International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 5, No. 3, July – September 2014, pp. 66 - 75

Equi-eccentric point set graph, Glue graph and Complement Glue graph of a graph

T.N.Janakiraman1 , M.Bhanumathi 2 and S.Muthammai2

1 Department of Mathematics and Computer Applications National Institute of Technology, Trichirapalli 620015, Tamil Nadu, India. E-mail: janaki@nitt.edu 2 Government Arts College for Women, Pudukkottai-622001, India. E-mail: bhanu_ksp@yahoo.com, muthammai_s@yahoo.com

Abstract: For any graph G, define the Equi-eccentric point set graph Gee, on the same set of vertices, by joining two vertices in Gee if and only if they correspond to two vertices of G with equal eccentricities. Also, define the Glue graph G_g on the same set of vertices by joining two vertices in G_g if and only if *they correspond to two adjacent vertices of G or two adjacent vertices of Gee and define the complement Glue graph Gcg on the same set of vertices by joining two vertices in Gcg if and only if they correspond to two adjacent vertices ofG or two adjacent vertices of Gee. In this paper, the concept of Equi-eccentric point set graph, Glue graph and complement Glue graph of a graph are introduced and some general* and structural properties of G_{ee} , G_g and G_{cg} are presented.

Key words: Equi-eccentric point set graph, Glue graph, Complement Glue graph.

1.Introduction

We consider only finite undirected graphs without loops and multiple edges and follow Buckley and Harary [2] for definitions.

Let G be a connected (p, q) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. Let E_k denote the set of vertices of G with eccentricity k and $|E_k| = c_k$, the cardinality of E_k . We have $c_r \geq 1$ and $c_i > 1$, $i = r+1, ..., d$.[2]

Definition 1.1 [1] The Equi-eccentric point set graph G_{ee} is a graph with vertex set $V(G)$ and two vertices are adjacent if and only if they correspond to two vertices of G with equal eccentricities.

Definition 1.2 [1] The Glue graph G_{g} of a graph G is a graph with the same vertex set V(G) and two vertices are adjacent if and only if they correspond to two adjacent vertices of G or two adjacent vertices of G_{ee} ; that is $E(G_e) = E(G) \cup E(G_{ee})$.

Received: 07 April, 2014; Revised: 17 June, 2014; Accepted: 20 July, 2014

Definition 1.3 [1] The complement glue graph G_{cg} of a graph G is a graph with the same vertex set $V(G)$ and two vertices are adjacent in G_{cg} if and only if they correspond to two adjacent vertices of G or two adjacent vertices of G_{ee} , that is $E(G_{ce}) = E(G) \cup E(G_{ee})$.

It is to be noted that for a given G, the graphs G_{ee} , G_g and G_{cg} are uniquely defined, but for a given G_{ee} , G_{cg} there may exist more than one graph H such that G_{ee} = H_{ee} and $G_g = H_g$, $G_{cg} = H_{cg}$.

 The importance of perfect graphs is both theoretical and practical because of their application to perfect channels in communication theory, problems in operations research, optimizing municipal services etc. The Glue graph G_{g} and the Complement Glue graph G_{cg} are Hamiltonian and perfect. Also, G is a spanning subgraph of G_g and G is a spanning subgraph of G_{cg} and connectivity of G_g increases and diameter of G_g decreases as that of G. Hence, these graphs will be useful in communication theory.

Throughout this paper, if not mentioned, G means a connected (p, q) graph with diameter d and radius r.

2. Properties of G_{ee}, G_g

Some observations:

2.1. G_{ee} is disconnected if $d \neq r$, with $n = d-r+1$ components $C_1, C_2, ..., C_n$, where each C_i is a complete graph on c_{r+i-1} .

2.2. $G = G_{ee}$ if and only if G is complete.

