 3.3.

For any graph G, $\gamma(B_A(G)) \leq \alpha_1(G) + \alpha_0 \leq E(G) - S >$), where S is a minimum line cover of G.

Proof:

Let S be a line cover of G such that $|S| = \alpha_1(G)$. Then $S \subseteq V(G)$ Let S' be the vertices in $B_4(G)$ corresponding to the edges in S. Then S' dominates all the vertices in $V(G) \cap V(B_A(G))$. Let D be a minimum point cover of <E(G) – S>. Then $D \subseteq V(B_A(G))$ and $S' \cup D$ is dominating set of $V(B_A(G))$. Hence, $\gamma(B_4(G)) \leq \alpha_1(G) + \alpha_0 \left(\langle E(G) - S \rangle\right)$.

Remark 3.1.

- 1. If G contains no isolated vertices, then $V(L(G))$ is a dominating set of $B_4(G)$.
- 2. Any proper subset S of $L(G)$ is not a dominating set $B(G)$, since $V(L(G))$ is totally disconnected in $B_4(G)$.

Theorem 3.4.

Let G be a (p, q) graph having no isolated vertices. Then $\gamma(B_A(G)) = \beta_0(B_A(G))$ if and only if $G \cong nK_2$, $n \geq 1$.

Proof:

Assume $\mathcal{V}(B_4(G)) = \beta_0(B_4(G))$. Since G has no isolated vertices, $\beta_0(B_4(G)) = q$. Therefore, $\gamma(B_4(G)) = q$. Since any two vertices of G in B₄(G) are adjacent, each vertex in $V(G) \cap V(B_A(G))$ is adjacent to exactly one vertex in $V(L(G)) \cap V(B_A(G))$. Therefore, $deg_G(v) = 1$ for all v in G. Since G has no isolated vertices, $G \cong nK_2$, $n \ge 1$. Conversely, if $G \cong nK_2$, $n \ge 1$, then $\gamma(B_A(G)) = \beta_0(B_A(G))$.

In the following, independent domination number $\gamma_i(B_A(G))$ of $B_4(G)$ is found. **Theorem 3.5.**

Let G be any graph such that $G \neq K_{1,n}$. Then $S = \{v, e\}$, where $e \in E(G)$ is not incident with $v \in V(G)$, is an independent dominating set of B_n(G) if and only if G is one of the following graphs., $K_3, K_3 \cup nK_1, P_4, P_4 \cup nK_1, 2K_2, 2K_2 \cup nK_1$, $K_{1,n} + e, (K_{1,n} + e) \cup mK_1, K_{1,n} \cup K_2, (K_{1,n} \cup K_2) \cup mK_1$, where $m, n \ge 1$. **Proof:**

Let G be any graph such that $G \neq K_{1,n}$.

Let $S = \{v, e\}$ be an independent dominating set of $B_A(G)$, where $e \in E(G)$ is not incident with $v \in V(G)$. Since S is a dominating set of $B_4(G)$, vertex in $V(B_4(G))$ –S is adjacent to atleast one vertex in S. Since any two vertices in $B_4(G)$ corresponding to the edges of G are nonadjacent, any vertex in $B_A(G)$ corresponding to the edge of G must be adjacent to $v \in S$. That is, each edge (except e) in G is incident with $v \in V(G)$. Therefore, G is one of the graphs given in the Theorem.

Conversely, let G be one of the graphs given in the Theorem. Then $S = \{v, e\}$, where $e \in E(G)$ is not incident with $v \in V(G)$ is an independent dominating set of $B_4(G)$.

Theorem 3.6.

For any (p, q) graph G, independent domination number $\gamma_i(B_A(G)) \leq q - \Delta(G) + 1$ **Proof:**

Let v be a vertex of maximum degree in G. That is, $deg_C(v) = \Delta(G)$. Then $v \in V(B_A(G))$ is adjacent to $\Delta(G)$ vertices in B₄(G). Therefore, v dominates all the vertices of G in B₄(G) and $\Delta(G)$ vertices in B₄(G) corresponding to $\Delta(G)$ edges in G. Since any two vertices of V(L(G)) are adjacent in $B_4(G)$, $q-\Delta(G)$ vertices of L(G)

together with v form an independent dominating set of $B_4(G)$. Hence, $\gamma_i(B_\Lambda(G)) \leq q - \Delta(G) + 1$

The equality is obtained, when $G \cong K_{1,n} + e$, where e is an edge joining any two pendant vertices of $K_{1,n}$, $n \ge 2$.

In the following, global domination number of B₄(G) is found. $\overline{B}_4(G)$ denotes the complement of $B_4(G)$.

