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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 

Boolean function graph )K,INC,K(B qp  of G is  a   graph  with    vertex   set   V(G)E(G)  and    

two  vertices  in )K,INC,K(B qp are adjacent if and only if they correspond to two adjacent vertices of 

G, two nonadjacent vertices of G or to a vertex and an edge incident to it in G, For brevity, this graph 
is denoted by )(4 GB . In this paper, structural properties of )(4 GB  including traversability and 

eccentricity properties are studied. Further, decomposition of )G(B4  for some known graphs are given. 
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1. Introduction   

  
 Graphs discussed in this paper are undirected and simple. For a graph G, let V(G) 

and E(G) denote its vertex set and edge set respectively. Eccentricity of a vertex uV(G) is 

defined as eccG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance between u and 
v in G. We denote the eccentricity of vertex v in G as e(v) and the distance between two 
vertices u, v in G as d(u, v). The minimum and maximum eccentricities are the radius and 
diameter of G, denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is called 
a self-centered graph with radius r, equivalently G is r-self-centered. A vertex u is said to 
be an eccentric point of v in a graph G, if d(u, v) = e(v). In general, u is called an eccentric 
point, if it is an eccentric point of some vertex. The ith neighborhood of v is denoted as 

Ni(v) ={uV(G) : dG(u ,v) = i} the cardinality of the set H is denoted as H . If )v(N )v(e  

is m, for each point vV(G), then G is called an m- eccentric point graph. If m = 2, we call 
the graph G as bi-eccentric point graph. A connected graph G is said to be geodetic, if a 
unique shortest path joins any two of its vertices.  The graph G with p vertices and q edges 
is denoted by G(p, q). 
 Whitney[22] introduced the concept of the line graph L(G) of a given graph G in 
1932. The first characterization of line graphs is due to Krausz. The Middle graph M(G) of 
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a graph G was introduced by Hamada and Yoshimura[5]. Chikkodimath and 
Sampathkumar[3] also studied it independently and they called it, the semi-total graph 
T1(G) of a graph G. Characterizations were presented for middle graphs of any graph, 
trees and complete graphs in [1]. The concept of total graphs was introduced by Behzad[2] 
in 1966. Sastry and Raju[21] introduced the concept of quasi-total graphs and they solved 
the graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. 
These graphs are very much useful in the construction of various related networks from 
the underlying graphs of networks. This motivates us to define and study other graph 
operations. Janakiraman et al., introduced the concepts of Boolean and Boolean function 
graphs [6 - 20].  
 The points and edges of a graph are called its elements. Two elements of a graph are 
neighbors, if they are either incident or adjacent. The Total graph T(G) of G has vertex set 
V(G)E(G) and vertices of T(G) are adjacent, whenever they are neighbors in G. The 
Quasi- total graph P(G) of G is a graph with vertex set as that of T(G) and two vertices are 
adjacent if and only if they correspond to two nonadjacent vertices of G or to two adjacent 
edges of G or to a vertex and an edge incident to it in G. The Middle graph M(G) of G is 
one whose vertex set is as that of T(G) and two vertices are adjacent in M(G), whenever 
either they are adjacent edges of G or one is a vertex of G and the other is an edge of G 

incident with it. Clearly, E(M(G)) = E(T(G))  E(G). 

The Boolean function graph )K,INC,K(B qp  of G is a graph with vertex set )G(E)G(V   

and two vertices in )K,INC,K(B qp are adjacent if and only if they correspond to two 

adjacent vertices of G, two nonadjacent vertices of G or to a vertex and an edge incident to 
it in G. For brevity, this graph is denoted by )G(B4 . In this paper, the properties of the 

Boolean function graph )G(B4 are studied. Also decompositions of )G(B4 for some known 
graphs are given. For graph theoretic terminology, Harary [4] is referred. 
 

2. Properties 
 In this section, properties of )G(B4  including traversability, eccentricity properties 
are studied, where G is a graph with p vertices and q edges.  
Observation:  
2.1. pK  is an induced subgraph of )G(B4 and the subgraph of )G(B4  induced by q  

vertices is totally disconnected. 
2.2. Number of vertices in )G(B4 is p + q, since )G(B4  contains vertices of both G and 
the line graph L(G) of G. 

2.3. Number of edges in )G(B4 is q2
2

)1p(p
  





 
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2.4. For every vertex vV(G), )v(d )G(B4
  = p – 1 + )v(dG  

 (a). If G is complete, then )v(d )G(B4
 = 2( p – 1). 

 (b).  If G is totally disconnected, then )v(d )G(B4
 = p – 1. 

