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Abstract: For any graph G, define the Equi-eccentric point set graph Gee, on the same set of vertices, by 
joining two vertices in Gee if and only if they correspond to two vertices of G with equal eccentricities. 
Also, define the Glue graph Gg on the same set of vertices by joining two vertices in Gg if and only if 
they correspond to two adjacent vertices of G or two adjacent vertices of Gee and define the complement 
Glue graph Gcg on the same set of vertices by joining two vertices in Gcg if and only if they correspond to 
two adjacent vertices ofG or two adjacent vertices of Gee. In this paper, the concept of Equi-eccentric 
point set graph, Glue graph and complement Glue graph of a graph are introduced and some general 
and structural properties of Gee, Gg and Gcg are presented. 
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1.Introduction 

We consider only finite undirected graphs without loops and multiple edges and 
follow Buckley and Harary [2] for definitions. 

Let G be a connected (p, q) graph with vertex set V = V(G) and edge set               

E = E(G). Let Ek denote the set of vertices of G with eccentricity k and Ek = ck, the 

cardinality of Ek. We have cr  1 and ci >1, i = r+1, …,d.[2] 

Definition 1.1 [1] The Equi-eccentric point set graph Gee is a graph with vertex set V(G) 
and two vertices are adjacent if and only if they correspond to two vertices of G with equal 
eccentricities. 

Definition 1.2 [1] The Glue graph Gg of a graph G is a graph with the same vertex set 
V(G) and two vertices are adjacent if and only if they correspond to two adjacent vertices 

of G or two adjacent vertices of Gee; that is E(Gg) = E(G)  E(Gee). 
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Definition 1.3 [1] The complement glue graph Gcg of a graph G is a graph with the same 
vertex set V(G) and two vertices are adjacent in Gcg if and only if they correspond to two 

adjacent vertices ofG or two adjacent vertices of Gee, that is E(Gcg) = E(G)  E(Gee). 
 It is to be noted that for a given G, the graphs Gee, Gg and Gcg are uniquely 
defined, but for a given Gee, Gg, Gcg there may exist more than one graph H such that Gee = 
Hee and Gg = Hg , Gcg = Hcg. 

 The importance of perfect graphs is both theoretical and practical because of their 
application to perfect channels in communication theory, problems in operations research, 
optimizing municipal services etc. The Glue graph Gg and the Complement Glue graph 

Gcg are Hamiltonian and perfect. Also, G is a spanning subgraph of Gg andG is a 
spanning subgraph of Gcg and connectivity of Gg increases and diameter of Gg decreases as 
that of G. Hence, these graphs will be useful in communication theory. 

Throughout this paper, if not mentioned, G means a connected (p, q) graph with 
diameter d and radius r. 

2. Properties of Gee, Gg 

Some observations: 

2.1. Gee is disconnected if d  r, with n = dr+1 components C1, C2, ..., Cn, where each Ci 

is a complete graph on cr+i1. 

2.2. G = Gee if and only if G is complete. 

2.3. G is self-centered if and only if Gee is complete. 

2.4. Gee has K1 as a component if and only if G has only one central vertex. 

2.5. Gee =G if and only if G is a star (or G is totally disconnected). 

2.6. If G is not self-centered,Gee is a complete multi-partite graph. 

2.7. If G has an unique central vertex v,Gee is a connected graph with the same central 
vertex v with radius one. 

2.8.Gee is a star graph if and only if G is bi-eccentric with exactly one central vertex. 

2.9. If G has more than one central vertex such that G is not self-centered,Gee is self-
centered with diameter two. 

2.10. The induced sub graphs formed by Er, Er+1, …, Ed are complete in Gg. 
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2.11. If V(G)  3, then Gg has no pendent vertices and has at least two central vertices. 

2.12. G is a spanning subgraph of Gg. Gg is complete if and only if G is self-centered or G 
is of radius one. 

2.13. If G is connected such that G has no edge uv  E(G) with e(u) = e(v), then Gee is a 

spanning subgraph ofG. 

