International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 5, No. 4, October – December 2014, pp. 87 - 97

Graph Equations Connecting Glue Graphs, Complement Glue Graphs, Line Graphs and Eccentric Graphs

T.N.Janakiraman1 , M.Bhanumathi 2 and S.Muthammai2

1 Department of Mathematics and Computer Applications National Institute of Technology, Trichirapalli 620015, Tamil Nadu, India. E-mail: janaki@nitt.edu 2 Government Arts College for Women, Pudukkottai-622001, India. E-mail: *bhanu_ksp@yahoo.com, muthammai_s@yahoo.com*

Abstract: For any graph G, the Equi-eccentric point set graph Gee is a graph with vertex set V(G) and two vertices are adjacent if and only if they correspond to two vertices of G with equal eccentricities. The Glue graph Gg of G is a graph with the same vertex set V(G) and two vertices are adjacent if and only if they correspond to two adjacent vertices of Gee or two adjacent vertices of G. In this paper, we solve graph equations involving Glue graphs, Complement Glue graphs, Line graphs and Eccentric graphs.

Key words: Equi-eccentric point set graph, Glue graph, Complement Glue graph, eccentric graph.

1. Introduction

Graphs discussed in this paper are simple, undirected and finite. Throughout this paper G means a connected (p, q) graph with radius r and diameter d.

Let $V(G)$ and $E(G)$ denote the vertex set and edge set of graph G respectively. Eccentricity of a vertex u in V(G) is defined by $e_G(u) = \max \{d_G(u, v): v \in V(G)\}\)$, where $d_G(u, v)$ is the distance between u and v in G. The minimum and maximum of the eccentricities of the graph G are denoted by $r(G)$, the radius of G and $d(G)$, the diameter of G respectively. A graph G is said to be self-centered if $d(G) = r(G)$.

For any graph G, we define the Equi-eccentric point set graph G_{ee} on the same set of vertices by joining two vertices in G_{ee} if and only if they correspond to two vertices of G with equal eccentricities. Also, we define the Glue graph G_g on the same set of vertices by joining two vertices in G_g if and only if they correspond to two adjacent vertices of G or two adjacent vertices of G_{ee} , that is $E(G_g) = E(G) \cup E(G_{ee})$. We define the Complement Glue graph G_{cg} on the same set of vertices by joining two vertices in G_{cg} if and only if they correspond to two adjacent vertices of G or two adjacent vertices of G_{ee} , that is $E(G_{ce})$ = E(G) $\bigcup E$ (G_{ee}).

 The importance of perfect graphs is both theoretical and practical because of their application to perfect channels in communication theory, problems in operations research,

Received: 12 August, 2014; Revised: 17 November, 2014; Accepted: 10 December, 2014

optimizing municipal services etc. The Glue graph G_{g} and the Complement Glue graph G_{cg} are Hamiltonian and perfect. Also, G is a spanning sub graph of G_g and G is a spanning sub graph of G_{cg} and connectivity of G_g increases and diameter of G_g decreases as that of G. Hence, these graphs will be useful in communication theory.

Let $E_k = \{ u \in V(G): e_G(u) = k \}$. $E_k = c_k$. We have $c_r \ge 1$, $c_{r+i} \ge 2$, i =1, 2, ..., d-r. [2]

For any graph G, the eccentric graph G_e has the same set of vertices and any two vertices of G_e are adjacent if and only if one of the two vertices has maximum possible distance from the other, that is $V(G_e) = V(G)$ and $uv \in E(G_e)$ if any only if $d_G(u, v) = min$ $\{e(u), e(v)\}$ [2]. The super eccentric graph J(G) has the same vertex set as that of G and any two vertices u and v are adjacent in J(G) if and only if $d_G(u, v) \ge r$, where r is the radius of the graph G [6]. The definitions and details not furnished here may be found in [4] and [5]. We need the following results.

Result 1.1 [3] :

 G_{g} is two connected.

Result 1.2 [3] :

Vertices of G_g can be partitioned into E_r , E_{r+1} ... E_d such that $V(G_g) = E_r \cup ... \cup E_d$ and each $\langle E_{r+i} \rangle$ is complete in G_g , i = 0,1,..., d-r.

