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Abstract: For any graph G, the Equi-eccentric point set graph Gee is a graph with vertex set V(G) and 
two vertices are adjacent if and only if they correspond to two vertices of G with equal eccentricities. 
The Glue graph Gg of G is a graph with the same vertex set V(G) and two vertices are adjacent if and 
only if they correspond to two adjacent vertices of Gee or two adjacent vertices of G. In this paper, we 
solve graph equations involving Glue graphs, Complement Glue graphs, Line graphs and Eccentric 
graphs. 
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1.  Introduction 

Graphs discussed in this paper are simple, undirected and finite. Throughout this 
paper G means a connected (p, q) graph with radius r and diameter d.  

Let V(G) and E(G) denote the vertex set and edge set of graph G respectively.  

Eccentricity of a vertex u in V(G) is defined by eG(u) = max {dG(u, v): v  V(G)}, where   
dG(u, v) is the distance between u and v in G. The minimum and maximum of the 
eccentricities of the graph G are denoted by r(G), the radius of G and d(G), the diameter 
of G respectively.  A graph G is said to be self-centered if d(G) = r(G). 

For any graph G, we define the Equi-eccentric point set graph Gee on the same set 
of vertices by joining two vertices in Gee if and only if they correspond to two vertices of G 
with equal eccentricities. Also, we define the Glue graph Gg on the same set of vertices by 
joining two vertices in Gg if and only if they correspond to two adjacent vertices of G or 

two adjacent vertices of Gee, that is E(Gg) = E(G) E (Gee). We define the Complement 
Glue graph Gcg on the same set of vertices by joining two vertices in Gcg if and only if they 

correspond to two adjacent vertices ofG or two adjacent vertices of Gee, that is E(Gcg) = 

E(G) E (Gee).  
 The importance of perfect graphs is both theoretical and practical because of their 
application to perfect channels in communication theory, problems in operations research, 
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optimizing municipal services etc. The Glue graph Gg and the Complement Glue graph 

Gcg are Hamiltonian and perfect. Also, G is a spanning sub graph of Gg andG is a 
spanning sub graph of Gcg and connectivity of Gg increases and diameter of Gg decreases 
as that of G. Hence, these graphs will be useful in communication theory. 

       Let Ek = { u  V(G): eG(u) = k} .Ek = ck.  We have cr  1, cr+i  2, i =1, 2, …, d-r. 
[2] 

For any graph G, the eccentric graph Ge has the same set of vertices and any two 
vertices of Ge are adjacent if and only if one of the two vertices has maximum possible 

distance from the other, that is V(Ge)= V(G) and uv  E(Ge) if any only if dG(u, v) = min 
{e(u), e(v)}  [2]. The super eccentric graph J(G) has the same vertex set as that of G and 

any two vertices u and v  are adjacent in J(G) if and only if dG(u, v)  r, where r is the 
radius of the graph G [6]. The definitions and details not furnished here may be found in 
[4] and [5]. We need the following results. 
 
Result 1.1  [3] :  

Gg is two connected. 
 

Result 1.2  [3] : 

Vertices of Gg can be partitioned into Er, Er+1… Ed such that V(Gg) = Er … Ed 

and each < Er+i > is complete in Gg, i = 0,1,…, dr.   
    

Result 1.3 [5] : 
G is a line graph if and only if the lines (edges) of G can be partitioned into 

complete sub graphs in such a way that no vertex lies in more than two of those 
subgraphs. 

 

2.  Graph equations involving G, Gg, Ge and J(G) 
 
I.   G = Gg  

G = Gg implies that all the edges in Gee are in G also. Therefore, G is complete.  
Thus, we have the following theorem. 
 
Theorem 2.1 : 

G = Gg if and only if G is complete. 
 
II.   Ge = Gg 

Ge is the eccentric graph of G. For u, v  V(G), uv  E(Ge) if and only if      
dG(u, v) = min (e(u), e(v)) in G. Hence Gg = Ge implies minimum eccentricity must be one 
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in G, since Gg contains edges of G also.  This implies that G is a graph with radius one 
and G has no edge joining vertices of eccentricity two. (Since if G contains an edge x 
joining vertices of eccentricity two, Ge cannot have the edge x) Thus, we have the 
following theorem.  
 