2.14. If G = P2m+1 , Gee = mK2  K1 and if G = P2m , Gee = mK2. 

2.15. (G1)ee  (G2)ee, where G1, G2 are connected graphs if and only if for each Ek of G1; G2 

has some Ek with the same number of vertices and vice-versa. 

2.16. G is self-centered if and only if Gg and Gcg are complete and are equal to Kp. 

Theorem 2.1:Gee is geodetic if and only if G is bi-eccentric with unique central vertex. 

Proof: AssumeGee is geodetic. We claim that G is bi-eccentric with unique central node. 

Suppose not, G is n-eccentric, where n  3. (G is not self-centered, since if G is self-

centered,Gee is totally disconnected).Gee is a complete n-partite graph K(cr, cr+1, ..., cd), 

where n = dr+1, cr  1, cr+1, …, cd  2. Hence, if n  3, cr+1, cr+2  2 implies that there is 

an induced C4 inGee. ThereforeGee is not geodetic, which is a contradiction. Therefore, 

n = 2, that is G is bi-eccentric. Now, suppose cr > 1,Gee = Km,n where m = cr, n = cr+1 
contains an induced C4. Hence, cr must be one. This proves the claim. Conversely, assume 

that G is bi-eccentric with unique central vertex. Gee = K1  Kn,Gee =  K1,n which is a star 

and henceGee is geodetic. 

Theorem 2.2: Let G be a geodetic graph. Then Gg is geodetic if and only if G is one of the 
following: 
(1) G is self-centered. (2) G is a graph with diameter two and radius one. 

Proof:  Let G be a geodetic graph such that Gg is also geodetic. 
Case 1:  Gg is complete. 
In this case G is self-centered or bi-eccentric with radius one. 
Case 2: Gg is not complete. 
Since Gg is not complete, G is not self-centered. Therefore, G is n eccentric, where n =    

dr+1. We claim that n = 2. Suppose not, n  3. This implies that Gg must have a C4 or 

K4e. Hence, Gg is not geodetic, which is a contradiction to our assumption. Hence, n 
must be two. That is, G is bi-eccentric. 
Claim  G is of radius one. 
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 Suppose not. Let us assume that G is a bi-eccentric graph with radius r > 1. There 

exists no element in Er, which is adjacent to all the elements of Er+1. If there exists u  Er 
which is adjacent to exactly one element in Er+1, there exists an induced C4 in Gg, 

otherwise there is an induced K4e in Gg, which is a contradiction to our assumption. 
Hence, G is of radius one and diameter two. Proof of the converse is obvious. 

Remark: In the above case, Gg is always complete. 

Definition 2.1: A graph is said to be Glue if it is the glue graph of some graph H. A graph 
is said to be complement Glue if it is the complement glue graph of some graph H. 

Definition 2.2 A graph is said to be unique glue graph if it is the Glue graph of exactly one 
graph. 

Lemma 2.1: G is a Glue graph if and only if there exists a spanning sub graph H of G such 
that Hg = G. 

Proof: G is a Glue graph if and only if there exists a graph H such that Hg = G by 
Definition 2.1. But H is a spanning sub graph of Hg. Hence the lemma is proved. 

Theorem 2.3: Let H be a connected graph, then H is unique Glue if and only if H = Gg, 
where G = P2n. 
Proof: By Lemma 2.1, H is a Glue graph if and only if there exists a spanning sub graph G 
of H such that H = Gg. 
Assume G = P2n such that H = Gg. Then H = F, where F is given in the following Figure. 

 We claim that F is unique Glue. Suppose not, there exists G ( P2n) such that Gg 
= F. Therefore, G contains 2n vertices and V(G) is partitioned into V1, V2, ..., Vn each 

containing exactly two elements with equal eccentricities since Gg is triangle free. Since 

G  P2n, the central vertices in G must be adjacent to more than one element of Er+1. 