2.3. G is self-centered if and only if G_{ee} is complete.

2.4. G_{ee} has K_1 as a component if and only if G has only one central vertex.

2.5. G_{ee} = G if and only if G is a star (or G is totally disconnected).

2.6. If G is not self-centered, G_{ee} is a complete multi-partite graph.

2.7. If G has an unique central vertex v, G_{ee} is a connected graph with the same central vertex v with radius one.

2.8. G_{ee} is a star graph if and only if G is bi-eccentric with exactly one central vertex.

2.9. If G has more than one central vertex such that G is not self-centered, G_{ee} is selfcentered with diameter two.

2.10. The induced sub graphs formed by E_r , E_{r+1} , ..., E_d are complete in G_r .

2.11. If $|V(G)| \geq 3$, then G_g has no pendent vertices and has at least two central vertices.

2.12. G is a spanning subgraph of G_g . G_g is complete if and only if G is self-centered or G is of radius one.

2.13. If G is connected such that G has no edge uv \in E(G) with $e(u) = e(v)$, then G_{ee} is a spanning subgraph of G.

2.14. If $G = P_{2m+1}$, $G_{ee} = mK_2 \cup K_1$ and if $G = P_{2m}$, $G_{ee} = mK_2$.

2.15. $(G_1)_{ee} \cong (G_2)_{ee}$, where G_1 , G_2 are connected graphs if and only if for each E_k of G_1 ; G_2 has some E_k' with the same number of vertices and vice-versa.

2.16. G is self-centered if and only if G_g and G_{cg} are complete and are equal to K_p .

Theorem 2.1: G_{ee} is geodetic if and only if G is bi-eccentric with unique central vertex.

Proof: Assume G_{ee} is geodetic. We claim that G is bi-eccentric with unique central node. Suppose not, G is n-eccentric, where $n \geq 3$. (G is not self-centered, since if G is selfcentered, G_{ee} is totally disconnected). G_{ee} is a complete n-partite graph $K(c_r, c_{r+1}, ..., c_d)$, where $n = d-r+1$, $c_r \ge 1$, c_{r+1} , ..., $c_d \ge 2$. Hence, if $n \ge 3$, c_{r+1} , $c_{r+2} \ge 2$ implies that there is an induced C_4 in G_{ee} . Therefore G_{ee} is not geodetic, which is a contradiction. Therefore, $n = 2$, that is G is bi-eccentric. Now, suppose $c_r > 1$, $G_{ee} = K_{m,n}$ where $m = c_r$, $n = c_{r+1}$ contains an induced C_4 . Hence, c_r must be one. This proves the claim. Conversely, assume that G is bi-eccentric with unique central vertex. $G_{ee} = K_1 \cup K_n$, $G_{ee} = K_{1,n}$ which is a star and hence G_{ee} is geodetic.

Theorem 2.2: Let G be a geodetic graph. Then G_g is geodetic if and only if G is one of the following:

(1) G is self-centered. (2) G is a graph with diameter two and radius one.

Proof: Let G be a geodetic graph such that G_g is also geodetic.

Case 1: G_g is complete.

In this case G is self-centered or bi-eccentric with radius one.

Case 2: G_g is not complete.

Since G_g is not complete, G is not self-centered. Therefore, G is n eccentric, where n = d-r+1. We claim that n = 2. Suppose not, n \geq 3. This implies that G_g must have a C_4 or K_4 —e. Hence, G_g is not geodetic, which is a contradiction to our assumption. Hence, n must be two. That is, G is bi-eccentric.

Claim G is of radius one.

Suppose not. Let us assume that G is a bi-eccentric graph with radius $r > 1$. There exists no element in E_r , which is adjacent to all the elements of E_{r+1} . If there exists $u \in E_r$ which is adjacent to exactly one element in E_{r+1} , there exists an induced C_4 in G_{g} , otherwise there is an induced K_4 —e in G_{ρ} , which is a contradiction to our assumption. Hence, G is of radius one and diameter two. Proof of the converse is obvious.

Remark: In the above case, G_g is always complete.

Definition 2.1: A graph is said to be *Glue* if it is the glue graph of some graph H. A graph is said to be *complement Glue* if it is the complement glue graph of some graph H.

Definition 2.2 A graph is said to be *unique glue graph* if it is the Glue graph of exactly one graph.