Result 1.3 [5] :

G is a line graph if and only if the lines (edges) of G can be partitioned into complete sub graphs in such a way that no vertex lies in more than two of those subgraphs.

2. Graph equations involving G , G_g , G_e and $J(G)$

I. $G = G_{\sigma}$

 $G = G_g$ implies that all the edges in G_{ee} are in G also. Therefore, G is complete. Thus, we have the following theorem.

Theorem 2.1 :

 $G = G_g$ if and only if G is complete.

$II.$ $G_e = G_g$

 G_e is the eccentric graph of G. For u, $v \in V(G)$, $uv \in E(G_e)$ if and only if $d_G(u, v) = min (e(u), e(v))$ in G. Hence $G_g = G_e$ implies minimum eccentricity must be one in G, since G_{ε} contains edges of G also. This implies that G is a graph with radius one and G has no edge joining vertices of eccentricity two. (Since if G contains an edge x joining vertices of eccentricity two, G_e cannot have the edge x) Thus, we have the following theorem.

Theorem 2.2 :

 $G_e = G_g$ if and only if $G = K_n$ or G is a connected graph with radius one and diameter two such that $V(G) = E_1 \cup E_2$ where $\lt E_1$ is complete and $\lt E_2$ is totally disconnected.

III. $J(G) = G_g$

J(G) is the super eccentric graph of G and the edge uv $\in E(J(G))$ if and only if $d_G(u, v) \ge r$. Hence, $J(G) = G_g$ if and only if radius $(G) = 1$, thus we have,

Theorem 2.3 :

 $J(G) = G_g$ if and only if radius $(G) = 1$. Note that in the previous two theorems $G_g = K_n$.

3. Graph equations involving $L(G)$ **and** G_g

First let us solve the graph equation $L(G) = G_g$. **IV.** $L(G) = G_{\sigma}$:

If $L(G) = G_g$, the number of vertices of G is equal to the number of edges of G, that is G is uni-cyclic. Also, we know that G_g is two connected and G_g is complete or the vertices of G_g can be partitioned in such a way that, they form complete sub graphs [7]. Hence, the only solution is $G = K_3$. Thus we have proved,

Theorem 3.1 :

 $L(G) = G_g$ if and only if $G = K_3$.

Now, consider the graph equation $L(H) = G_g$, $H \neq G$. To solve this graph equation we need the following lemma.

Lemma 3.1 :

Let G be a connected graph with radius r and diameter d. Then for G_g is a line graph, $d-r+1 < 2$ if $< E_r \cup E_{r+1} >$ is not complete in G_g and $d-r+1 < 3$ if $< E_r \cup E_{r+1} >$ is complete in G_{ϱ} .

Proof: Assume G_g is a line graph.

Case 1: $\lt E_r \cup E_{r+1} >$ is not complete in G_g .

In G_e , $\lt E_r$, $\lt E_{r+1}$, \lt , \ldots , $\lt E_d$, are complete sub graphs. Since G_e is a line graph, any vertex in E_{r+1} is adjacent to at most one vertex in E_r , otherwise it will lead to a contradiction to result 1.3. Also any point $v_{r+1} \in E_{r+1}$ is adjacent to at most one vertex in E_{r+2} and so on. In this situation there must exist at least one $v_{r+1} \in E_{r+1}$ having adjacent vertices in E_r and E_{r+2} . Therefore, this v_{r+1} lies on at least three complete sub graphs if $\leq E_r \cup E_{r+1}$ is not complete. Hence d-r+1 must be at most 2 if $\leq E_r \cup E_{r+1}$ is not complete is G_g .

Case 2: $\lt E_r \cup E_{r+1} >$ is complete is G_g .

As in the previous case we can prove $d-r+1 < 3$. This proves the lemma.

V. $L(H) = G_g$:

Case 1: G is a self-centered graph with n vertices.

In this case, $G_g = K_n$. Take $H = K_{1,n}$, then $L(H) = K_n$. Therefore, $(G, H) = (F, K_{1,n})$ is the solution of $L(H) = G_g$, where F is any self-centered graph with n vertices. **Case 2:** G is a bi-eccentric graph with diameter two.

In this case also, $G_g = K_n$. Hence, as is the previous case $(F, K_{1,n})$ is the solution of $L(H) = G_g$.