Theorem 2.2 : 

Ge = Gg if and only if G = Kn or G is a connected graph with radius one and 

diameter two such that V(G) = E1  E2  where < E1 > is complete and < E2 > is totally 
disconnected. 
 
III.   J(G) = Gg  

J(G) is the super eccentric graph of G and the edge uv  E(J(G)) if and only if 

dG(u, v)  r. Hence, J(G) = Gg if and only if radius (G) = 1, thus we have, 
 
Theorem 2.3 : 

 J(G) = Gg if and only if radius (G) = 1. 
Note that in the previous two theorems Gg = Kn. 

 
3.  Graph equations involving L(G) and Gg 
 
First let us solve the graph equation L(G) = Gg.  
IV.   L(G) = Gg : 

If L(G) = Gg, the number of vertices of G is equal to the number of edges of G, 
that is G is uni-cyclic. Also, we know that Gg is two connected and Gg is complete or the 
vertices of Gg can be partitioned in such a way that, they form complete sub graphs [7]. 
Hence, the only solution is G = K3. Thus we have proved, 
 
Theorem 3.1 : 

L(G) = Gg if and only if G = K3. 

Now, consider the graph equation L(H) = Gg, H  G. To solve this graph 
equation we need the following lemma.  
 
 Lemma 3.1 : 

Let G be a connected graph with radius r and diameter d. Then for Gg is a line 

graph, dr1 < 2 if < Er  Er+1 > is not complete in Gg and dr1 < 3 if < Er  Er+1 > is 
complete in Gg. 
 Proof: Assume Gg is a line graph. 

Case 1:  < Er  Er+1 > is not complete in Gg. 
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In Gg, < Er >, < Er+1 >, …,  < Ed > are complete sub graphs.  Since Gg is a line graph, any 
vertex in Er+1 is adjacent to at most one vertex in Er, otherwise it will lead to a 

contradiction to result 1.3. Also any point vr+1  Er+1 is adjacent to at most one vertex in 

Er+2 and so on. In this situation there must exist at least one vr+1  Er+1 having adjacent 
vertices in Er and Er+2. Therefore, this vr+1 lies on at least three complete sub graphs if        

< Er  Er+1 > is not complete. Hence dr1 must be at most 2 if < Er  Er+1 > is not 
complete is Gg. 

Case 2:  < Er  Er+1 >  is complete is Gg . 

As in the previous case we can prove dr1 < 3. This proves the lemma. 
 
V.  L(H) = Gg : 
Case 1:  G is a self-centered graph with n vertices. 

In this case, Gg = Kn. Take H = K1,n, then L(H) = Kn. Therefore, (G, H) = (F, K1,n) 
is the solution of L(H) = Gg, where F is any self-centered graph with n vertices. 
Case 2: G is a bi-eccentric graph with diameter two. 

In this case also, Gg = Kn. Hence, as is the previous case (F, K1,n) is the solution of 
L(H) = Gg. 

Case 3: G is not self-centered and r(G)  1. 

L(H) = Gg implies Gg is a line graph. Hence by lemma 3.1, dr1  2, if             

< Er  Er+1 > is not complete is Gg, and dr1  3 if < Er  Er+1 > is complete. 

Therefore, dr1 = 2 or 3, since G is not self-centered and r(G)  1. 

Sub case 3.1:  < Er  Er+1 > is not complete in Gg. 

First, let us assume G contains more than one central vertex vr. Let vr  Er be 

adjacent to k (<cr+1) vertices of Er+1 in G. < Er  Er+1 > is not complete. Hence, dr1 is 
at most 2 by lemma 3.1. Also vertices with eccentricity r are adjacent to at most one vertex 
with eccentricity r+1 in G. Thus, G is a bi-eccentric graph such that each vertex in this is 
adjacent to at most one vertex in Er+1.| Er|= cr,  |Er+1| = cr+1. 
Consider H (as in Figure 3.1) with deg v1 = cr, deg v2 = cr+1. 
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Figure 3.1 

 This H satisfies the equation L(H) = Gg. If cr = cr+1. H is the generalized -graph. 
Now, assume G contains only one central vertex vr. vr is adjacent to k vertices of 

Er+1, where 2  k < cr+1.  Clearly, deg vr = k in G, and if k > 2, Gg is not a line graph, since 
vr is in more than two complete graphs formed by the edges of Gg. Therefore, k must be 
two and hence G is bi-eccentric with only one central node adjacent to exactly two nodes 

of eccentricity r+1. Hence, H is of the form K1, n1+x, where n = |V(G)|.  
 