Lemma 2.1: G is a Glue graph if and only if there exists a spanning sub graph H of G such that $H_g = G$.

Proof: G is a Glue graph if and only if there exists a graph H such that $H_g = G$ by Definition 2.1. But H is a spanning sub graph of H_g . Hence the lemma is proved.

Theorem 2.3: Let H be a connected graph, then H is unique Glue if and only if $H = G_g$, where $G = P_{2n}$.

Proof: By Lemma 2.1, H is a Glue graph if and only if there exists a spanning sub graph G of H such that $H = G_g$.

Assume G = P_{2n} such that H = G_{e} . Then H = F, where F is given in the following Figure.

We claim that F is unique Glue. Suppose not, there exists G' ($\neq P_{2n}$) such that G'_g = F. Therefore, G' contains 2n vertices and $V(G')$ is partitioned into V_1 , V_2 , ..., V_n each containing exactly two elements with equal eccentricities since G_g' is triangle free. Since $G' \neq P_{2n}$, the central vertices in G' must be adjacent to more than one element of E_{n+1} . This implies that G'_g contains a clique with more than two vertices, which is a contradiction to G'_g = F.

Therefore, H is unique Glue. On the other hand, assume H is unique Glue. Since H is Glue, there exists G, a spanning sub graph of H such that $H = G_g$. Now, we claim that $G = P_{2n}$.

Let $E_k = \{u \in V(G): e(u) = k \text{ in } G\}$. If there exists k such that $\left|E_k\right| > 2$, for $k \geq r$, we can find more than one graph G such that $H = G_{g}$, which is a contradiction to our assumption. Therefore, $|E_k|$ is at most 2 for all $k \ge r$. But we know that $|E_k| \ge 2$, for all k > r. Hence, $|E_k| = 2$ for all k > r, where r is the radius of G. Next, claim that $|E_r| = 2$.

Suppose not, $\left|E_r\right| = 1$, that is G is uni-central and $\left|E_r\right| = 2$ for all $k > r$. Let v be the central vertex of G. Then v must be adjacent to at least two vertices of eccentricity r+1. But $\left| \begin{array}{c} E_{r+1} \end{array} \right| = 2$. Let $E_{r+1} = \{u_1, u_2\}$. v is adjacent to both u_1 and u_2 in G. Also, the two elements in E_k are not adjacent to each other in G for $k > r+1$. Therefore, $G = P_{2n+1}$. Also, when G = P_{2n+1} , G_g = F_g , where F is given in the following Figure.

Thus, H is not unique Glue, which is a contradiction. Hence, $\left| E_r \right| = 2$. Therefore, $|E_r| = 2$, for all $k = r, r+1, ..., d$.

Also, each central vertex is adjacent to exactly one vertex in E_{r+1} . Otherwise, G is of the form F_1 or F_2 . This gives $F_{1g} = F_{2g} = F_{3g} = H$, which is again a contradiction to H is unique Glue. Hence, $|E_r| = 2$ and each central vertex is adjacent to exactly one vertex of E_{r+1} . This implies that $G = P_{2n}$ and $H = G_{g}$. This proves the theorem.

3. Some more properties of Gg

Theorem 3.1: G_g is Hamiltonian.

Proof: In G_g , the induced sub graphs formed by vertices of E_i are complete. Now, consider E_{d-1} . We know at least two elements of E_d are adjacent to two different elements of E_{d-1} .

Let $v_d \in E_d$ be adjacent to $v_{d-1} \in E_{d-1}$ and $v_d' \in E_d$ be adjacent to $v_{d-1}' \in E_{d-1}$. Since $\lt E_d$ > is complete in G_g , starting from v_d , traverse all the vertices of E_d and finally come to v_d' . Join v_d to v_{d-1} and v_d' to v_{d-1}' . Since $\lt E_{d-1}$ is complete, we can traverse all the elements in E_{d-1} and there are at least two edges in G, joining distinct elements in E_{d-1} to E_{d-2} . So we can go to E_{d-2} . Proceeding like this, we can traverse all the vertices of G_g and get a Hamiltonian cycle in G_g . This proves the theorem.