Case 3: G is not self-centered and $r(G) \neq 1$.

 $L(H) = G_g$ implies G_g is a line graph. Hence by lemma 3.1, d-r+1 \leq 2, if $\langle E_r \cup E_{r+1} \rangle$ is not complete is G_g , and $d-r+1 \leq 3$ if $\langle E_r \cup E_{r+1} \rangle$ is complete. Therefore, $d-r+1 = 2$ or 3, since G is not self-centered and $r(G) \neq 1$.

Sub case 3.1: $\lt E_r \cup E_{r+1} >$ is not complete in G_g .

First, let us assume G contains more than one central vertex v_r . Let $v_r \in E_r$ be adjacent to k (<c_{r+1}) vertices of E_{r+1} in G. < E_r \cup E_{r+1} > is not complete. Hence, d-r+1 is at most 2 by lemma 3.1. Also vertices with eccentricity r are adjacent to at most one vertex with eccentricity r+1 in G. Thus, G is a bi-eccentric graph such that each vertex in this is adjacent to at most one vertex in $E_{r+1}|E_r|=c_r$, $|E_{r+1}|=c_{r+1}$. Consider H (as in Figure 3.1) with deg $v_1 = c_r$, deg $v_2 = c_{r+1}$.

Graph Equations Connecting Glue Graphs, Complement Glue Graphs, Line Graphs and Eccentric Graphs

Figure 3.1

This H satisfies the equation $L(H) = G_{g}$. If $c_r = c_{r+1}$. H is the generalized Θ -graph.

Now, assume G contains only one central vertex v_r , v_r is adjacent to k vertices of E_{r+1} , where $2 \leq k < c_{r+1}$. Clearly, deg $v_r = k$ in G, and if $k > 2$, G_g is not a line graph, since v_r is in more than two complete graphs formed by the edges of G_{g} . Therefore, k must be two and hence G is bi-eccentric with only one central node adjacent to exactly two nodes of eccentricity r+1. Hence, H is of the form $K_{1,n-1}+x$, where $n = |V(G)|$.

Sub case 3.2 $\lt E_r \cup E_{r+1} >$ is complete in G_g .

In this case, G has one or more central vertices such that each $v_r \in E_r$ is adjacent to all the vertices of E_{r+1} and $d-r+1 = 3$ by lemma 3.1. Also, each vertex in E_{r+1} is adjacent to at most one vertex of E_{r+2} and vice-versa. $|E_r| = c_r$, $|E_{r+1}| = c_{r+1}$, $|E_{r+2}| = c_{r+2}$. Then H as in Figure 3.2, satisfies $L(H) = G_g$.

degree $v_2 = c_{r+2} > c_{r+1}$

Figure 3.2(b)

Thus we have,

Theorem 3.2

 $L(H) = G_g$ if and only if (G, H) satisfies any one of the following :

(1) (F, $K_{1,n}$), where F is self-centered with n vertices or bi-eccentric with diameter two.

(2) (F_1, F_1) , where F_1 is bi-eccentric such that each vertex in E_r is adjacent to at most one vertex in E_{r+1} and F_1' is any one of the graphs in fig:3.1.

(3) (F₂, F₂[']), where F₂ is a tri-eccentric graph such that each $v_r \in E_r$ is adjacent to all vertices of E_{r+1} and an element in E_{r+1} is adjacent to at most one element in E_{r+2} and vice versa. F_2 is any one of the graphs in Figure 3.2.

(4) (F_3, F_3) , where F_3 is bi-eccentric with unique central vertex adjacent to exactly two vertices of eccentricity r+1, $F_3' = K_{1,n-1} + x$. Now, we shall solve the graph equation $L(H) = G_g$

VI. $L(H) = G_{g^{-}}$:

Case 1 : G is a graph with more than three central vertices ; $c_r \geq 3$.

Since $c_r \geq 3$, in G_{φ} , there is a K_3 containing vertices of E_r , say v_r , v_r' , and v_r'' . Suppose d-r+2 \geq 3; there exists a $v_{r+2} \in E_{r+2}$ such that the vertices v_r , v_r' , v_r'' and v_{r+2} form a $K_{1,3}$ (induced) in G_g . Therefore, G_g is not a line graph. Hence, d-r+1 must be at most 2 if G_{g} is a line graph, that is G is self-centered or bi-eccentric. **Sub case 1.1:** G is self-centered.