 (c). If G has atleast one edge, then 2 )v(d )G(B4
  2(p - 1)  and )v(d )G(B4

 = 1      

if and only if 12K  G . 

2.5. For an edge eE(G), )e(d )G(B4
 = 2.  

2.6. )G(B4  is always connected. 

2.7. If G is a graph with atleast three vertices, then each vertex of )G(B4 lies on a triangle 

and hence girth of )G(B4  is 2. 

2.8. If G is a graph with atleast four vertices and atleast one edge, then )G(B4  is bi-regular 
if and only if G is regular and G is regular if and only if G is totally disconnected. 
2.9. If G is a graph with atleast three vertices, then )G(B4 have no cut vertices. 

2.10.  If G has atleast one edge, then vertex connectivity of )G(B4  = edge connectivity 

of )G(B4  = 2. 

2.11. Let G be a (p, q) graph with atleast one edge. If p is odd, then )G(B4 is Eulerian if 
and only if G is Eulerian. 
2.12.  If G is r-regular ( 1r   and is odd), then )G(B4  is Eulerian. 

2.13.  For any graph G, )G(B4 is geodetic if and only if G is either 2K  or n 1K , 2n  . 

2.14.  If G is a graph with atleast four vertices, then )G(B4 is 4P - free. 
  
 In the following, a necessary and sufficient condition for )G(B4  to be Hamiltonian is 
given. 
Theorem 2.1.   
 For   any graph G, )G(B4 is Hamiltonian if and only if 
(i) G is  a path or a cycle on atleast three vertices 
(ii) Each component of )G(B4   is 1K , 2K  or 3m,Pm       
Proof.  
 Assume )G(B4  is Hamiltonian. 
Case (1): G is connected 
 Since )G(B4 is Hamiltonian, there exists a Hamiltonian cycle C containing all the 
vertices of both G and L(G) and any two adjacent vertices of C are either vertices of G or a 
vertex of G and a vertex of L(G). This is possible, if there exists a Hamiltonian path or a 
Hamiltonian cycle in G containing all the edges of G. Hence, G is a path or a cycle. 
Case (2):  G is disconnected.  
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If one of the components of G has either 3C  or 3,1K  as an induced subgraph, then )G(B4  

is non-Hamiltonian. Therefore, each component of )G(B4  is 1K , 2K  or 3m,Pm       

 Conversely, let G be a path Pn on n ( 3n  ) vertices. Let { v1, v2, .., vn} and {e1, e2, …, 
en-1} be respectively the vertex set and edge set of Pn, where ei = ( vi, vi-1), i = 1, 2, …, n. 
Then V( )G(B4 ) = { v1, v2, …, vn, e1, e2, …, en-1} and v1e1v2e2v3e3…vn-1en-1 is a Hamiltonian 

path in )G(B4  and hence )G(B4  is Hamiltonian. Similarly, it can be verified that )G(B4 is 
Hamiltonian for the remaining graphs given in the Theorem. 
Definition 2.1. An edge e = (u, v) is a dominating edge in G, if every vertex of G is 
adjacent to atleast one of u and v.  
 
 In the following, eccentricities of vertices in )G(B4 are found. 
Theorem 2.2.  
 Eccentricity of a vertex in )G(B4  lies between 1 and 3. 
Proof: 
(1) Eccentricity of a vertex in ))G(B(V)G(V 4  

 Let v ))G(B(V)G(V 4 . 

(i) The subgraph of )G(B4  induced by vertices of V(G) is complete. Therefore, the 

distance between any two vertices in ))G(B(V)G(V 4  is 1. 

(ii) Let e  ))G(B(V)G(V 4  and let e = (u, v)E(G). If the edge e is incident with v 

in G, then 1)e,v(d )G(B4
   . If e is not incident with v in G, then vue is a geodetic path in 

)G(B4  and hence 2)e,v(d )G(B4
 . 

From (i) and (ii),  
1)v(ecc )G(B4

 , if all the edges of G are incident with v in G and 2)v(ecc )G(B4
 , if there 

exists atleast one edge in G not incident with v in G 
(2) Eccentricity of a vertex in ))G(B(V))G(L(V 4  

 Let e ))G(B(V))G(L(V 4 . Then eE(G). 

(i) By (1) (ii), distance between v and e in )G(B4  is 1 or 2. 

(ii)  Let e, f  ))G(B(V))G(L(V 4 Then e, f  E(G). Let e = (u, v) and f = (w, x), 
where u, v, w, xV(G). 
(a) Let e and f be adjacent edges in G and let v = w. Then evf is a geodesic path in )G(B4  

and hence 2)f,e(d )G(B4
  . 