Theorem 3.2: Let G be a connected graph with radius r and diameter d.

- 1) Clique cover number $\theta(G_{\sigma}) = d-r$ or $d-r+1$
- 2) Independence number $\beta_0(G_g) = d-r$ or $d-r+1$
- 3) $\omega(G_{\sigma}) = \max \{c_r + c_{r+1}, c_{r+2}, \ldots, c_d\}$ or max $\{c_r, c_{r+1}, \ldots, c_d\}$
- 4) $\chi(G_{\nu}) = \max \{c_r + c_{r+1}, c_{r+2}, \ldots, c_d\}$ or $\max\{c_r, c_{r+1}, \ldots, c_d\}$

Proof of (1): Let G be a graph with radius r and diameter d. Therefore G is n eccentric where n = d-r+1. If every element of E_r is adjacent to every element of E_{r+1}, < E_r \cup E_{r+1} > is complete in G_g , and hence there are d-r complete sub graphs and hence $\theta(G_g) = d-r$. If there exists an element in E_r , which is not adjacent to some elements of E_{r+1} , $\theta(G_{\sigma}) = d-r+1.$

Proof of (2): If each element of E_r is adjacent to all elements of E_{r+1} , then $\lt E_r \cup E_{r+1}$ is complete in Gg. Therefore, taking one element from each clique (which are not adjacent) we can form an independent set, whose cardinality is largest. This proves the result (2).

Proof of (3): If each $v_r \in E_r$ is adjacent to all elements of $E_{r+1} < E_r \cup E_{r+1} >$ is complete in G_{g} . Hence, $\omega(G_{g})$ = max { $c_{r}+c_{r+1}$, c_{r+2} ,..., c_{d} }. If there exists $v_{r} \in E_{r+1}$, not adjacent to some elements of E_{r+1} , $\omega(G_g) = \max\{c_r, c_{r+1}, \ldots, c_d\}$. This proves the result (3).

Proof of (4): If each element of E_r is adjacent to all elements of E_{r+1} , $\lt E_r \cup E_{r+1}$ is complete in G_{g} . If $\lt E_r \cup E_{r+1} >$ is complete, let $c_k = \max \{c_r + c_{r+1}, c_{r+2}, ..., c_d\}$ or let $c_k = \max \{ c_r, c_{r+1},..., c_d \}$. Color the vertices in E_k by k colors. Now, an element in E_{k+1} or E_{k-1} is not adjacent to at least one element of E_k , and $c_i \leq c_k$ for $i \neq k$.

Thus, we can color the elements in E_{k+1} or elements in E_{k-1} by at most k colors. Similarly, we can color all the elements of $V(G_g)$ with at most k colors, so that no two adjacent points have the same color. Thus, $\chi(G_g) \leq c_k$. This proves the result (4) and hence the Theorem.

Lemma 3.1: G_g is free from induced C_n 's and their compliments for $n \geq 5$.

Proof: From the construction of G_g , we can see that G_g is free from induced cycles of length n, n \geq 5. Now, we shall prove that G_g is free from C_n, n \geq 5. Suppose G_g contains an induced C_5 . Let v_1 , v_2 , v_3 , v_4 , v_5 be the vertices of G_g which form an induced C_5 . Note that, (1) These five vertices cannot be in same E_p i $\geq r$. (2) Three or more vertices cannot lie in same E_i . (3) At the most two vertices (which are not adjacent in C_5 that is independent) lie in same E_i . (4) Suppose in G_g , $v_1 \in E_i$, $v_2 \in E_{i+1}$, ..., $v_5 \in E_{i+4}$ then C_5 is not induced, since v₁, v₃ are adjacent in G_g; v₂, v₄ are adjacent in G_g etc. (5) Suppose v₁ $\in E_i$; $v_2, v_5 \in E_{i+1}$; $v_3, v_4 \in E_{i+2}$; then also C_5 is not induced since in G_g every element of E_i is adjacent to elements of E_{i+2} , E_{i+3} etc.