Since G is self-centered, G_g is complete. Hence, if $n = |V(G)|$, $\overline{G}_g = nK_1$. Therefore, $H = nK_2$ satisfies the relation $L(H) = G_{\alpha}$. **Sub case 1.2:** G is bi-eccentric with radius r.

Suppose each vertex in E_r is adjacent to all the vertices of E_{r+1} , $G_g = K_n$. Hence, again H = nK₂ satisfies the relation L(H) = G_g .

Suppose there exists vertices in E_r , which are not adjacent to all the elements of E_{r+1} . Suppose $v_r \in E_r$ is not adjacent to more than two elements in E $_{r+1}$. Then G_g contains $K_{1,3}$, and hence G_g cannot be a line graph. Hence, $v_r \in E_r$ must be adjacent to at least c_{r+1} -2 elements in E_{r+1} , for all $v_r \in E_r$. Hence in G_g , $v_r \in E_r$ is adjacent to at most two elements in E_{r+1} , that is deg v_r in G_g is \leq 2. Similarly, we can prove deg v_{r+1} in G_g is \leq 2 for all $v_{r+1} \in E_{r+1}$. Hence, if G_g is a line graph, G_g is a path or cycle or G_g is disconnected whose components are paths or cycles or isolated vertices. Let $G_g = mK_1 \cup$ $P_r \cup P_s... \cup C_x \cup C_y... \cup C_z$, then $H = mK_2 \cup P_{r+1} \cup P_{s+1} \cup ... \cup C_{x+1} \cup ... \cup C_{z+1}$ such that $L(H) = G_{a}$.

Case 2: G has at most two central vertices.

Sub case 2.1: Each element in Er is adjacent to all the elements of E_{r+1} .

In this case, G_g is a line graph only when $d-r+1 \leq 3$ (otherwise if $v \in E_{r+3}$, v, v_r, v_{r+1} , v_{r+1}' form a $K_{1,3}$ in $G_{g'}$, $v_r \in E_r$, v_{r+1} , $v_{r+1}' \in E_{r+1}$). When d-r+1 = 1 or 2 that is when G is self-centered or bi-eccentric, G_g is complete and $G_g = nK_1$ and $H = nK_2$ satisfies $L(H)$ = G_g when d-r+1 = 3, we claim that $|E_{r+1}| = c_{r+1} = 2$ and $|E_{r+2}| = c_{r+2}$.

Suppose $c_{r+2} > 2$, $v_r \in E_r$ and any three elements in E_{r+2} form a $K_{1,3}$ in G_{g} . Hence, c_{r+2} must be two. Also, we know any element in E_{r+1} cannot be adjacent to all the elements of E_{r+2} . Therefore, each element in E_{r+1} is adjacent to at most one element in E_{r+2} . Hence if $c_{r+1} > 2$, there exists a $K_{1,3}$ in G_g formed by $v_r \in E_r$, v_{r+1} , $v_{r+1}' \in E_{r+1}$, and $v_{r+2} \in E_g$ E_{r+2} , where v_{r+1} , v_{r+1}' are not adjacent to v_{r+2} in G. Hence, c_{r+1} must be two. Therefore, G_{g} must be any one of F_1 , F_2 (Fig: 3.3). But again F_1 has a $K_{1,3}$. Therefore, $G_g = F_2$, that is $G = P_5$, $G_g = P_5$.

Hence, $H = P_6$ satisfies $G_g = L(H)$.

 $F₂$

 $F₁$

Figure 3.3

Figure 3.4

Sub case 2.2: Each element in E_r is not adjacent to all the elements of E_{r+1}

(a) Suppose $c_r = 2$: E_r , E_{r+1} ... contains exactly two elements if $d-r+2 > 2$

(otherwise $K_{1,3}$ in G_g) and there cannot be any triangles, since any element of E_i cannot be adjacent to every element of E_{i+1} and vice versa (i > r). Therefore, G_g is as in Figure 3.4. If d-r+1 > 3, G_g contains $K_2 \cup K_{1,2}$ and hence G_g contains the forbidden sub graph G_2 as induced sub graph. Hence, $d-r+1 \leq 3$, When $d-r+1=3$, $H = F$ (Figure 3.5) satisfies $L(H) = G_g$

When $d-r+1 = 2$, G is bi-eccentric with two central vertices each is not adjacent to at most c_{r+1} –1 elements of E_{r+1} , If E_r contains an element, which is not adjacent to more than three elements in E_{r+1} , $K_{1,3}$ is an induced sub graph of G_g . Hence, each element in E_r is not adjacent to at most two elements in E_{r+1} and vice versa.