(b)  Let e and f be nonadjacent edges in G. Then euwf is a geodesic path in )G(B4  and 

hence 3)f,e(d )G(B 4
 . From (i) and (ii), 2)e(ecc )G(B4

 , if all the edges of G are adjacent 
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to e in G. That is, e is a dominating edge of G, and 3)v(ecc )G(B4
 , if e is not a 

dominating edge of G. 
Therefore, eccentricity of a vertex in )G(B4  lies between 1 and 3.  
  
Theorem 2.3. 
 )G(B4 is self-centered with radius 2 if and only if G is either 3C or 1n,nKC 13  . 
Proof: 
 Let )G(B4  be self-centered with radius 2. Then the eccentricity of each vertex in 

)G(B4  is 2. Let vV(G). Then 2)v(ecc )G(B4
 , if there exists an edge not incident with 

v in G. That is, for each vertex v in G, there is atleast one edge not incident with v in G. 
Let eE(G). Then 2)e(ecc )G(B4

 , if all the edges of G are adjacent to e in G. That is, all 

the edges of G are adjacent to each other. Both of the above hold, if G is either 3C  or 

1n,nKC 13  .  

Conversely, )C(B 34  and  1n),nKC(B 134   are self-centered with radius 2. 
 
Theorem 2.4.  
  )G(B4  is bi-eccentric with radius 1 and diameter 2, if and only if G is either n,1K  or 

1m,2n,mKK 1n,1   

Proof.   
 Let )G(B4 be bi-eccentric with radius 1 and diameter 2. Then there exists a vertex in 

)G(B4 of eccentricity 1. For each eE(G), eccentricity of e in )G(B4 is either 2 or 3. 

Therefore, there exists a vertex vV(G) having eccentricity 1 in )G(B4 . This holds, if all 

the edges of G are adjacent to v in G. If 1)G(0  , then there exists an edge  e in G such 

that eccentricity of e in )G(B4   is 3. Hence, 1)G(0  . Therefore, G is a graph with 

1)G(0   and there exists a vertex v in G such that all the edges of G are incident with v. 

That is, G is either n,1K  or 1m,2n,mKK 1n,1  . 
 Conversely,  n,14 KB and  1n,14 mKKB  , 2n  and 1m   are bi-eccentric with 

radius 1 and diameter 2. 
 
Theorem 2.5.  

 )G(B4  is bi-eccentric with radius 2 and diameter 3, if and only if 2)G(0  . 
Proof: 
 Let )G(B4  be bi-eccentric with radius 2 and diameter 3. If 1)G(0  , then all the 

edges of G are adjacent to each other. Then eccentricity of each vertex in )G(B4  is 1 or 2. 

 Hence, 2)G(0  . 
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 Conversely, assume 2)(0 G . Then eccentricity of vV(G) in )G(B4  is 2. Also, 
there exist atleast two independent edges in G. Then, eccentricities of the vertices in 

)G(B4 corresponding to these edges are each equal to 3. Therefore, )G(B4 is bi-eccentric 
with radius 2 and diameter 3. 
 
 In the following, a necessary and sufficient condition for )G(B4  to have a dominating 
edge is found. 
 
Theorem 2.6.  
 Let G be any graph. )G(B4  has a dominating edge if and only if 2)G(0   or 

1)G(1  . 
Proof: 
 Assume )G(B4  has  a dominating edge, say x = (x1, x2), where x1, x2   )G(BV 4 . 
Then atleast one of x1 and x2 are vertices of G.  
Case (1): x1, x2 V(G) 
 Since x is a dominating edge in )G(B4 , all the vertices in )G(B4 corresponding to the 
edges in G are adjacent to x1, x2 or both. That is, each edge in G is incident with x1, x2 or 

both. Therefore, 2)G(0  . 
Case (2): x1V(G) and x2 E(G) 
 Then  )G(BVx 42  . Since x1 and x2 are adjacent in )G(B4 , x1 is incident with the 

edge x2 in G. Also, x is a dominating edge in )G(B4 . Therefore, the vertices in )G(B4  

corresponding to edges in G are adjacent to the vertex x1 in )G(B4 .That is, all the edges of 

G are mutually adjacent. Therefore, 1)G(1  . 

 Conversely, assume 2)G(0  . Then there exists a point cover D of G with 2D . 