Similarly, in all possible cases, we can see that C_5 is not induced in G_g . Therefore, G_g is free from C_5 and its complement. In a similar way, we can prove that G_g is free from C_n , for $n \ge 5$. Hence, G_g is free from C_n 's and C_n 's for $n \ge 5$.

Theorem 3.3: G_g is perfect.

Proof: We can prove this in two ways.

By Lemma 3.1, G_g is free from induced C_n and $\overline{C_n}$ for all $n \geq 5$. Therefore, G_g is Berge and is free from C_n and C_n for $n \geq 6$. Therefore, G_g is perfect.

By theorem 3.2 $\chi(G_g) = \omega(G_g)$, $\beta o(G_g) = \theta(G_g)$. Also, as in theorem 3.2, we can prove that $\chi(H) = \omega(H)$ and $\beta o(H) = \theta(H)$ for any induced sub graph H of G_g . Hence, G_g is perfect.

 Sridharan and George [6] has defined B-Graph. A graph is a B-graph if every vertex is in a maximum independent set.

Lemma 3.2: If each element of E_{r+1} is adjacent to every element of E_r , then G_g is a B-graph.

Proof: In this case $\lt E_r \cup E_{r+1}$ > forms a complete sub graph in G_g. Hence, there are d-r complete sub graphs in G_g . We know that an element $v_{r+i} \in E_{r+i}$ is not adjacent to every element of E_{r+i-1} , and is not adjacent to every element of E_{r+i+1} . Therefore, taking one element from each complete sub graph $\lt E_r \cup E_{r+1} > \lt E_{r+2} >$, ..., $\lt E_d >$ in G_g (which are not adjacent) we can form an independent set with maximum cardinality $d-r$. Also, in this case every vertex of G_g is in a maximum independent set. Hence, G_g is a B-graph.

Lemma 3.3: If each element of E_{r+1} is not adjacent to all elements of E_r and $c_r > 1$, then G_g is a B-graph.

Proof: By the given conditions there are $d-r+1$ complete sub graphs in G_{φ} , and we can form an independent set with maximum cardinality $d-r+1$, by taking one element from each E_{r+i} (which are not adjacent) and every vertex of G_g is in some maximum independent set. Therefore, G_{g} is a B-graph.

Lemma 3.4: If G is uni-central with central vertex v_r and v_r is not adjacent to every elements of E_{r+1} , G_g is not a B-graph.

Proof: By the assumption $\lt E_r \cup E_{r+1} >$ is not complete. Therefore, there are d-r+1 complete sub graphs $\langle E_r \rangle, \langle E_{r+1} \rangle, \dots, \langle E_d \rangle$. Let $D = \{v_r\} \cup \{v_{r+1}\} \cup \dots \cup \{v_d\}$, where v_{r+1} is not adjacent to the central vertex v_r and v_{r+i} is not adjacent to v_{r+i-1} and v_{r+i+1} . D is a maximum independent set in G_g , $\beta(G_g) = d-r+1$. But if $v_{r+1}' \in E_{r+1}$ is adjacent to v_r , then v_{r+1} is not in any maximum independent set of G_g . Therefore, G_g is not a B-graph.

Theorem 3.4: G_g is not a B-graph if and only if G is uni-central and there exists at least one vertex with eccentricity r+1, which is not adjacent to the center.

Proof: Follows from Lemmas 3.2, 3.3 and 3.4.

Theorem 3.5: G_g is pancyclic if $G \neq P_{2n}$.

Proof: Let $G \neq P_{2n}$. Then G_g contains cycles (not induced) of length 3, 4, …, $|V(G)|$. Therefore, G_g is pancyclic. If $G = P_{2n}$, G_g does not contain cycles of length 3, 5, 7, ... Hence, G_g is not pancyclic when $G = P_{2n}$.

4. Properties of the graph G_{cg}

Some observations of graph G_{cg} and G_{cg}

(1) Diameter and radius G_{cg} is less then or equal to that of G. Diameter and radius of G_{cg} is greater than or equal to that of G.

