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Abstract: A set S  V(G) is a total eccentric dominating set if S is an eccentric dominating set and also 
the induced sub graph S has no isolated vertices. The cardinality of minimum total eccentric 
dominating set is called the total eccentric domination number and is denoted by	ߛ௧௘ሺܩሻ. In this paper, 
we present several bounds on the total eccentric domination number and exact values of some particular 
graphs. 
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1. Introduction 
 
 Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and 
edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary 
[4]. 
 
Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v) 

of  v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}.The 
radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) = 
d(G) is the maximum eccentricity. For any connected graph G, r(G) ≤ diam(G) ≤ 2r(G). v 
is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a 
vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. Eccentric set of a 

vertex v is defined as E(v) = {u  V(G) / d(u, v) = e(v)}. 
 
Definition 1.2: The open neighborhood N(v) of a vertex v is the set of all vertices 

adjacent to v in G. N[v] = N(v){v} is called the closed neighborhood of v.  

Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be 
partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2. If further 
G contains every line joining the points of V1 to the points of V2 then G is called a 
complete bigraph. If V1 contains m points and V2 contains n points then the complete 
bigraph G is denoted by Km,n. 
 
Definition 1.4: A star is a complete bi graph K1,n. 
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Definition 1.5 [5, 11]: A set D  V is said to be a dominating set in G, if every vertex in 

VD is adjacent to some vertex in D. The cardinality of minimum dominating set is 

called the domination number and is denoted by (G). 

Definition 1.6[9, 11]: A dominating set D  V(G) is a total dominating set if 

dominating set and also the induced sub graph D has no isolated vertices. The 
cardinality of minimum total dominating set is called the total domination number and is 

denoted by	t(G). 
 

Definition 1.7 [7]: A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every v  VD, there exists at least one eccentric point of v in D. The 
cardinality of minimum eccentric dominating set is called the eccentric domination 

number and is denoted by ed(G). 

If D is an eccentric dominating set, then every superset D D is also an 

eccentric dominating set. But D  D is not necessarily an eccentric dominating set. 
An eccentric dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 
We need the following results to prove certain results in total eccentric 

domination.  
 

Theorem 1.1[5]: For any graph G, n/(1+(G))  (G)  n(G).  
 

Theorem 1.2 [7]: ed(Kn)  = 1 
 

Theorem 1.3 [7]:  ed(Km,n)  = 2. 
 

Theorem 1.4 [7]: ed(W3)  = 1, ed(W4)  = 2, ed(Wn)  = 3 for n  7. 
 

Theorem 1.5 [7]:   ed(Pn)  = (Pn)  or  (Pn) + 1. 
 

Theorem 1.6[7]: (i) ed(Cn) =  n/2 if n is even. 

                     (ii) ed(Cn) =    n/3  if n = 3m and is odd.  

                        n/3 if n = 3m+1 and is odd. 

                        n/3 + 1 if n = 3m+2 and is odd. 

Theorem 1.7 [9]: If G is a connected graph of order n  3, then t(G)  2n/3. 
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Observation 1.1[9]: If v is a support vertex of a graph G, then v is in every t(G)-set. 
 
Observation: 1.2[10]: For any connected graph G with diameter at least three, there exists 

a t(G)-set that contains no leaves of G. 
 

Observation: 1.3[10]: Every tree T of order n  3 and with s support vertices satisfies  

t(T)  (n+s) / 2. 
 
2. Total Eccentric domination 
 

We define total eccentric dominating set of a graph as follows. 

A set S  V(G) is a total eccentric dominating set if S is an eccentric dominating 

set and also the induced sub graph S has no isolated vertices. The cardinality of 
minimum total eccentric dominating set is called the total eccentric domination number 

and is denoted by te(G). 

Clearly, (i) For any graph G, (G)  t(G)  te(G). 

(ii) For any graph G, . (G)  ed(G)  te(G). But t(T) and ed (T) are incomparable. 

Example 2.1: 

 
 
 
 
 
 

G 
Figure 2.1 

 

D1 = {2, 6, 10} is a dominating set, γ(G) = 3. 

D2 = {1, 2, 6, 10} is an eccentric dominating set, γed(G) = 4. 

D3 = {2, 6, 9, 10} is a total dominating set γt(G) = 4.  

D4 = {1, 2, 6, 9, 10} is a total eccentric dominating set γte(G) =5.  

Here, (G) < t(G) = ed(G) < te(G) 
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Example 2.2: 
 
 
 
 
 
 
 
 
 
 
 
 

G 
Figure 2.2 

D1 = {3, 6, 9, 12, 15, 18} is a dominating set, γ(G) = 6.  
D2 = {1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18} is an eccentric dominating set and also a total 

eccentric dominating set. γed(G) = γte(G) = 12.  

D3 = {3, 6, 9, 12, 15, 18} is a total dominating set, γt(G) = 6.  

γte(G) = 6 = 2n/3. Here, (G) = t(G) = ed(G). 
 
Example 2.3: 
 
 
 
 
 
 
 
 
 
 
 
 
 

G 
Figure 2.3 
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D1 = {3, 6, 9, 12, 15, 18, 21, 24} is a dominating set, γ(G) = 8  

D2 = {1, 4, 7, 10, 14, 17, 20, 23} is an eccentric dominating set, γed(G) = 8  

D3 = {3, 6, 9, 12, 15, 18, 21, 24} is a total dominating set, γt(G) = 8.  
D4 = {1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24} is a total eccentric dominating set,  

γte(G) = 16. Here, ed(G) < te(G), t(G) < te(G), t(G) = ed(G). 

Note: 	ed(G)  (n/3) + (G). 
 

Theorem 2.1: te(Kn) = 2. 

Proof: When G = Kn, radius = diameter r = 1. Hence any vertex u  V(G) dominates 
other vertices and is also an eccentric vertex of other vertices. But the induced sub graph 
has isolated vertex. Hence, any two vertices of G form a total eccentric dominating set, 

that is te(Kn) = 2. 

Theorem 2.2 te(K1,n) = 2, n  2. 
Proof: When G = K1,n. Let S = {u, v}, v central vertex. The central vertex dominates all 

other vertices in V S and u is an eccentric vertex of vertices of V S. The induced sub 

graph S has no isolated vertices. Hence te(K1,n) = 2, n  2. 

Theorem: 2.3: te(Km,n) = 2. 

Proof: When G = Km,n. V(G) = V1  V2. V1= m and V2= n such that each element 

of V1 is adjacent to every vertex of V2 and vice versa. Let S = {u, v}, u  V1 and v  V2. u 

dominates all the vertices of V2 and it is eccentric to elements of V1 {u}. Similarly v 

dominates all the vertices of V1 and it is eccentric to elements of V2  {v}. The induced 

sub graph <S> had no isolated vertices. Hence te(Km,n) = 2. 
 

Theorem 2.4: te(Wn) = 3, n  5,  te(W3) = 2, te(W4) = 2. 

Proof: G = W3 = K4. Hence te(W3) = 2.  
When G = W4. Consider S = {u, v}, where u and v are adjacent non-central vertices. The 
induced sub graph <S> has no isolated vertices, and S is a minimum total eccentric 

dominating set. Therefore te(W4) = 2. 
When G = Wn. Let S = {u, v, w} where u and v are any two adjacent non-central vertices 
and w is the central vertex. The induced sub graph <S> has no isolated vertices, S is an 
eccentric dominating set. Therefore S is a minimum total eccentric dominating set of G.  

Hence te(Wn) = 3, n  5. 
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Theorem 2.5: ߛ௧௘ሺ ௡ܲሻ ൌ

ە
ۖ
۔

ۖ
ۓ

௡

ଶ
൅ 2	݂݅	݊ ൌ 4݉

ቒ
௡

ଶ
ቓ ൅ 1	݂݅	݊ ൌ 4݉ ൅ 1

௡

ଶ
൅ 1	݂݅	݊ ൌ 4݉ ൅ 2

ቒ
௡

ଶ
ቓ ൅ 1	݂݅	݊ ൌ 4݉ ൅ ݊	ݎ݋݂	3 ൐ 4

  

te(P3) = 2, te(P4) = 3. 
Proof:  Case (i) n = 4m 

When n  5 an eccentric dominating set of Pn must contain the two end vertices. Let v1, 
v2, …, v4m represent the path Pn. S = { v1, v2, v5, v6, …, v4m-3, v4m-2, v4m-1, v4m} is a minimal 

total eccentric dominating set of G. S = 
௡

ଶ
൅ 2. Thus te(Pn) ≤ 	௡

ଶ
൅ 2…………….. (i) 

In this case, Pn has exactly one minimum total dominating set. t(Pn) = n/2 and the  t-set 

contains no end vertices. Therefore te(Pn)  
௡

ଶ
 +1. And no eccentric dominating set 

containing 
௡

ଶ
	+1 vertices is not total dominating set. Hence te(Pn)  

௡

ଶ
൅

2.……………(ii) 

From (i) and (ii)te(Pn)	ൌ
௡

ଶ
൅ 2. 

Case (ii) n = 4m+1 

S = {v1, v2, v5, v6, …, v4m, v4m+1} is a minimal total eccentric dominating set of G. S = 

ቒ
௡

ଶ
ቓ ൅ 1. Thus te(Pn)  ≤ 	ቒ

௡

ଶ
ቓ ൅ 1…………….. (i) 

In this case, t(Pn) = ቒ
௡

ଶ
ቓ ൅ 1. We have t(Pn)  te(Pn) . te(Pn)   ቒ

௡

ଶ
ቓ ൅

1……………(ii) 

From (i) and (ii) te(Pn)  ൌ ቒ
௡

ଶ
ቓ ൅ 1. 

Case (iii) n= 4m+2 
In this case, S = {v1, v2, v5, v6, …, v4m+1, v4m+2} is a minimal total eccentric dominating set of 

G. S =  
௡

ଶ
൅ 1. Thus te(Pn) ≤ 

௡

ଶ
൅ 1…………….. (i) 

We know that, t(Pn) = 
௡

ଶ
൅ 1. We have t(Pn) ≤ te(Pn).	 

Therefore te(Pn)  
௡

ଶ
൅ 1…………… (ii) 

From (i) and (ii) te(Pn) ൌ
௡

ଶ
൅ 1. 

Case (iv) n = 4m+3 
S = {v1, v2, v5, v6, …, v4m+1, v4m+2, v4m+3} is a minimal total eccentric dominating set of G. 

S = ቒ
௡

ଶ
ቓ ൅ 1. Thus te(Pn) ≤ 	ቒ

௡

ଶ
ቓ ൅ 1…………….. (i) 
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In this case, t(Pn) = ቒ
௡

ଶ
ቓ. But no minimum total dominating set of Pn is an eccentric 

dominating set. t(Pn) < te(Pn) . te(Pn) ቒ
௡

ଶ
ቓ…………… (ii) 

From (i) and (ii)ቒ
௡

ଶ
ቓ ൏ ௧௘ሺߛ ௡ܲሻ ൑ ቒ

௡

ଶ
ቓ ൅ 1. 

This implies, te(Pn) = ቒ
௡

ଶ
ቓ +1. When G = P3. S = {v1, v2} is a minimum total eccentric 

dominating set. Hence te(P3) = 2. 

When G = P4. S = {v1, v2, v3} is a minimum total eccentric dominating set. Hence te(P4) = 
3. 

Theorem 2.6: te(C3) = 2.  

௡ሻܥ௧௘ሺߛ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

݊
2
	݂݅	݊ ൌ 4݉

ቒ
݊
2
ቓ 	݂݅	݊ ൌ 4݉ ൅ 1

݊
2
൅ 1	݂݅	݊ ൌ 4݉ ൅ 2

ቒ
݊
2
ቓ ൅ 1		݂݅	݊ ൌ 4݉ ൅ ݀݀݋	ݏ݅	݉	݁ݎ݄݁ݓ,3

 

௡ሻܥ௧௘ሺߛ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

݊
2
൅ 2	݂݅	݊ ൌ 4݉

ቒ
݊
2
ቓ ൅ 1	݂݅	݊ ൌ 4݉ ൅ 1
݊
2
൅ 1	݂݅	݊ ൌ 4݉ ൅ 2

ቒ
݊
2
ቓ 		݂݅	݊ ൌ 4݉ ൅ ݊݁ݒ݁	ݏ݅	݉	݁ݎ݄݁ݓ,3

 

Proof: When G = C3. S = {v1, v2} is a minimum total eccentric dominating set. Hence  

te(C3) = 2. 
Let S be a minimum total eccentric dominating set of Cn. S is a total dominating set 
implies <S> has no isolated vertices. Since Cn is a cycle if a vertex i is in S implies either 

i1 or i+1 is also in S. 

Let r be the radius of Cn. We know that Cn is a self  centered graph. When n is even, 
radius of Cn = n/2. Therefore n = 2r. In this case denote the vertices of Cn by 1, 2, 3, …, 2r. 
Hence the eccentric vertex of i is i + r (in mod n). 

When n is odd, radius of Cn = 
௡ିଵ

ଶ
. Therefore, n = 2r + 1. In this case denote the vertices 

of Cn by 1, 2, 3, …, 2r+1. Hence the eccentric vertices of i is i+r and i+r+1. 
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When m is odd. 
Case (i) n = 4m = 2r. 

In this case, S = {1, 2, 5, 6, …, r1,  r,  r+3, r+4,…, 2r-3, 2r-2} is a minimum total 

eccentric dominating set and S=	
௡

ଶ
. 

Thus, te(Cn)  n/2….…………. (i) 

We know that, t(Cn) = n/2. te(Cn)  t(Cn).  te(Cn)  n/2 …………..(ii) 

From (i) and (ii) te(Cn) = n/2. 
Case (ii) n = 4m+1 = 2r+1 

In this case, S = {1, 2, 5, 6, …, r1,  r, r+3, r+4, …, 2r-3, 2r-2, …, 2r+1} is a minimum 

total eccentric dominating set andS=ቒ
௡

ଶ
ቓ 

Thus, te(Cn)  ቒ
௡

ଶ
ቓ ..………….(i) 

We know that, t(Cn) = ቒ
௡

ଶ
ቓ. te(Cn)  t(Cn). te(Cn)  ቒ

௡

ଶ
ቓ.……………..(ii) 

From (i) and (ii) te(Cn) = ቒ
௡

ଶ
ቓ. 

Case (iii) n = 4m+2 = 2r 

In this case, S = {1, 2, 5, 6, 9, 10, …, r2, r1, r+2, r+3, r+6, r+7, …, 2r1, 2r} is a 

minimum total eccentric dominating set and S=	
௡

ଶ
൅ 1. 

Thus, te(Cn)  (n/2)+1. ………….(i) 

We know that, t(Cn) = (n/2)+1. te(Cn)  t(Cn). te(Cn)  (n/2)+1…………..(ii) 

From (i) and (ii) te(Cn) = (n/2)+1. 
Case (iv) n = 4m+3 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r2,  r1, r+2, r+3, r+4, r+7, r+8, …, 2r, 2r+1} is a 

total eccentric dominating set and S=	ቒ
௡

ଶ
ቓ ൅ 1.	 

Thus, te(Cn)  ቒ
௡

ଶ
ቓ+1.………….(i) 

We know that, t(Cn) =ቒ
௡

ଶ
ቓ+1. te(Cn)  t(Cn). te(Cn)  ቒ

௡

ଶ
ቓ+1…………..(ii) 

From (i) and (ii) te(Cn) = ቒ
௡

ଶ
ቓ+1. 

When m is even 
Case (i) n = 4m = 2r 

In this case, S = {1, 2, 5, 6 ,…,  r3, r2, r+1, r+2, r+3, r+7, r+8, …, 2r1, 2r} is a total 
eccentric dominating set and  

S=	
௡

	ଶ
൅ 2. 
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Thus, te(Cn)  (n/2)+2. We know that, t(Cn) = n/2. Any total dominating set containing 

n/2 or n/2+1 vertices is not an eccentric dominating set. Hence te(Cn) =  (n/2)+2. 
Case (ii) n = 4m+1 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r+1, r+2, r+3, r+4, r+7, r+8, …, 2r1, 2r} is a total 

eccentric dominating set and S=ቒ
௡

ଶ
ቓ ൅ 1. 

Thus, te(Cn) ቒ
௡

ଶ
ቓ+1 .....………….(i) 

We know that, t(Cn) = ቒ
௡

ଶ
ቓ. Any total dominating set containing n/2 or n/2+1 vertices is 

not an eccentric dominating set. Hencete(Cn) = ቒ
௡

ଶ
ቓ+1. 

Case (iii) n = 4m+2 = 2r 

In this case, S = {1, 2, 5, 6, 9, 10, …, r,  r+1, r+3, r+4, r+7, r+8, …, 2r2, 2r1} is a total 

eccentric dominating set and S=	
௡

ଶ
൅ 1. 

Thus, te(Cn)  (n/2)+1………….(i) 

We know that, t(Cn) = (n/2)+1. te(Cn)  t(Cn). te(Cn)  (n/2)+1…………..(ii) 

From (i) and (ii) te(Cn) = (n/2)+1. 
Case (iv) n = 4m+3 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r, r+1, r+3, r+4, r+7, r+8, …, 2r2, 2r1} is a total 

eccentric dominating set. S=ቒ
௡

ଶ
ቓ. 

Thus, te(Cn) ቒ
௡

ଶ
ቓ. ………….(i) 

We know that, t(Cn) = ቒ
௡

ଶ
ቓ. te(Cn)  t(Cn). te(Cn)  ቒ

௡

ଶ
ቓ. …………..(ii) 

From (i) and (ii) te(Cn) = ቒ
௡

ଶ
ቓ. 

 

Theorem 2.7: If G is of diameter two, te(G)  1+(G).   

Proof: diam(G) = 2. Let u  V(G) such that deg u = (G). Consider, S = {u}N(u). This 
is a total eccentric dominating set of G. the induced sub graph <S> has no isolated 

vertices. Therefore, te(G)  1+(G).   
 
Theorem 2.8: If G is of radius two and diameter three and if G has a pendent vertex v of 

eccentricity three then te(G)  1+(G).    
Proof: If G has a pendent vertex v of eccentricity three then its support u is of eccentricity 
two. In this case, N(u) is an eccentric dominating set. But it is not total eccentric 

dominating set. N(u){u} form a total eccentric dominating set. Hence te(G)  1+(G). 
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Theorem 2.9: If G is a spider, then te(G) = (G)+2.  

Proof: Let G be a spider, and u be a vertex of maximum degree (G). u is the central 

vertex,N[u] vertices form a total dominating set. Adding any one end vertex form a 
total eccentric dominating set and this is the minimum total eccentric dominating set. 
Hence 

 te(G) = (G)+2.  

Theorem 2.10: If G is a wounded spider, then te(G) = s+2. where s is the number of 
support vertices which are adjacent to non-wounded legs. 

Proof: Let G be a wounded spider. Let u be the vertex of maximum degree (G), and S be 

the set of support vertices which are adjacent to non-wounded legs. The set S{u} 
form a total dominating set. But it is not a total eccentric dominating set. Adding any one 

end vertex form a minimum total eccentric dominating set. Hence te(G) = s+2, where s = 

S. 

Theorem 2.11: For any connected graph G, te(G)  2/3(n+e(G)).  

Proof: Let us assume that G be a graph on n vertices, with eccentric number e(G). Let G 
be a graph on n+e(G) vertices obtained from G as follows:  

Let S = { u1, u2, …, ue(G)} be the minimum eccentric point set of G. Attach a new vertex u1 
to u1, u2 to u2,…, u e(G) to ue(G) by edges. Denote the new graph obtained as G. Then 

V(G)= n+e(G) =V(G)+e(G). Now, by the previous observations, there exists a t-

–set D containing no u i  of G, containing all u i s and te(G)  2/3(n+e(G)).Therefore, 

D is a total eccentric dominating set of G. Therefore te(G)  2/3(n+e(G)).  

Corollary 2.1: te(T)  2/3(n+2).   

Theorem 2.12: If G is a connected graph with V(G)= n. Then te(GK1)  n+e(G).  

Proof: Let V (G) = {v1, v2, …, vn}. Let vi be the pendent vertex adjacent to vi in GoK1, for i 
= 1, 2, …, n. 
Let k = e(G) be the number of eccentric vertices of G and let them be {x1, x2, …, xk}. Then  

V(G) {x1, x2 ,…, xk} is a total eccentric dominating set.  

Therefore te(GK1)  n+e(G) = n+k.   

Corollary 2.2: ced(G)  n+e(G), where ced(G) is a connected eccentric dominating set. 

Theorem: 2.13: If G is of radius one and diameter two, then te(G)  (n-t+2) / 2, where t 
is the number of vertices with eccentricity one. 
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Proof: V(G) can be partitioned into two sets V1 and V2 as follows. V1 = {v  V/e(v) = 1}  

and V2 = {v  V/e(v) = 2}. Let u  V(G) such that e(u) = 1. Let t be the number of 

vertices with eccentricity one. u dominates all other vertices and for t1 other vertices u is 
an eccentric point. Consider the remaining (n-t) vertices of G. Let S be the subset of V2 

vertices such that vertices in V2S have their eccentric vertices in S. Now S{u} is a total 
eccentric dominating set. 

Hence te(G)  1 + 
ሺ௡ି௧ሻ

ଶ
  = (n-t+2) / 2. 

 

Theorem 2.14: If G is of radius one and diameter two, then te(G)  2 + ቒ
ఋሺீሻି௧

ଶ
ቓ, 

where t is the number of vertices with eccentricity one. 

Proof: V(G) can be partitioned into two sets V1 and V2 as follows. V1 = {v  V/e(v) = 1}  

and V2 = {v  V/e(v) = 2}. Let u be a vertex in V2 such that degree of u in H = <V2> is 

minimum. Let degHu = 2 = (G)t. Then u is eccentric to the remaining nt2 

vertices. Let S be a subset of NH(u) such that vertices in NH(u)S have their eccentric 

vertices in S. Hence      {u, v}  S, where v  V1 is a total eccentric dominating set of G.  

 Therefore, te(G)  2 + ቒ
ఋሺீሻି௧

ଶ
ቓ. 

 

Theorem 2.15: If G is of radius two and diameter three, thente(G)  1+

.
2

)1deg(  un G  

Proof: Let u be a central vertex with minimum degree. Consider N[u]. N[u] dominates all 
other vertices of G. Let S be a subset of N2(u) with minimum cardinality such that vertices 

in N2(u)S has their eccentric vertices in S. Then S≤ 
2

)(2 uN
 = .

2

)1deg(  un G  

Now N[u]S is a total eccentric dominating set of G. Hence, te(G)  N[u] + S   1 + 

degGu + 
2

)1deg(  un G   = 1+ .
2

)1deg(  un G  

 

Observation 2.1: 1 te(G) 

Proof: Every te(G)-set does not contain isolated vertex. Hence 1  te(G). 
 
Observation: 2.2: 

(i) If G =


 2112 KKKK , then (G) = 2, ed(G) = 4, t(G) = 2, te(G) = 4. 

(ii) If G = Kn+K1+K1+Kn, n > 2 then,  (G) = 2, ed(G) = 2, t(G) = 2, te (G) = 4. 
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Theorem 2.16: Let G be a connected graph. Then, te(G) = 2, if and only if G is any one of 
the following 
(i) G = Kn. 

(ii) r(G) = 1, d(G) = 2 and u  V(G) such that e(u) = 2 and d(u, v) = 2 for all v  V(G) 
with e(v)  = 2. 
(iii) G is self – cantered of diameter 2, having a dominating edge which is not in a triangle. 

Proof: When G satisfies any one of the above conditions obviously, te(G) = 2. On the 

other hand, assume that, te(G) = 2. Therefore (G) = 1 or (G) = 2. 
Case (i) 

(G) = 1 and, te(G) = 2. This implies that G satisfies (i) and (ii). 
Case (ii) 

(G) = 2 = te(G) . 

Let D be a minimum tedominating set of G. Let D = {u, v}V(G). Since (G) = 2, r(G) 

 2. Since D is connected u and v are adjacent and the edge uv is dominating edge for G. 

Therefore r(G)  2 and 2  d(G)  3. Suppose d(G) = 3, there exists a vertex x with 
eccentricity 3 and x is dominated by u or v. 

Let xu  E(G). Now, d is a teset. Hence v must be an eccentric point of x. this implies 
that d(x, v) = 3. But xuv is a path imples d(x, v) = 2. Which is a contradiction. Hence, x 
must be a vertex with eccentricity 2. This implies that d(G) = 2, G is a self –cantered  with 
diameter 2. There exists no w, adjacent to both u and v, since in that case, w has no 

eccentric point in D. Since r(G)  2. 
 

Theorem 2.17: If G is bieccentric with (G) = 2, that is r(G) = 2, d(G) = 3, then te(G)  
4. 

Proof: (G) = 2 implies D = {u, v} is a dominating set. Since d(G) = 3. Then d(u, v) = 1, 2 
or 3. 
Case (i) 
d(u, v) = 1. 
Since D is connected. u and v are adjacent and the edge uv is a dominating edge for G. let 

x, w  V(G) such that e(x) = e(w) = 3. w, x are dominated by u or v. Consider D1 = {u, 

v}{w, x} is an eccentric dominating set, and if y  VD and e(y) = 2, it can’t be 

adjacent to both x and w. Therefore w, x are eccentric to y. If s  VD and e(s) = 3, it 
can’t be adjacent to w or x. therefore w or x is eccentric to s. <D1> has no isolated vertices. 

Thus D1 is a total eccentric dominating set. Hence te(G)  4. 
Case (ii) 
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d(u,v) = 2. Then e(u) = e(v) = 2 and uxv is a shortest path. Let y, w  V(G) such that e(y) 

= e(w) = 3. y and w are dominated by u or v. If z  VD with e(z) = 2, it cannot be 

adjacent to y. Therefore y is eccentric to z. Then D = {u, v}{y, w} is a total dominating 

set. Hence te(G)  4. 
Case (iii) 
d(u, v) = 3. Then e(u) = e(v) = 3 and uxyw is a shortest path. Eccentric point of y must be 

u and eccentric point of x must be w. Therefore e(x) = e(y) = 2. Then D = {u, v}{x, y} 

is a total eccentric dominating set. Hence te(G)  4. 
 