If 1D , then there exists a vertex v in G such that each edge in G is incident with v in 

G. Let uV(G),  vu  . Then u,  )G(BVv 4  and    )G(BEv,u 4  is a 

dominating edge of )G(B4 . Assume 1)G(1   Then there exists an edge say, e = (u, v) 

in G such that all the edges of G are adjacent to e. Let x = (u, e).  )G(BEx 4  is a 

dominating edge in )G(B4 . Hence, )G(B4  has a dominating edge. 
 
Independence and Covering numbers of )G(B4  

 In the following, independence number of )G(B4 is found. 
Theorem 2.7. 
 Let G be a (p, q) graph. Then  
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 








0)G(if,1q

1)G(if,q
)G(B40 


  

 
Proof: 
  Let S be the set of vertices of )G(B4 corresponding to the edges of G. Then S is an 

independent set in )G(B4 .  

Therefore, S)G(0   = q, if 1)G(  . 

Let H be the subgraph of )G(B4  induced by the vertices of G. Then H is complete in 

)G(B4 . Each vertex in H is adjacent to atleast one vertex in S. Therefore, 

  q)G(B40  , if 1)( G . 

Let 0)G(   and let vV(G) be such that degG(v) = 0. Then the set  vS  is a 

maximum independent set in )G(B4 and hence   1q)G(B40  , if 0)G(  . 
 
Remark 2.1. 
 Since for any graph G with p vertices,   p)G(G 00  , the covering number of 

)G(B4  is given below. For any (p, q) graph G,  

 








0)G(if,1p

1)G(if,p
)G(B40 


  

 
 In the following, edge independence number of )G(B4  is given. 
Theorem 2.8. 
 Let G be any (p, q) graph with   1G  . Then 

       










 






pqif,
2

qp
q

pqif,p

)G(B41

         

  

Proof: 
 Let V(G) = {v1, v2, …, vp}. Let e1, e2, …, ep be the edges in G incident with v1, v2, …, vp 
respectively and let x1, x2, …, xp be the vertices in )G(B4  corresponding to e1, e2, .., ep 

respectively. Then {v1, v2, .., vp, x1, x2, .., xp}  )G(BV 4   

Case(1): pq   

 The edges (v1, x1), (v2, x2),…, (vp, xp) are independent in )G(B4 . The remaining edges 

in )G(B4  are adjacent to atleast one of v1, v2, …, vp. Also any set of (p + 1) edges in 

)G(B4 are not independent to each other. Hence,   p)G(B41  . 

Case (2): q < p 
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 Let x1, x2, …, xq be the vertices in )G(B4  corresponding to the edges e1, e2, …, eq in G 

respectively. Then the edges (v1, x1), (v2, x2), … , (vq, eq) are independent in )G(B4 . The 

subgraph of )G(B4  induced by remaining vertices vq-1,…,vp is complete and 

  



 


2

qp
K qp1 .   

Hence,   



 


2

qp
q)G(B41  

 
Remark 2.2. 
 If G has m ( 1m  ) isolated vertices, then  
 

 












 










pqif,

2

qp
q

pqif,
2

m
p

)G(B41

  

   
  

Remark 2.3. 
1. If )1m(,mKHG 1  , where H is any connected graph, then 

  





2

m
)H(V)G(B41 , since the subgraph of )G(B4  induced by vertices of 1mK  

is complete. 
2. If G is disconnected with ω  components )2(G,...,G,G 21  , where   1Gi   

and ipG  , then   






1i

i41 p)G(B  

 
Remark 2.4. 
Since     qp)G(B)G(B 4141   , the following result is obtained. 

 
 For any (p, q) graph G with   1G  , the line covering number of )G(B4  is given 

by  

 










 






pqif,
2

qp
q

pqif,q

)G(B41  

 
Remark 2.5. 
 If G has m isolated vertices, then  
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 












 










pqif,,

2

qp
q

pqif,
2

m
q

)G(B41

 
  

Note 2.1. 

1. If nCG  , 3n  , then   n)G(B41   

2. If n,1KG  , 2n  , then   1n)G(B41   

 
 In the following, chromatic number of )G(B4  is found. 
Theorem 2.9. 
  Let G be any (p, q) graph ( 3p  ). Then the chromatic number  )G(B4   of 

)G(B4   is p. 
Proof: 
 The subgraph of )G(B4  induced by p vertices in G is complete in )G(B4 . Colour 
these p vertices by p colours 1, 2, …, p. Let eij = (vi, vj)  E(G), ji  . Then eijV(B4(G)). 

Colour the vertex eij by a colour other than i and j. Since no two vertices in )G(B4  

corresponding to the edges in G are adjacent, )G(B4  is p-colourable. Hence, 

  p)G(B4  . 
 