This gives degree of every vertex is one or two in G_g . Thus, G_g has paths or cycles as components. Therefore, H is a path or cycle or a disconnected graph having components as paths or cycles such that $L(H) = G_g$.

When d-r+1 = 1, G is self-centered, $G_g = K_2$, H = 2K₂ such that L(H) = $\overline{G_g}$.

Figure 3.5

(b) Suppose c_r = 1. Then $d-r+1$ is at most 3 as in the previous case.

When d-r+1 = 3, E_{r+2} must contain exactly two elements. Otherwise, $K_{1,3}$ is present in G_g. Let $E_r = \{v_r\}$, then v_r must be adjacent to at least two elements of E_{r+1} and v_r must be adjacent to c_{r+1} –2 or c_{r+1} –1 elements of E_{r+1} (otherwise, there exists induced $K_{1,3}$ in G_{g}). Also every element of E_{r+2} must be adjacent to at least c_{r+1} -2 elements in E_{r+1} (otherwise, $K_{1,3}$ is in G_g). But there exists no vertex in E_{r+1} , which is adjacent to both the elements of E_{r+2} . Hence, $c_{r+1} = 3$ or 4. But these cases are not possible under the given conditions.

When d-r+1 = 2, v_r is not adjacent to at most two elements of E_{r+1} . Hence, in G_g , deg v_r = 1 or 2. Therefore, $G_g = K_2 \cup (n-2) K_1$ or $G_g = K_{1,2} \cup (n-3) K_1$, where $n = |V(G)|$. Hence, $H = K_{1,2} \cup (n-2)K_2$ or $P_4 \cup (n-3)K_2$ satisfies the equation $L(H) = G_g$.

When $d-r+1 = 1$, $G = K_1$, $H = K_2$.

Thus, we have the following theorem.

Theorem 3.3

For any two graphs G and H, the equation $G_g = L(H)$ holds if (G, H) equals to one of the pairs of graphs given in the following.

(1) (G, H), where G is bi-eccentric such that each central vertex is not adjacent to at most two peripheral vertices. H is the union of paths, cycles and isolated vertices.

(2) (G, H), G is self-centered or bi-eccentric with radius one and $H = nK₂$, when $n = |V(G)|$.

 (3) (G, H), G = P₅, H = P₆. (4) (G, H), G = P_6 , H = F in Figure 3.5

Remark: In [1] Jin Akiyama et al have solved graph equations involving line graphs, middle graphs and total graphs. Using this and Theorems 3.2 and 3.3 we can solve the graph equations $M(H) = G_g$, $M(H) = G_g$, $T(H) = G_g$ and $T(H) = G_g$.

4. Graph equations involving G_{cg}

VII. $G_{cg} = L(H)$

In $G_{c\varrho} < E_r$ >, $\langle E_{r+1} \rangle$, ..., $\langle E_d \rangle$ are complete sub graphs. Hence, $G_{c\varrho}$ is a line graph implies any vertex in E_{r+i} is adjacent to at most one element of E_{r+i+1} or E_{r+i-1} in G_{cg} . This gives each element in E_k , $k > r$ is adjacent to all elements of E_{k-1} or E_{k+1} in G. This is possible only when $n = d-r+1 \leq 3$.

Case 1: n = 3.

Elements in E_{r+1} cannot be adjacent to all the elements of E_{r+2} in G. Hence, each element in E_{r+1} is adjacent to every element of E_r in G and each element of E_{r+2} is not adjacent to at most one element of E_{r+1} and vice-versa. This is possible only when $c_{r+1} = c_{r+2} = 2$. Thus, G is a graph with radius two diameter four and $c_{r+1} = c_{r+2} = 2$ such that each vertex of E_{r+1} is adjacent to every vertex of E_r and vice-versa. Here H is as in Figure 4.1 **Case 2:** n = 2.