Theorem 2.18; If T is a non-trivial tree of order n with l leaves, then,	
௡ାଶି௟

ଶ
  te(G)  

௡ାଶା௦

ଶ
,	where s is the number of support vertices of T. 

Proof: Let us assume that T be a tree on n vertices and with l leaves. Let T be a tree on 
n+2 vertices with attaching 2 vertices x and y with u and v, where u and v are peripheral 

vertices of T at distance ‘d’ to each other. From [Observation: 1.3]. Therefore t(T) 

	௡ାଶା௦
ଶ

, from [Observation: 1.2]. Therefore T is a total eccentric dominating set of T. 

Therefore te(T)  (n+2+s)/2. Also, te(T)  (n+2-l)/2. Therefore te(T)  t(T)  (n+2-

l)/2,	implies te(T)  (n+2-l)/2. 
 

Theorem 2.19: For a bi-central tree with radius 2, te(T)   min {n-(G)+1, 4} . 
Proof: Let u and v be the central vertices of T, then N[u] and N[v] are total eccentric 

dominating sets of T. VN(u)  {v}, VN(v)  {u} are also total eccentric dominating 
sets of T.  

Also deg u + deg v = n. Hence, te(T)   n  (G) + 1. All the four vertices of a diametral 

path also form a total dominating set. Hence te(T)   min {n-(G)+1, 4} . 

Observation 2.3: For any tree T, t(T)  te(T)  t(T)+ 2.   

Theorem 2.20 For a tree T, with radius two which is not a path 

(i) te(T) = t(T)  + 1if there exists at least one peripheral vertex with support vertex s, 
such that deg s = 2. 

(ii) te(T) = t(T)  + 2 if degree of all the support vertices are greater than two. 
Proof: Let T be a bi - central tree. 

In this case, diam(T) = 3 and T = mn KKKK  11  for n, m  1. When n = m = 1, 

te(T) = 3, t(T) = 2. Hence te(T) = t(T) +1 
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 When n, m > 1, te(T) = t(T) + 2 = 4. 
Let T be a unicentral tree. 

In this case, diam(T) = 4 and let T  P5. Let S be the set of all support vertices of T and let 
v be the central vertex of T. 
(a) If there exists only one peripheral vertex with degree of its support = 2. Let x be a 

peripheral vertex and it is eccentric to all other vertices except its support. Then (S{v}) 

is a t-set of T and (S{v} {x}) is a te-set  of T. Hence te(T) = t(T) +1. 
(b) If there exists two peripheral vertices with degree of their supports = 2, then the degree 
of v is greater than two. Let x and y be two peripheral vertices and u, w be their supports 

such that deg u = deg w = 2. x or y is eccentric to each other vertices. Then S{v} is a t-

set of T and (S{v}{x}) is a te-set  of T. Hence   te(T) = t(T) +1. 

 (ii) If degree of all the support vertices are greater than two, S is ߛ௧set of T and 

S{x,y}, where x and y are two peripheral vertices at distance 4 to each other  is ߛ௧௘set  
of T. Hence 

  te(T) = t(T) + 2  

Corollary 2.3: (i) For a bi central tree T with radius 2, te(T) = 3  if and only if T = P4 or T 

= 111 KKKKn   

(ii) For a bi central tree T with radius 2, te(T) = 4 if and only if degree of the central 

vertices are  3. 
 
Theorem 2.21: Let n be an even integer. Let G be obtained from the complete graph Kn by 

deleting edges of a linear factor. Then te(G) = n/2. 

Proof: Let u and v be a pair of nonadjacent vertices in G. Then u and v are eccentric to 

each other. Also, G is unique eccentric point graph. Therefore te(G)  n/2.…………(i). 

Consider D  V(G) such that <D> = Kn/2. D contains n/2 vertices such that each vertex in 

VD is adjacent to at least one element in D and each element in VD has its eccentric 

vertex in D and also <D> has no isolated vertices. Hence te(G)  n/2.…………..(ii). 

From (i) and (ii) te(G) = n/2. 

Theorem 2.22: ,4)( 4 Cte ,3)( 5 Cte and 




3

)(
n

Cnte , for n  6. 