This implies that Gg contains a clique with more than two vertices, which is a 

contradiction to Gg = F. 

  

 

Therefore, H is unique Glue. On the other hand, assume H is unique Glue. Since H is 
Glue, there exists G, a spanning sub graph of H such that H = Gg. Now, we claim that       
G = P2n.  
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Let Ek = {u  V(G):e(u) = k in G}. If there exists k such that  Ek > 2, for k  r, 
we can find more than one graph G such that H = Gg, which is a contradiction to our 

assumption. Therefore,  Ek is at most 2 for all k  r. But we know that  Ek  2, for all 

k > r. Hence, Ek = 2 for all k > r, where r is the radius of G. Next, claim that  Er = 2.
  

 Suppose not,  Er = 1, that is G is uni-central and  Er = 2 for all k > r. Let v be 
the central vertex of G. Then v must be adjacent to at least two vertices of eccentricity r+1. 

But  Er+1 = 2. Let Er+1 = {u1, u2}. v is adjacent to both u1 and u2 in G. Also, the two 
elements in Ek are not adjacent to each other in G for k > r+1. Therefore, G = P2n+1. Also, 
when G = P2n+1, Gg = Fg, where F is given in the following Figure.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fg                          F                   F1                      F2 

 

Thus, H is not unique Glue, which is a contradiction. Hence,  Er = 2. Therefore,            

 Er = 2, for all k =  r, r+1, …, d. 
 Also, each central vertex is adjacent to exactly one vertex in Er+1. Otherwise, G is 
of the form F1 or F2. This gives F1g = F2g = F3g = H, which is again a contradiction to H is 

unique Glue. Hence, Er = 2 and each central vertex is adjacent to exactly one vertex of 
Er+1. This implies that G = P2n and H = Gg. This proves the theorem. 

3. Some more properties of Gg 

Theorem 3.1: Gg is Hamiltonian. 

Proof: In Gg, the induced sub graphs formed by vertices of Ei are complete. Now, consider 

Ed1. We know at least two elements of Ed are adjacent to two different elements of Ed1. 
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Let vd  Ed be adjacent to vd1  Ed1 and vd  Ed be adjacent to vd1  Ed1. Since < Ed 

> is complete in Gg, starting from vd, traverse all the vertices of Ed and finally come to vd. 
Join vd to vd1 and vd to vd1. Since < Ed1 > is complete, we can traverse all the elements 

in Ed1 and there are at least two edges in G, joining distinct elements in Ed1 to Ed2. So 

we can go to Ed2. Proceeding like this, we can traverse all the vertices of Gg and get a 
Hamiltonian cycle in Gg. This proves the theorem. 

Theorem 3.2: Let G be a connected graph with radius r and diameter d.  

1)  Clique cover number (Gg) = dr or dr+1 

2) Independence number o(Gg) = dr or dr+1 

3) (Gg) = max { cr+cr+1, cr+2,…, cd} or max { cr, cr+1,…, cd} 

4) (Gg) = max { cr+cr+1, cr+2,…, cd} or max{ cr, cr+1, …, cd} 

Proof of (1): Let G be a graph with radius r and diameter d. Therefore G is n eccentric 

where n = dr+1. If every element of Er is adjacent to every element of Er+1, < Er  Er+1 > 

is complete in Gg, and hence there are dr complete sub graphs and hence (Gg) = dr. 
If there exists an element in Er, which is not adjacent to some elements of Er+1,            

(Gg) = dr+1. 

Proof of (2): If each element of Er is adjacent to all elements of Er+1, then < Er  Er+1 > is 
complete in Gg. Therefore, taking one element from each clique (which are not adjacent) 
we can form an independent set, whose cardinality is largest. This proves the result (2). 

Proof of (3): If each vr  Er is adjacent to all elements of Er+1, < Er Er+1 > is complete in 

Gg. Hence, (Gg) = max { cr+cr+1, cr+2,…, cd }. If there exists vr  Er+1, not adjacent to 

some elements of Er+1, (Gg) = max{cr, cr+1,…, cd}. This proves the result (3). 

Proof of (4): If each element of Er is adjacent to all elements of Er+1, < Er  Er+1 > is 

complete in Gg. If < Er  Er+1 > is complete, let ck
 = max {cr+cr+1, cr+2, …, cd} or let            

ck = max { cr, cr+1,…, cd}. Color the vertices in Ek by k colors. Now, an element in Ek+1 or 

Ek1 is not adjacent to at least one element of Ek, and ci  ck for i  k. 

 Thus, we can color the elements in Ek+1 or elements in Ek1 by at most k colors. 
Similarly, we can color all the elements of V(Gg) with at most k colors, so that no two 

adjacent points have the same color. Thus, (Gg)  ck. This proves the result (4) and 
hence the Theorem. 
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Lemma 3.1: Gg is free from induced Cn’s and their compliments for n  5.  

Proof: From the construction of Gg, we can see that Gg is free from induced cycles of 

length n, n  5. Now, we shall prove thatGg is free from Cn, n  5. SupposeGg contains 
an induced C5. Let v1, v2, v3, v4, v5 be the vertices of Gg which form an induced C5. Note 

that, (1) These five vertices cannot be in same Ei, i  r. (2) Three or more vertices cannot 
lie in same Ei. (3) At the most two vertices (which are not adjacent in C5 that is 

independent) lie in same Ei. (4) Suppose inGg, v1  Ei, v2  Ei+1, …, v5  Ei+4 then C5 is 

not induced, since v1, v3 are adjacent inGg; v2, v4 are adjacent in Gg etc. (5) Suppose v1 

 Ei; v2, v5  Ei+1; v3, v4  Ei+2; then also C5 is not induced since inGg every element of 
Ei is adjacent to elements of Ei+2, Ei+3 etc. 

Similarly, in all possible cases, we can see that C5 is not induced inGg. Therefore, 

Gg is free from C5 and its complement. In a similar way, we can prove thatGg is free 

from Cn, for n  5. Hence, Gg is free from Cn’s and Cn’s for n  5. 

Theorem 3.3: Gg is perfect. 

Proof:  We can prove this in two ways. 

By Lemma 3.1, Gg is free from induced Cn andCn for all n  5. Therefore, Gg is Berge 

and is free from Cn andCn for n  6. Therefore, Gg is perfect. 

By theorem 3.2 (Gg) = (Gg), o(Gg) = (Gg). Also, as in theorem 3.2, we can prove 

that (H) = (H) and o(H) = (H) for any induced sub graph H of Gg. Hence, Gg is 
perfect. 

 Sridharan and George [6] has defined B-Graph. A graph is a B-graph if every 
vertex is in a maximum independent set. 

Lemma 3.2: If each element of Er+1 is adjacent to every element of Er, then Gg is a B-graph.  

Proof: In this case < Er  Er+1 > forms a complete sub graph in Gg. Hence, there are dr 

complete sub graphs in Gg. We know that an element vr+i  Er+i is not adjacent to every 

element of Er+i1, and is not adjacent to every element of Er+i+1. Therefore, taking one 

element from each complete sub graph < Er  Er+1 >, < Er+2 >, …, < Ed > in Gg (which are 

not adjacent) we can form an independent set with maximum cardinality dr. Also, in 
this case every vertex of Gg is in a maximum independent set. Hence, Gg is a B-graph. 
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Lemma 3.3: If each element of Er+1 is not adjacent to all elements of Er and cr >1, then Gg 
is a B-graph. 

Proof: By the given conditions there are dr+1 complete sub graphs in Gg, and we can 

form an independent set with maximum cardinality dr+1, by taking one element from 
each Er+i (which are not adjacent) and every vertex of Gg is in some maximum 
independent set. Therefore, Gg is a B-graph. 

Lemma 3.4: If G is uni-central with central vertex vr and vr is not adjacent to every 
elements of Er+1, Gg is not a B-graph. 

Proof: By the assumption < Er  Er+1 > is not complete. Therefore, there are dr+1 

complete sub graphs < Er >, < Er+1 >, …, < Ed >. Let D = { vr }  {vr+1}  …  {vd}, where 
vr+1 is not adjacent to the central vertex vr and vr+i is not adjacent to vr+i-1 and vr+i+1. D is a 

maximum independent set in Gg, β(Gg) = dr+1. But if vr+1  Er+1 is adjacent to vr, then 

vr+1 is not in any maximum independent set of Gg. Therefore, Gg is not a B-graph. 

Theorem 3.4: Gg is not a B-graph if and only if G is uni-central and there exists at least 
one vertex with eccentricity r+1, which is not adjacent to the center. 

Proof: Follows from Lemmas 3.2, 3.3 and 3.4. 

Theorem 3.5: Gg is pancyclic if G  P2n. 

Proof: Let G  P2n. Then Gg contains cycles (not induced) of length 3, 4, …, V(G). 
Therefore, Gg is pancyclic. If G = P2n, Gg does not contain cycles of length 3, 5, 7, …. 
Hence, Gg is not pancyclic when G = P2n. 

4. Properties of the graph Gcg 

Some observations of graph Gcg  andGcg  

(1) Diameter and radius Gcg is less then or equal to that of G. Diameter and radius ofGcg 

is greater than or equal to that of G.                                                                                                                       

(2) For a connected G, the graph Gcg is always connected, butGcg may be disconnected. 

(3) Gcg is complete if and only if G is self-centered.Gcg is totally disconnected if and only 
if G is self-centered. 

(4) If r(G ) = 1 and d(G) = 2, thenGcg is complete bipartite. 
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(5) If r(G) = 1 with only one central vertex, then Gcg is complete andGcg is K1,p1. 

(6)G is a spanning sub graph of Gcg andGcg is a spanning sub graph of G. 

(7) If r(G) > 1 and G is bi-eccentric, thenGcg is a bipartite graph. 

(8) IfGcg is connected then each vertex of Ei for i > r has at least one predecessor. 

The first two propositions are immediate from the definitions. 

Proposition 4.1: Gcg =G if and only if G has no edge e = uv, where eG(u) = eG(v). 

Proposition 4.2: If G is a tree with uni-center, thenGcg = G. If G is a tree with bi-center, 

thenGcg is disconnected. 

Proposition 4.3:Gcg has no triangles. In general it has no odd cycles. 
Proof: If G has a cycle C3, then at least two vertices of that C3 have the same eccentricity 

in G. Hence, inGcg, at least one edge of that triangle is deleted. Hence,Gcg has no 
triangles. Similarly, it has no odd cycles.  

Remark 4.1:Gcg may have some induced C2n.  

Proposition 4.4:Gcg is connected if and only if for any two vertices u and v of G, there 
exists a path joining u and v in which end points of each edge have different eccentricities. 

Proof: Proof is clear from the definition. 

Proposition 4.5:Gcg is Hamiltonian if and only if G has a Hamilton cycle in which end 
points of each edge have different eccentricities.  

Proof: Proof is clear from the definition. Note thatGcg is Hamiltonian only when p is 
even. 

Proposition 4.6: d1  E(Gcg )  min {q, [p2/4]}. 

Proof:Gcg has no triangles. Hence, E(Gcg )   [p2/4] andGcg is a sub graph of G. 

Hence, E(Gcg )  min {q, [p2/4]}. Since d is the diameter of G, G has at least one 
diametral path of length d, which has at least two edges joining vertices of different 

eccentricities (namely d and d1) and corresponding to other vertices there exists at least 

d3 edges joining vertices of different eccentricities. This proves the proposition. 

Remark 4.2: If G = P2n, E(Gcg)= d1. When G = P2n+1, E(Gcg)= d = q. 
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 Other properties of Gcg andGcg are studied and published in [4]. 
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