Note 2.2. 
1. If 2KG  , then   3)G(B4   . 

2. If 1K2G   then   2)G(B4  . 
 
Theorem 2.10. 
For any (p, q) graph G, edge chromatic number of )G(B4  is given by  

  1p)G(B4

'    or p , where Δ  = max(degGv) 
Proof: 
 Maximum degree of )G(B4  = 1p    and hence the theorem follows. 
 
 In the following, the edge partition of )G(B4   for some known graphs are given. 
 
Theorem 2.11 
 Edges of  3n),C(B n4   can be partitioned to  

(i) n2n CandC
2

1n
  





 

, if n is odd 
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(ii) n22n CandK
2

n
,C

2

2n
   











 

, if n is even 

Proof: 
 Let nCG  , 3n  . Then )C(B n4  has n vertices of degree (n + 1) and n vertices of 
degree 2. 
Let vertices of )G(B4  having degree (n + 1) be v1, v2, …, vn and that of degree n be  e12, 

e23, … , en-1, n, en1. Edges of )C(B n4 can be partitioned into nK  and  n2C . 
Case (1): n is odd 

 Edges of nK  can be partitioned into 




 

2

1n
cycles of length n. Therefore, edges of 

)C(B n4   can be partitioned to  

n2n CandC
2

1n
  





 

 , if n is odd 

Case (2): n is even 

 Edges of nK  can be partitioned into 




 

2

1n
 cycles of length n and 2K

2

n





 . 

Therefore, edges of )C(B n4  can be partitioned to n22n CandK
2

n
,C

2

2n
   











 

 , 

if n is even. 
 
Theorem 2.12. 

 Edges of  4n),K(B n4  can be partitioned into  

(i) n2n C
2

1n
andC

2

1n





 






 

  , if n is odd 

(ii) 3n2n P
2

n
andC

2

2n
,C

2

2n











 






 

   , if n is even. 

Proof: 

 )K(B n4  has 
 







 


2

1nn
n   vertices and )K(B n4  has n vertices of degree 2(n-1) 

and 
 







 

2

1nn
 vertices of degree 2 and nK  is an induced subgraph of )K(B n4 .  

Case(1): n is odd 

 Edges of nK  can be partitioned into 




 

2

1n
  cycles of length n. Consider n vertices 

in )K(B n4  corresponding to n edges of a cycle in nK . These vertices together with n 
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vertices in nK forms a n2C and a nK  in )K(B n4 . Corresponding to 




 

2

1n
  cycles of 

length n in G, there exist n2C
2

2n





 

 and nK   in )K(B n4 . 

Case (2): n is even 

 Edges of nK   can be partitioned into 




 

2

2n
 cycles of length n and 2K

2

n





 . As 

before, corresponding to 




 

2

2n
 cycles of length n in G, there exist n2C

2

2n





 

 and 

nK  in )K(B n4 . Consider 2K
2

n







 in G. These edges form 






2

n
  vertices in )K(B n4   and 

each of these 






2

n
  vertices is adjacent to two vertices in )K(B n4 . These form  3P

2

n





 . 

 
Theorem 2.13 
Edges of  3n),K(B n,14   can be partitioned into  

(i) nC
2

2n





 

and 3nC , if n is odd 

(ii) 2n3 K
2

n
,C

2

2n
nC 















 
  and 3nC , if n is even. 

Proof: 
 Let n,1KG  . )G(B4  has 2n + 1 vertices. Let v, v1, v2, … , vn V(G), where v is the 

central vertex and let e1, e2, …, en be the n edges in G, where ei = (v, vi). Let x1, x2, …, xn be 
the vertices in )G(B4  corresponding to e1, e2, …, en. In )G(B4 , v is adjacent to x1, x2, …, 
xn and each vi is adjacent to xi, i = 1, 2, …, n. Also the subgraph induced by v, v1, v2, …, vn 
forms

1nK    in )G(B4 . Therefore, vvixi ( i = 1, 2, …, n) forms n triangles in )G(B4  and 

the subgraph induced by v1, v2, .., vn forms nK in )G(B4 . Therefore, edges of )G(B4 can 

be partitioned into 1K  and 3nC . Edges of nK  can be partitioned into nC
2

2n





 

, if n is 

odd and can be partitioned into nC
2

2n





 

 and 2K
2

n





 , if n is even. Hence the 

Theorem. 
 
Remark 2.6. 
 If G is a  q,p  graph, then edges of )G(B4  can be partitioned into 3qC and  G . 
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