Subcase 2.1: $r(G) = 1$ and $d(G) = 2$

Figure 4.1

In this case, each element of E_r is adjacent to every elements of E_{r+1} in G. Hence, G_{cg} is disconnected and has two components which are complete, that is $G_{cg} = K_m \cup K_n$, where $m = c_r$ and $n = c_{r+1}$. $H = K_{1,m} \cup K_{1,n}$ satisfies $L(H) = G_{cg}$. **Subcase 2.2:** r(G) > 1.

In G_{cg} < E_r , < E_{r+1} are complete and hence, G_{cg} is a line graph if and only if each element of E_r is adjacent to at most one element of E_{r+1} and vice-versa in G_{cg} . Hence in G, each element of E_r is adjacent to c_{r+1} -1 elements of E_{r+1} and each element of E_{r+1} is adjacent to c_r-1 elements of E_r. This is possible only when $c_r = c_{r+2} = 2$. Since $r(G) > 1$ and G is not self-centered, $G = P_4$. H = $G_{ce} = C_4$.

Case 3 : $n = 1$.

In this case, G is self-centered and G_{cg} is complete and hence it is a line graph. $H = K_{1,p}$ satisfies the graph equation $G_{cg} = L(H)$.

Hence, we have the following theorem:

Theorem 4.1

For any two graphs G and H the equation $G_{cg} = L(H)$ holds if and only if (G, H) equals to one of the pairs of graphs given in the following:

(1) $(G, K_{1,p})$, where G is self-centered.

(2) (G, $K_{1,m} \cup K_{1,p-m}$), where G is a bi-eccentric graph with radius one, having m central vertices.

 (3) (P_4, C_4) .

VIII. $G_{cg} = L(H)$

 G_{cg} has no triangles. Hence, maximum number of vertices in a complete subgraph of G_{cg} is two. Hence, G_{cg} is a line graph if no vertex of G_{cg} lies in more than two edges; that is degree of vertices in G_{cg} is at most two. Therefore, G_{cg} is union of paths and cycles. In this case, H is union of paths and cycles also. Hence, G_{cg} is a line graph if and only if G is a graph in which each vertex v in $V(G)$ has at most two adjacent vertices with eccentricity not equal to $e(v)$. Thus, we have the following theorem.

Theorem 4.2

For any two graphs G and H the equation $G_{cg} = L(H)$ holds if and only if G is a graph in which each vertex v in V(G) has at most two adjacent vertices with eccentricity not equal to e(v) and H is the union of paths and cycles satisfying $G_{cg} = L(H)$.

References:

- [1] Jin. Akiyama, Takashi Hamada, Izumi Yoshimura, Graph equations for line graphs, total graphs and middle graphs, TRU Math. 12(2) (1976).
- [2] Jin Akiyama, Kiyoshi Ando and David Avis, Eccentric graphs, Discrete Mathematics 56 (1985) 1-6.
- [3] Bhanumathi, M., (2004) "A Study on some Structural properties of Graphs and some new Graph operations on Graphs" Thesis, Bharathidasan University, Tamil Nadu, India.
- [4] Fred Buckley and Frank Harary, Distance in Graphs, Addison Wesley (1990).
- [5] Frank Harary, Graph Theory (Addison Wesley, Reading, mass 1972)
- [6] Iqbalunnisa, Janakiraman. T.N and Srinivasan. N, on Antipodal, Eccentric and Super eccentric graph of a graph, J. Ramanujam Math. Soc, 4 (2) 1989.
- [7] Janakiraman,T.N., Bhanumathi,M., Muthammai,S., Eccentricity properties of Glue Graphs, Journal of Physical Sciences, *Vol. 12, 2008, 123-131*.
- [8] Janakiraman,T.N., Bhanumathi,M., Muthammai,S, Complement Glue Graph of a graph, Proceedings of the Second National Conference on Mathematical and Computational Models, December 11-12, 2003., P.S.G College of Technology, Coimbatore 641 004.
- [9] T.N.Janakiraman, M.Bhanumathi, S.Muthammai**,** Equi-eccentric point set graph, Glue graph and Complement Glue graph of a Graph**,** International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 5, Issue 3, pp. 66-75, 2014.