(2) For a connected G, the graph G_{cg} is always connected, but G_{cg} may be disconnected.

(3) G_{cg} is complete if and only if G is self-centered. G_{cg} is totally disconnected if and only if G is self-centered.

(4) If $r(G) = 1$ and $d(G) = 2$, then G_{cg} is complete bipartite.

(5) If $r(G) = 1$ with only one central vertex, then G_{cg} is complete and G_{cg} is $K_{1,p-1}$.

(6) G is a spanning sub graph of G_{cg} and \overline{G}_{cg} is a spanning sub graph of G.

(7) If $r(G) > 1$ and G is bi-eccentric, then G_{cg} is a bipartite graph.

(8) If G_{cg} is connected then each vertex of E_i for $i > r$ has at least one predecessor.

The first two propositions are immediate from the definitions.

Proposition 4.1: $G_{cg} = G$ if and only if G has no edge $e = uv$, where $e_G(u) = e_G(v)$.

Proposition 4.2: If G is a tree with uni-center, then $G_{cg} = G$. If G is a tree with bi-center, then G_{cg} is disconnected.

Proposition 4.3: G_{cg} has no triangles. In general it has no odd cycles. Proof: If G has a cycle C₃, then at least two vertices of that C₃ have the same eccentricity

in G. Hence, in G_{cg} at least one edge of that triangle is deleted. Hence, G_{cg} has no triangles. Similarly, it has no odd cycles.

Remark 4.1: G_{cg} may have some induced C_{2n} .

Proposition 4.4: G_{cg} is connected if and only if for any two vertices u and v of G, there exists a path joining u and v in which end points of each edge have different eccentricities.

Proof: Proof is clear from the definition.

Proposition 4.5: G_{cg} is Hamiltonian if and only if G has a Hamilton cycle in which end points of each edge have different eccentricities.

Proof: Proof is clear from the definition. Note that G_{cg} is Hamiltonian only when p is even.

Proposition 4.6: $d-1 \leq |E(G_{cg})| \leq \min \{q, [p^2/4]\}.$

Proof: G_{cg} has no triangles. Hence, $|E(G_{cg})| \leq [p^2/4]$ and G_{cg} is a sub graph of G. Hence, $|E(G_{cg})| \leq min \{q, [p^2/4]\}.$ Since d is the diameter of G, G has at least one diametral path of length d, which has at least two edges joining vertices of different eccentricities (namely d and $d-1$) and corresponding to other vertices there exists at least $d-3$ edges joining vertices of different eccentricities. This proves the proposition.

Remark 4.2: If $G = P_{2n}$, $\begin{vmatrix} 1 & 1 \ 1 & 1 \end{vmatrix} = d-1$. When $G = P_{2n+1}$, $\begin{vmatrix} 1 & 1 \ 1 & 1 \end{vmatrix} = d$ = q.

75 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Other properties of G_{cg} and G_{cg} are studied and published in [4].

References:

- [1] Bhanumathi, M., (2004) "A Study on some Structural properties of Graphs and some new Graph operations on Graphs" Thesis, Bharathidasan University, Tamil Nadu, India.
- [2] Fred Buckley and Frank Harary, Distance in Graphs, Addison Wesley, (1989).
- [3] Frank Harary, Graph theory, Addison Wesley, Reading Mass, (1969).
- [4] Janakiraman,T.N., Bhanumathi,M., Muthammai,S, Complement Glue Graph of a graph, Proceedings of the Second National Conference on Mathematical and Computational Models, December 11-12, 2003., P.S.G College of Technology, Coimbatore 641 004.
- [5] Janakiraman,T.N., Bhanumathi,M., Muthammai,S., Eccentricity properties of Glue Graphs, Journal of Physical Sciences, *Vol. 12, 2008, 123-131*.
- [6] M.R.Sridharan and O.T.George, On B-graphs, Indian Journal of pure applied math., 12(9) 1088-1093 Sep 1981.
- [7] G.Ravindra, Perfect graphs, Proceedings of National workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli.