International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 5, No. 2, April – June 2014, pp. 49 - 65

Total Eccentric domination in Graphs

M. Bhanumathi, J. John Flavia

Government Arts College for Women, Pudukkottai-622001, TN, India Email: bhanu_ksp@yahoo.com, flavimaths@gmail.com

Abstract: A set $S \subseteq V(G)$ is a total eccentric dominating set if S is an eccentric dominating set and also the induced sub graph $\langle S \rangle$ has no isolated vertices. The cardinality of minimum total eccentric dominating set is called the total eccentric domination number and is denoted by $\gamma_{te}(G)$. In this paper, we present several bounds on the total eccentric domination number and exact values of some particular graphs.

Keyword: Total domination, eccentric domination, total eccentric domination.

1. Introduction

Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary [4].

Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = \max\{d(u, v) : u \in V\}$. The radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) = d(G) is the maximum eccentricity. For any connected graph G, $r(G) \le \operatorname{diam}(G) \le 2r(G)$. v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. Eccentric set of a vertex v is defined as $E(v) = \{u \in V(G) \mid d(u, v) = e(v)\}$.

Definition 1.2: The open neighborhood N(v) of a vertex v is the set of all vertices adjacent to v in G. $N[v] = N(v) \cup \{v\}$ is called the closed neighborhood of v.

Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be partitioned into two subsets V_1 and V_2 such that every line of G joins V_1 with V_2 . If further G contains every line joining the points of V_1 to the points of V_2 then G is called a **complete bigraph**. If V_1 contains m points and V_2 contains n points then the complete bigraph G is denoted by $K_{m,n}$.

Definition 1.4: A star is a complete bi graph K_{1,n}.

Received: 08 January, 2014; Revised: 14 April, 2014; Accepted: 02 May, 2014

Definition 1.5 [5, 11]: A set $D \subseteq V$ is said to be a **dominating set** in G, if every vertex in V-D is adjacent to some vertex in D. The cardinality of minimum dominating set is called the **domination number** and is denoted by $\gamma(G)$.

Definition 1.6[9, 11]: A dominating set $D \subseteq V(G)$ is a total dominating set if dominating set and also the induced sub graph <D> has no isolated vertices. The cardinality of minimum total dominating set is called the total domination number and is denoted by $\gamma_t(G)$.

Definition 1.7 [7]: A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exists at least one eccentric point of v in D. The cardinality of minimum eccentric dominating set is called the eccentric domination **number** and is denoted by $\gamma_{ed}(G)$.

If D is an eccentric dominating set, then every superset $D' \supseteq D$ is also an eccentric dominating set. But $D'' \subseteq D$ is not necessarily an eccentric dominating set.

An eccentric dominating set D is a minimal eccentric dominating set if no proper subset $D'' \subseteq D$ is an eccentric dominating set.

We need the following results to prove certain results in total eccentric domination.

Theorem 1.1[5]: For any graph G, $\lceil n/(1+\Delta(G)) \rceil \le \gamma(G) \le n-\Delta(G)$.

Theorem 1.2 [7]: $\gamma_{ed}(K_n) = 1$

Theorem 1.3 [7]: $\gamma_{ed}(K_{min}) = 2$.

Theorem 1.4 [7]: $\gamma_{ed}(W_3) = 1$, $\gamma_{ed}(W_4) = 2$, $\gamma_{ed}(W_n) = 3$ for $n \ge 7$.

Theorem 1.5 [7]: $\gamma_{ed}(P_n) = \gamma(P_n)$ or $\gamma(P_n) + 1$.

Theorem 1.6[7]: (i) $\gamma_{ed}(C_n) = n/2$ if n is even.

(ii)
$$\gamma_{ed}(C_n) = \begin{cases} n/3 & \text{if } n = 3m \text{ and is odd.} \\ \lceil n/3 \rceil & \text{if } n = 3m+1 \text{ and is odd.} \\ \lceil n/3 \rceil + 1 & \text{if } n = 3m+2 \text{ and is odd.} \end{cases}$$

Theorem 1.7 [9]: If G is a connected graph of order $n \ge 3$, then $\gamma_t(G) \le 2n/3$.

Observation 1.1[9]: If v is a support vertex of a graph G, then v is in every $\gamma_t(G)$ -set.

Observation: 1.2[10]: For any connected graph G with diameter at least three, there exists a $\gamma_t(G)$ -set that contains no leaves of G.

Observation: 1.3[10]: Every tree T of order $n \ge 3$ and with s support vertices satisfies $\gamma_t(T) \le (n+s) / 2$.

2. Total Eccentric domination

We define total eccentric dominating set of a graph as follows.

A set $S \subseteq V(G)$ is a **total eccentric dominating set** if S is an eccentric dominating set and also the induced sub graph $\langle S \rangle$ has no isolated vertices. The cardinality of minimum total eccentric dominating set is called the **total eccentric domination number** and is denoted by $\gamma_{te}(G)$.

Clearly, (i) For any graph G, $\gamma(G) \leq \gamma_t(G) \leq \gamma_{te}(G)$.

(ii) For any graph G, $\gamma(G) \leq \gamma_{ed}(G) \leq \gamma_{te}(G)$. But $\gamma_t(T)$ and $\gamma_{ed}(T)$ are incomparable.

Example 2.1:

Figure 2.1

$$\begin{split} D_1 &= \{2, 6, 10\} \text{ is a dominating set, } \gamma(G) = 3. \\ D_2 &= \{1, 2, 6, 10\} \text{ is an eccentric dominating set, } \gamma_{ed}(G) = 4. \\ D_3 &= \{2, 6, 9, 10\} \text{ is a total dominating set } \gamma_t(G) = 4. \\ D_4 &= \{1, 2, 6, 9, 10\} \text{ is a total eccentric dominating set } \gamma_{te}(G) = 5. \\ \text{Here, } \gamma(G) < \gamma_t(G) = \gamma_{ed}(G) < \gamma_{te}(G) \end{split}$$

$$\begin{split} D_1 &= \{3, 6, 9, 12, 15, 18\} \text{ is a dominating set, } \gamma(G) = 6. \\ D_2 &= \{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18\} \text{ is an eccentric dominating set and also a total} \\ \text{eccentric dominating set. } \gamma_{ed}(G) &= \gamma_{te}(G) = 12. \\ D_3 &= \{3, 6, 9, 12, 15, 18\} \text{ is a total dominating set, } \gamma_t(G) = 6. \\ \gamma_{te}(G) &= 6 = 2n/3. \text{ Here, } \gamma(G) = \gamma_{te}(G) = \gamma_{ed}(G). \end{split}$$

Example 2.3:

Figure 2.3

52

Example 2.2:

 $\begin{array}{l} D_1 = \{3, 6, 9, 12, 15, 18, 21, 24\} \text{ is a dominating set, } \gamma(G) = 8\\ D_2 = \{1, 4, 7, 10, 14, 17, 20, 23\} \text{ is an eccentric dominating set, } \gamma_{ed}(G) = 8\\ D_3 = \{3, 6, 9, 12, 15, 18, 21, 24\} \text{ is a total dominating set, } \gamma_t(G) = 8.\\ D_4 = \{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24\} \text{ is a total eccentric dominating set, } \\ \gamma_{te}(G) = 16. \text{ Here, } \gamma_{ed}(G) < \gamma_{te}(G), \gamma_t(G) < \gamma_{te}(G), \gamma_t(G) = \gamma_{ed}(G).\\ \text{Note: } \gamma_{ed}(G) \leq (n/3) + \gamma(G). \end{array}$

Theorem 2.1: $\gamma_{te}(K_n) = 2$.

Proof: When $G = K_n$, radius = diameter r = 1. Hence any vertex $u \in V(G)$ dominates other vertices and is also an eccentric vertex of other vertices. But the induced sub graph has isolated vertex. Hence, any two vertices of G form a total eccentric dominating set, that is $\gamma_{te}(K_n) = 2$.