 
Figure 3.2 (a) 

Sub case 3.2  < Er  Er+1 > is complete in Gg. 

In this case, G has one or more central vertices such that each vr  Er is adjacent 

to all the vertices of Er+1 and dr1 = 3 by lemma 3.1. Also, each vertex in Er+1 is adjacent 
to at most one vertex of Er+2 and vice-versa. |Er| = cr, |Er+1| = cr+1, |Er+2| = cr+2. Then H as in 
Figure 3.2, satisfies L(H) = Gg. 
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Figure 3.2(b) 
Thus we have, 
Theorem 3.2  

L(H) = Gg if and only if (G, H) satisfies any one of the following :  
(1) (F, K1,n), where F is self-centered with n vertices or bi-eccentric with diameter two.  

(2) (F1, F1), where F1 is bi-eccentric such that each vertex in Er is adjacent to at most one 

vertex in Er+1 and F1 is any one of the graphs in fig:3.1. 

(3) (F2, F2), where F2 is a tri-eccentric graph such that each vr  Er is adjacent to all 
vertices of Er+1 and an element in Er+1 is adjacent to at most one element in Er+2 and vice 
versa.  F2 is any one of the graphs in Figure 3.2. 

(4) (F3, F3), where F3 is bi-eccentric with unique central vertex adjacent to exactly two 

vertices of eccentricity r+1, F3 = K1,n1x. 

Now, we shall solve the graph equation L(H) =Gg 
 

VI.  L(H) =Gg : 

Case 1 :  G is a graph with more than three central vertices ; cr  3. 

Since cr  3, in Gg, there is a K3 containing vertices of Er, say vr, vr, and vr. 
Suppose dr2  3; there exists a vr+2  Er+2 such that the vertices vr, vr, vr and vr+2 

form a K1,3 (induced) inGg.  Therefore,Gg is not a line graph. Hence, dr1 must be at 

most 2 ifGg is a line graph, that is G is self-centered or bi-eccentric. 
Sub case 1.1: G is self-centered. 

Since G is self-centered, Gg is complete.  Hence, if n = |V(G)|,Gg = nK1. 

Therefore, H = nK2 satisfies the relation L(H) =Gg.  
Sub case 1.2:  G is bi-eccentric with radius r. 

                              

                                v1                                      v2 
                            
                        
                       
                      
                         

 
 
 

degree v1 = cr+cr+1 
degree v2 = cr+2 > cr+1 
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Suppose each vertex in Er is adjacent to all the vertices of Er+1, Gg = Kn.  Hence, 

again H = nK2 satisfies the relation L(H) =Gg. 
Suppose there exists vertices in Er, which are not adjacent to all the elements of 

Er+1. Suppose vr  Er is not adjacent to more than two elements in E r+1. Then Gg 

containsK1,3, and henceGg cannot be a line graph. Hence, vr  Er must be adjacent to 

at least cr+12 elements in Er+1, for all vr  Er.  Hence inGg, vr  Er is adjacent to at most 

two elements in Er+1, that is deg vr inGg is  2. Similarly, we can prove deg vr+1 inGg is 

 2 for all vr+1  Er+1. Hence, ifGg is a line graph,Gg is a path or cycle or Gg is 

disconnected whose components are paths or cycles or isolated vertices. Let Gg = mK1  

Pr  Ps…  Cx  Cy … Cz, then H = mK2  Pr+1  Ps+1 …   Cx+1 …  Cz+1 

such that L(H) =Gg. 
Case 2: G has at most two central vertices.      
Sub case 2.1: Each element in Er is adjacent to all the elements of Er+1. 

In this case, Gg is a line graph only when dr+1  3 (otherwise if v  Er+3, v, vr, 

vr+1, vr+1 form aK1,3 in Gg.  vr  Er, vr+1, vr+1 Er+1). When dr+1 = 1 or 2 that is when 

G is self-centered or bi-eccentric, Gg is complete andGg = nK1 and H = nK2 satisfies L(H) 

=Gg  when dr+1 = 3, we claim that |Er+1| = cr+1 = 2 and |Er+2|= cr+2. 

Suppose cr+2 > 2, vr  Er and any three elements in Er+2 form a K1,3 in Gg. 
Hence, cr+2 must be two. Also, we know any element in Er+1 cannot be adjacent to all the 
elements of Er+2. Therefore, each element in Er+1 is adjacent to at most one element in Er+2. 

Hence if cr+1 > 2, there exists aK1,3 in Gg formed by vr  Er, vr+1, vr+1  Er+1, and vr+2  

Er+2 , where vr+1, vr+1 are not adjacent to vr+2 in G. Hence, cr+1 must be two.  Therefore, Gg 

must be any one of F1, F2 (Fig: 3.3). But again F1 has a K1,3. Therefore, Gg = F2, that is     

G = P5, Gg = P5.                         

Hence, H = P6 satisfiesGg = L(H). 
                        
                        Er 
                              Er+1 
     
 
                              Er+2 
 
                 F2 

 
 
 
 
 
 
 
 
Figure 3.3 

                                  Er 
       
                                  Er+1 

 
                                  Er+2 
 
 
                  F1 
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Figure 3.4 
  
   Sub case 2.2:  Each element in Er is not adjacent to all the elements of Er+1  

   (a) Suppose cr = 2: Er, Er+1… contains exactly two elements if dr2 > 2 

(otherwiseK1,3 in Gg) and there cannot be any triangles, since any element of Ei cannot 
be adjacent to every element of Ei+1 and vice versa (i > r). Therefore, Gg is as in Figure 3.4. 

If dr1 > 3, Gg contains K2  K1,2 and henceGg contains the forbidden sub graph G2 

as induced sub graph.  Hence, dr1  3, When dr1=3, H = F (Figure 3.5) satisfies 

L(H) =Gg 

When dr1 = 2, G is bi-eccentric with two central vertices each is not adjacent to at 

most cr+11 elements of Er+1, If Er contains an element, which is not adjacent to more than 

three elements in Er+1,K1,3 is an induced sub graph of Gg. Hence, each element in Er is not 
adjacent to at most two elements in Er+1 and vice versa. 

This gives degree of every vertex is one or two inGg. Thus,Gg has paths or cycles as 
components.  Therefore, H is a path or cycle or a disconnected graph having components 

as paths or cycles such that L(H) =Gg.  

When dr1 = 1, G is self-centered, Gg = K2, H = 2K2 such that L(H) =Gg. 
                                          

Figure 3.5 
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 (b) Suppose cr = 1. Then dr1 is at most 3 as in the previous case. 

When dr1 = 3, Er+2 must contain exactly two elements. Otherwise,K1,3 is present 

inGg. Let  Er = {vr}, then vr must be adjacent to at least two elements of Er+1 and vr must 

be adjacent to cr+12 or cr+11 elements of Er+1 (otherwise, there exists inducedK1,3 in 

Gg).  Also every element of Er+2 must be adjacent to at least cr+12 elements in Er+1 

(otherwise,K1,3 is in Gg).  But there exists no vertex in Er+1, which is adjacent to both the 
elements of Er+2.  Hence, cr+1 = 3 or 4.  But these cases are not possible under the given 
conditions. 

When dr1 = 2, vr is not adjacent to at most two elements of Er+1.  Hence, inGg, deg vr 

= 1 or 2. Therefore,Gg = K2  (n2) K1 orGg = K1,2 (n3) K1, where n = |V(G)|. 

Hence, H = K1,2  (n2)K2 or P4  (n3)K2 satisfies the equation L(H) =Gg. 

When dr1 = 1, G = K1, H = K2. 
Thus, we have the following theorem. 
 