Theorem 3.7.

 Let G be a graph having no isolated vertices. Then V(G) is a global dominating set of $B_4(G)$ if and only if V(G) has atleast three vertices.

Proof:

Assume V(G) has atleast three vertices. Then V(G) is a dominating set of $B₄(G)$. Since V(G) has atleast three vertices, each vertex in V($B(G)$) – V(G) is adjacent to atleast one vertex in V(G). Therefore, V(G) is a dominating set of $\overline{B}_A(G)$. Conversely, let V(G) be a global dominating set of $B_4(G)$. If V(G) has atmost two vertices, then $G \cong K_2$. Then D is a dominating set of $B_4(G)$, but not a dominating set of $\overline{B}_4(G)$. Therefore, D has atleast three vertices.

Theorem 3.8.

Let G be a graph without isolated vertices. Then $V(L(G))$ is a global dominating set of $B_4(G)$ if and only if G is not a star.

Proof:

Let $D = V(L(G))$. Assume G is a global dominating set of $B_4(G)$ and G is a star. Let v be the center vertex of the star. Then v is in

 $V(\overline{B}_{A}(G))$ – D and v is not adjacent to any of the vertices in D, which is a contradiction. Therefore, G is not a star.

Conversely, let G be not a star. $V(\overline{B}_A(G)) - D = V(G)$. Since G is not a star, for each vertex in G, there is an edge not incident with it. That is, for each vertex in $V(\overline{B}_{A}(G))$ - D, there is at least one vertex in D adjacent to it. Therefore, D is a dominating set of $\overline{B}_A(G)$. Since G contains no isolated vertices, D is a dominating set of $B_4(G)$ and hence D is a global dominating set of $B(G)$.

Theorem 3.9.

Let G be not totally disconnected and $(u, v) \in E(G)$. Then $D = {u, v, e} \subseteq V(B₄(G))$ is a global dominating set of $B₄(G)$ if and only if each edge in G is incident with u or v. That is, eccentricity of e in L(G) is 1. **Proof:**

Let D = {u, v, e} be a global dominating set of $B_4(G)$. Since, D is a dominating set of $B_4(G)$, each vertex of $V(L(G)) \cap V(B_A(G))$ is adjacent to atleast one of u and v. That is, each edge in G is incident with u or v.

Conversely, assume each edge in G is incident with u or v. That is, eccentricity of e in L(G) is 1.Then $D = {u,v,e} \subseteq V(B_4(G))$ is a dominating set of $\overline{B}_4(G)$. It is enough to prove D is dominating set of $B(G)$. Since, eccentricity of e in $L(G)$ is 1, each edge in G is adjacent to e. Therefore, vertices in $V(B_A(G))$ - D corresponding to edges in G is adjacent to e . Also, vertices of G in V($B_4(G)$) – D is adjacent to u or v. Hence, D is a dominating set of $B_4(G)$ and D is a global dominating set of $B_4(G)$.

Theorem 3.10.

Let e_1 and e_2 be any two adjacent edges in a graph G with atleast three vertices and let u be the vertex in G common to both e_1 and e_2 . Then $D = \{e_1, e_2, u\}$ is a global dominating set of $B_4(G)$ if and only if G is a star on atleast three vertices. **Proof:**

Let D = { e_1 , e_2 , u } be a global dominating set of $B_4(G)$. Then D is a dominating set of $B₄(G)$.

Therefore, each vertex of $L(G)$ in $V(B_A(G)) - D$ is adjacent to u. That is, each edge in G is incident with u. Hence, G is a star on atleast three vertices.

Conversely, let G be a star on atleast three vertices. Let e_1 and e_2 be any two adjacent edges in G and let u be the vertex in G common to both e_1 and e_2 . Then $D = \{u, v, e\}$ is a global dominating set of $B_4(G)$.

In the following, split domination number $\gamma_{s}(B_4(G))$ of $B_4(G)$ is found.

Theorem 3.11.

For any graph G, $\gamma_s(B_4(G)) = \alpha_0(G)$ if and only if there exists a point cover D of G with $|D| = \alpha_0(G)$ such that the subgraph $\langle D \rangle$ of G induced by D is not totally disconnected.

Proof:

Let D be a point cover of G with $|D| = \alpha_0(G)$ and $e = (u, v) \in E(\langle D \rangle)$.

Then the vertex e in $B_4(G)$ is isolated in <V($B_4(G)$) – D>.