Theorem 2.2 $\gamma_{te}(K_{1,n}) = 2, n \ge 2.$

Proof: When $G = K_{1,n}$. Let $S = \{u, v\}$, v central vertex. The central vertex dominates all other vertices in V-S and u is an eccentric vertex of vertices of V-S. The induced sub graph $\langle S \rangle$ has no isolated vertices. Hence $\gamma_{te}(K_{1,n}) = 2$, $n \ge 2$.

Theorem: 2.3: $\gamma_{te}(K_{m,n}) = 2$.

Proof: When $G = K_{m,n}$, $V(G) = V_1 \cup V_2$. $|V_1| = m$ and $|V_2| = n$ such that each element of V_1 is adjacent to every vertex of V_2 and vice versa. Let $S = \{u, v\}$, $u \in V_1$ and $v \in V_2$. u dominates all the vertices of V_2 and it is eccentric to elements of V_1 — $\{u\}$. Similarly v dominates all the vertices of V_1 and it is eccentric to elements of V_2 — $\{v\}$. The induced sub graph <S> had no isolated vertices. Hence $\gamma_{te}(K_{m,n}) = 2$.

Theorem 2.4: $\gamma_{te}(W_n) = 3, n \ge 5, \gamma_{te}(W_3) = 2, \gamma_{te}(W_4) = 2.$

Proof: G = W₃ = K₄. Hence $\gamma_{te}(W_3) = 2$.

When $G = W_4$. Consider $S = \{u, v\}$, where u and v are adjacent non-central vertices. The induced sub graph $\langle S \rangle$ has no isolated vertices, and S is a minimum total eccentric dominating set. Therefore $\gamma_{te}(W_4) = 2$.

When $G = W_n$. Let $S = \{u, v, w\}$ where u and v are any two adjacent non-central vertices and w is the central vertex. The induced sub graph $\langle S \rangle$ has no isolated vertices, S is an eccentric dominating set. Therefore S is a minimum total eccentric dominating set of G.

Hence $\gamma_{te}(W_n) = 3$, $n \ge 5$.

Theorem 2.5:
$$\gamma_{te}(P_n) = \begin{cases} \frac{n}{2} + 2 \ if \ n = 4m \\ \left\lceil \frac{n}{2} \right\rceil + 1 \ if \ n = 4m + 1 \\ \frac{n}{2} + 1 \ if \ n = 4m + 2 \\ \left\lceil \frac{n}{2} \right\rceil + 1 \ if \ n = 4m + 3 \ for \ n > 4 \end{cases}$$

 $\gamma_{te}(P_3) = 2, \gamma_{te}(P_4) = 3.$ Proof: Case (i) n = 4m

When $n \ge 5$ an eccentric dominating set of P_n must contain the two end vertices. Let v_1 , $v_2, ..., v_{4m}$ represent the path P_n . $S = \{v_1, v_2, v_5, v_6, ..., v_{4m-3}, v_{4m-2}, v_{4m-1}, v_{4m}\}$ is a minimal total eccentric dominating set of G. $|S| = \frac{n}{2} + 2$. Thus $\gamma_{te}(P_n) \le \frac{n}{2} + 2$(i) In this case, P_n has exactly one minimum total dominating set. $\gamma_t(P_n) = n/2$ and the γ_t -set contains no end vertices. Therefore $\gamma_{te}(P_n) \geq \frac{n}{2} + 1$. And no eccentric dominating set containing $\frac{n}{2}$ +1 vertices is not total dominating set. Hence $\gamma_{te}(P_n) \geq \frac{n}{2}$ + 2.....(ii)