Proof: Clearly ,4)( 4 Cte 3)( 5 Cte . Now, assume that n  6. Let v1, v2, v3, …, vn, v1 

form Cn. Then nC = KnCn and each vertex vi is adjacent to all other vertices except vi-1 

and vi+1 in nC . Hence eccentric point of vi in nC  is vi-1 and vi+1 only. Hence any total 
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eccentric dominating set must contain either vi or any one of  vi-1,vi+1. Thus 






3

)(
n

Cnte ………..(i). Now, consider a total eccentric dominating set as follows. 

{v1, v4, v7, …, v3m-2} if n = 3m. 
{v1, v4, v7, ..., v3m+1} if n = 3m+1. 

{v1, v4, v7, …, v3m+1, v3m+2} if n = 3m+2. Hence 




3

)(
n

Cnte ………….(ii) 

From (i) and (ii) 




3

)(
n

Cnte , for n  6. 

Observations 2.4: 

(i)  ߛ௧௘ሺܩሻ ൅ ሻܩ௧ሺߛ ≰
ସ௡

ଷ
. 

 
Example: G = C7. 
 

(ii) )  ߛ௧௘ሺܩሻ ൅ ሻܩ௘ௗሺߛ ൑
ସ௡

ଷ
. 

 

(iii) ߛሺܩሻ ൅ ሻܩ௧௘ሺߛ ≰
ସ௡

ଷ
. 

 
Example: G = C7. 

(iv) i(G) + te(T) ≰ ݊. 
 

Example: G = H2K1, where H = C6. te(G) = 2n/3 and i(G) = n/2, where i(G) is the 
independent dominating number of G. 
 
Theorem 2.23: If D is a minimal total eccentric dominating set of a connected graph G = 

(V, E), then each vertex u  D, one of the following is true 

(i) There exists some vVD such that N(v)D = {u} (or) E(v)D = {u}. 

(ii) <D{u}> contains an isolated vertex or u has no eccentric vertex in D. 
Proof: Assume that D is a minimal total eccentric dominating set of G. then for every 

vertex u  D, D{u} is not a total eccentric dominating set. That is there exists some 

vertex v in (VD){u} which is not dominated by any vertex in D{u} or there exists v 

in (VD){u} such that v has no eccentric point in D{u} or there exists a vertex v in D 

such that N(v)(D{u}) = . 
Case (i) 

Suppose v  VD. 
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(a) If v is not dominated by D{u}, but is dominated by D, then v is adjacent only u in D, 

that is N(v)D = {u}. 

(b) Suppose v has no eccentric point in D{u} but v has an eccentric point in D. Then u is 

the only eccentric point of v in D, that is E(v)D = {u}. 
Case (ii) 

Suppose u = v, then <D{u}> contains an isolated vertex or u has no eccentric vertex in 
D. 

Conversely, suppose D is a total eccentric dominating set and for each u  D one of the 
conditions holds, we show that D is a minimal total eccentric dominating set. 
Suppose that D is not a minimal total eccentric dominating set. That is, there exists a 

vertex u  D such that D{u} is a total eccentric dominating set. Hence every element x 

in VD is adjacent to at least one vertex in D{u} and x has an eccentric point in D{u}. 
Hence (i) does not hold. 

Also, if D{u} is a total eccentric dominating set. Hence, <D{u}> has no isolated vertex 

and u has an eccentric point in D{u}. Therefore, condition (ii) does not hold. This is a 

contradiction to our assumption that for each u  D, one of the conditions holds. 
 

Theorem 2.24: If H is any selfcentered unique eccentric point graph with m vertices and 

G = Ho2K1, then te(G) = 2n/3 where n = 3m. 

Proof: If H is any selfcentered unique eccentric point graph, then every vertex of H is an 
eccentric vertex. Hence m is even and G has 3m vertices. Let v1, v2, v3, …, vm represent the 

vertices of H and {v i  ,v i  } for i = 1, 2, 3, …, m be the vertices of m copies of 2K1. Then 

in G, v i  , v i  are adjacent to vi and if vj is the eccentric vertex of vi in H, then v i , v i  
are eccentric vertices of vj in G and v j  , v j  are the eccentric vertices of vi. It is clear that 

{v1, v2, v3, …, vm}{ x1, x2, x3, …, xm }, where xi = v i  or v i  are minimum total eccentric 

dominating sets of G. Hence te(G) = 2n/3. 
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