Therefore, D is a split dominating set of $B_4(G)$ and is minimum and hence $\gamma_{s}(B_4(G)) = \alpha_0(G)$ Conversely, assume $\gamma_s(B_4(G)) = \alpha_0(G)$ and D is a point cover of G with $|D| = \alpha_0(G)$. Therefore, D is a split dominating set of $B_A(G)$. Assume <D> is totally disconnected. Then each vertex in $B_4(G)$ corresponding to the edge in G is adjacent to atleast to one vertex of G in $B_4(G)$. Also, the subgraph of $B_4(G)$ induced by the vertices of G in $V(B_4(G))$ – D is complete. Therefore, $\langle V(B_4(G)) - D \rangle$ is not disconnected, which is a contradiction. Therefore, <D> is totally disconnected in G.

Theorem 3.12.

For any graph G, if D is an independent point cover of G such that $|D| = \alpha_0(G)$, then $\gamma_s(B_4(G)) = \alpha_0(G) + 1$.

Proof:

Let D be an independent point cover such that $|D| = \alpha_0(G)$. Then D is a dominating set of $B_4(G)$. Let $u \in V(G) - D$. Then u is adjacent to atleast one vertex, say v in D. Let $e = (u, v) \in E(G)$. Then $D' = D \cup \{u\}$ is a minimum split dominating set of $B_4(G)$, since the vertex in corresponding to the edge e is isolated in $\lt V(B_4(G) - D' > R)$ Therefore, $\gamma_s(B_4(G)) = \alpha_0(G) + 1$.

In the following point set domination number of $B_A(G)$ is found.

Theorem 3.13.

Let D be any subset of vertex set $V(G)$ of a graph G. Then D is a point set dominating set of $B_4(G)$ if and only if

- (a) D is a point cover for G
- (b) There exists at least one vertex $v \in D$ such that all the edges of G are incident with v.

Proof:

Let $D \subset V(G)$ be a point set dominating set of $B_A(G)$. Then D is a dominating set of $\, {\bf B}_{\scriptscriptstyle \cal A}({\bf G})\,$ and hence D is point cover of G.

Let $W = V(L(G)) \subseteq V(B_A(G))$. Then W is an independent set in

 $V(B₄(G))$ – D. Since D is a point set dominating set of $B₄(G)$, there exists atleast one vertex $v \in D$ such that all the edges of G are incident with v.

Conversely, (a) and (b) imply that, $D \subseteq V(G)$ is a point set dominating set of $B_4(G)$.

Theorem 3.14.

For any graph G,
$$
\gamma_{ps}(B_4(G)) \leq q - \Delta(G) + 1
$$
.

Proof:

Let v be a vertex in G of maximum degree and let $\{e_1, e_2, ..., e_{\Lambda(G)}\} \subseteq V(B_A(G))$

. Let D' be the set of vertices in $B₄(G)$ corresponding to the edges of G which are not incident with v. Then $|D'| = q - \Delta(G)$ and $D' \cup \{v\}$ is a point set dominating set of $B_4(G)$. Hence, $\gamma_{ps}(B_4(G)) \leq q - \Delta(G) + 1$.

Remark 3.2.

\n- a.
$$
D' \cup \{v\}
$$
 is also an independent dominating set of $B_4(G)$.
\n- b. $\gamma_{ps}(B_4(G)) = q - \Delta(G) + 1$, if $G \cong K_{1,n}, K_{1,n} \cup nK_1, n \geq 2$, $K_{1,n} + x, (K_{1,n} + x) \cup nK_1, n \geq 2$, where $x \in E(G)$.
\n- c. $\gamma_{ps}(B_4(G)) = \alpha_0(G)$ if $G \cong K_{1,n}, n \geq 2$.
\n

In the following, global point set domination number of $B_4(G)$ is found.

Theorem 3.15.

 For any graph G, if radius of L(G) is atleast 2, then global point set domination number $\gamma_{pg}(B_q(G)) \leq q - \Delta(G) + 3$

Proof:

Let v be a vertex of maximum degree in G and let $e = (u, v)$ be an edge in G incident with v. Let D' be the set of vertices in $B_4(G)$ corresponding to the edges which are incident with v in G and let e^* be the vertex in $B_4(G)$ corresponding to e in G. Then $D = {u,v,e^*} \cup D'$

is a point set dominating set of $B_4(G)$.

Let $S \subseteq V(B_4(G)) - D$ be such that The subgraph <S> induced by S is complete in V($B_{4}(G)$) - D.

- (a) Let S contain vertices of G. Then $e^* \in D$ is not adjacent to any of the vertices in S.
- (b) Let S contain a vertex of G and a vertex of $L(G)$. Since radius of L(G) is atmost 2, there exists a vertex in D corresponding to an edge in G, not adjacent to any of the vertices in S. These are the only possibilities that <S> to be complete in

Domination Numbers on the Boolean Function Graph $B(K_n, INC, \overline{K}_q)$ of a Graph 38

 $V(B_4(G))$ - D. Therefore, D is a global dominating set of $B_4(G)$. Hence, $\gamma_{pg}(B_4(G)) \leq q - \Delta(G) + 3$

Acknowledgement: The second author is grateful to the University Grants Commission for the financial support. (No. F. MRP-5166/14(SERO/UGC), March 2014)

References:

- [1] J. Akiyama, T. Hamada and I. Yoshimura, Miscellaneous properties of Middle graphs, Tru. Math., Vol. 10 (1974), 41-52.
- [2] M. Behzad and G. Chartrand, Total graphs and Traversability, Proc. Edinburgh Math. Soc., 15 (1966), 117-120.
- [3] S. B. Chikkodimath and E. Sampathkumar, Semi total graphs-II, Graph Theory Research Report, Karnatak University, No. 2, (1973), 5 – 8.
- [4] F. Harary, Graph Theory, Addison- Wesley, Reading Mass, (1972).
- [5] T. Hamada and I. Yoshimura, Traversability and connectivity of the Middle graph of a graph, Discre. Math., 14 (1976), 247-256.
- [6] T. N. Janakiraman, (1991), Line graphs of the geodetic graphs, Ph.d. Thesis, Madras University, Tamil Nadu, India.
- [7] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
- [8] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.2, 135-151.
- [9] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.
- [10] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Global Domination and Neighborhood numbers in Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 231-246.
- [11] T.N. Janakiraman, M. Bhanumathi, S. Muthammai, Edge Partition of the Boolean graph $BG_1(G)$, Journal of Physical Sciences, Vol.12, 2008, pp 97-107.
- [12] T.N. Janakiraman, S. Muthammai, M. Bhanumathi, On the Complement of the Boolean function graph $B(K_n, NINC, L(G))$ of a graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 1, No.2, pp. 45-51, 2010.
- [13] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Domination Numbers on the Boolean Function Graph $B(K_n, NINC, L(G))$ of a graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.1, pp. 11-24, 2011.
- [14] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph $B(K_n, NINC, L(G))$ of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.2, pp. 66 -76, 2011.
- [15] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, Global Domination and Neighborhood Numbers in Boolean Function Graph $B(K_n, NINC, L(G))$ of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.3, pp. 110 -117, 2011.
- [16] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, On the Boolean graph $BG₂(G)$ of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 3, No.2, pp. 93 -107, 2012.
- [17] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Domination parameters of the Boolean graph BG₂(G) and its complement, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 3, No.3, pp. 115 -135, 2012.
- [18] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, On the Boolean Function Graph $B(K_p, NINC, L(G))$ of a Graph, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.3, pp. 142 -151, 2012.
- [19] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, On the complement of the Boolean Function Graph $B(K_n, NINC, L(G))$ of a Graph", Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 4, No.1, pp. 1 -18, 2013.
- [20] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentricity properties of Boolean graphs $BG₂(G)$ and $BG₃(G)$ and its complement, Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 4, No.2, pp. 32 - 42 , 2013.
- [21] T.N. Janakiraman and S. Muthammai, On the Boolean Function Graph $B(K_p, INC, Kq)$ of a Graph, Submitted to Int. J. of Engineering Science, Advanced Computing and Bio-Technology.
- [22] V. R. Kulli and B. Janakiram, The total global domination number of a graph, Indian J. pure appl. Math., 27 (6): 537-542, June 1996.
- [23] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York, XXXII, New York, Academy of Sciences, pp. 16-19, 1997.
- [24] V. R. Kulli and B. Janakiram, The non split domination number of a graph, Indian J. pure appl. Math., 31 (5): 545-550, May 2000.
- [25] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, (1962).
- [26] L. Pushpalatha, The Global point-set domination number of a graph, Indian J. pure. Appl. Math., 20 (1): 1997, 47-51.
- [27] E. Sampathkumar, The global domination number of a graph, J. Math. Phy. Sci., 23 (5), 1989.

Domination Numbers on the Boolean Function Graph $B(K_n, INC, \overline{K}_q)$ of a Graph 40

- [28] E. Sampathkumar and L. Pushpalatha, Point-set domination number of a graph, Indian J. pure appl. Math., 24 (4): (1993), 225-229.
- [29] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, Math.Phys. Sci., 13 (6), (1979), 607-613.
- [30] D.V.S. Sastry and B. Syam Prasad Raju, Graph equations for Line graphs, Total graphs, Middle graphs and Quasi-total graphs, Discrete Mathematics, 48(1984), 113-119.