Theorem 3.3  

For any two graphs G and H, the equationGg = L(H) holds if (G, H) equals to 
one of the pairs of graphs given in the following. 
(1) (G, H), where G is bi-eccentric such that each central vertex is not adjacent to at most 
two peripheral vertices.  H is the union of paths, cycles and isolated vertices. 
(2) (G, H), G is self-centered or bi-eccentric with radius one and H = nK2, when               
n = |V(G)|. 
(3) (G, H), G = P5, H = P6. 
(4) (G, H), G = P6, H = F in Figure 3.5 
 
Remark: In [1] Jin Akiyama et al have solved graph equations involving line graphs, 
middle graphs and total graphs. Using this and Theorems 3.2 and 3.3 we can solve the 

graph equations M(H) = Gg,M(H) = Gg, T(H) = Gg andT(H) = Gg.   

 
4. Graph equations involving Gcg 
 VII. Gcg = L(H) 
 In Gcg, < Er >, <Er+1>, ..., <Ed> are complete sub graphs. Hence, Gcg is a line graph 

implies any vertex in Er+i is adjacent to at most one element of Er+i+1 or Er+i1 in Gcg. This 

gives each element in Ek, k > r is adjacent to all elements of Ek1 or Ek+1 in G. This is 

possible only when n = dr+1  3. 
Case 1: n = 3. 
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Elements in Er+1 cannot be adjacent to all the elements of Er+2 in G. Hence, each element in 
Er+1 is adjacent to every element of Er in G and each element of Er+2 is not adjacent to at 
most one element of Er+1 and vice-versa. This is possible only when cr+1 = cr+2 = 2. Thus, G 
is a graph with radius two diameter four and cr+1 = cr+2 = 2 such that each vertex of Er+1 is 
adjacent to every vertex of Er and vice-versa. Here H is as in Figure 4.1 
Case 2: n = 2. 
Subcase 2.1: r(G) = 1  and d(G) = 2 
 
 
 
 
 
 
                                                                       

Figure 4.1 
In this case, each element of Er is adjacent to every elements of Er+1 in G. Hence, Gcg is 

disconnected and has two components which are complete, that is Gcg = Km  Kn, where 

m = cr and n = cr+1. H = K1,m  K1,n satisfies L(H) = Gcg. 
Subcase 2.2: r(G) > 1. 

In Gcg, < Er >, < Er+1> are complete and hence, Gcg is a line graph if and only if 
each element of Er is adjacent to at most one element of Er+1 and vice-versa in Gcg. Hence 
in G, each element of Er is adjacent to cr+1-1 elements of Er+1 and each element of Er+1 is 

adjacent to cr1 elements of Er. This is possible only when cr = cr+2 = 2. Since r(G) > 1 and 
G is not self-centered, G = P4. H = Gcg = C4. 
Case 3 : n = 1. 

In this case, G is self-centered and Gcg is complete and hence it is a line graph.     
H = K1,p satisfies the graph equation Gcg = L(H).  
 Hence, we have the following theorem: 
 
Theorem 4.1  

For any two graphs G and H the equation Gcg = L(H) holds if and only if (G, H) 
equals to one of the pairs of graphs given in the following: 
(1)  (G, K1,p), where G is self-centered. 

(2)  (G, K1,m  K1,p-m), where G is a bi-eccentric graph with radius one, having m central 
vertices. 
(3)  (P4, C4). 
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VIII.Gcg = L(H) 

Gcg has no triangles. Hence, maximum number of vertices in a complete 

subgraph ofGcg is two. Hence,Gcg is a line graph if no vertex ofGcg lies in more than 

two edges; that is degree of vertices inGcg is at most two. Therefore,Gcg is union of 

paths and cycles. In this case, H is union of paths and cycles also. Hence,Gcg is a line 
graph if and only if G is a graph in which each vertex v in V(G) has at most two adjacent 
vertices with eccentricity not equal to e(v). Thus, we have the following theorem. 
 
Theorem 4.2  

For any two graphs G and H the equationGcg = L(H) holds if and only if G is a 
graph in which each vertex v in V(G) has at most two adjacent vertices with eccentricity 

not equal to e(v) and H is the union of paths and cycles satisfyingGcg = L(H). 
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