From (i) and (ii) $\gamma_{te}(P_n) = \frac{n}{2} + 2$. Case (ii) n = 4m+1

 $S = \{v_1, v_2, v_5, v_6, ..., v_{4m}, v_{4m+1}\}$ is a minimal total eccentric dominating set of G. |S| = $\left[\frac{n}{2}\right] + 1$. Thus $\gamma_{te}(P_n) \leq \left[\frac{n}{2}\right] + 1$(i) In this case, $\gamma_t(P_n) = \left[\frac{n}{2}\right] + 1$. We have $\gamma_t(P_n) \leq \gamma_{te}(P_n)$. $\gamma_{te}(P_n) \geq \left[\frac{n}{2}\right] + 1$ 1.....(ii) From (i) and (ii) $\gamma_{te}(P_n) = \left[\frac{n}{2}\right] + 1.$ Case (iii) n= 4m+2 In this case, $S = \{v_1, v_2, v_5, v_6, ..., v_{4m+1}, v_{4m+2}\}$ is a minimal total eccentric dominating set of G. $|S| = \frac{n}{2} + 1$. Thus $\gamma_{te}(P_n) \le \frac{n}{2} + 1$(i) We know that, $\gamma_t(P_n) = \frac{n}{2} + 1$. We have $\gamma_t(P_n) \le \gamma_{te}(P_n)$. Therefore $\gamma_{te}(P_n) \ge \frac{n}{2} + 1$ (ii)

From (i) and (ii)
$$\gamma_{te}(P_n) = \frac{n}{2} + 1$$
.
Case (iv) n = 4m+3

S = { v_1 , v_2 , v_5 , v_6 , ..., v_{4m+1} , v_{4m+2} , v_{4m+3} } is a minimal total eccentric dominating set of G. $\left| S \right| = \left[\frac{n}{2} \right] + 1$. Thus $\gamma_{te}(P_n) \leq \left[\frac{n}{2} \right] + 1$(i)

In this case, $\gamma_t(P_n) = \left[\frac{n}{2}\right]$. But no minimum total dominating set of P_n is an eccentric dominating set. $\gamma_t(P_n) < \gamma_{te}(P_n) \cdot \gamma_{te}(P_n) > \left[\frac{n}{2}\right]$(ii) From (i) and (ii) $\left[\frac{n}{2}\right] < \gamma_{te}(P_n) \leq \left[\frac{n}{2}\right] + 1$. This implies, $\gamma_{te}(P_n) = \left[\frac{n}{2}\right] + 1$. When $G = P_3$. $S = \{v_1, v_2\}$ is a minimum total eccentric dominating set. Hence $\gamma_{te}(P_3) = 2$.

When $G = P_4$. $S = \{v_1, v_2, v_3\}$ is a minimum total eccentric dominating set. Hence $\gamma_{te}(P_4) = 3$.

Theorem 2.6:
$$\gamma_{te}(C_3) = 2$$
.

$$\gamma_{te}(C_n) = \begin{cases} \frac{n}{2} \text{ if } n = 4m \\ \left\lceil \frac{n}{2} \right\rceil \text{ if } n = 4m + 1 \\ \frac{n}{2} + 1 \text{ if } n = 4m + 2 \\ \left\lceil \frac{n}{2} \right\rceil + 1 \text{ if } n = 4m + 3, \text{where } m \text{ is odd} \end{cases}$$

$$\gamma_{te}(C_n) = \begin{cases} \frac{n}{2} + 2 \text{ if } n = 4m \\ \left\lceil \frac{n}{2} \right\rceil + 1 \text{ if } n = 4m + 1 \\ \frac{n}{2} + 1 \text{ if } n = 4m + 1 \\ \frac{n}{2} + 1 \text{ if } n = 4m + 2 \\ \left\lceil \frac{n}{2} \right\rceil \text{ if } n = 4m + 3, \text{where } m \text{ is even} \end{cases}$$
Proof when $C_n \in S_n$ (by m bias minimum table constrained maintains)

Proof: When $G = C_3$. $S = \{v_1, v_2\}$ is a minimum total eccentric dominating set. Hence $\gamma_{te}(C_3) = 2$.

Let S be a minimum total eccentric dominating set of C_n . S is a total dominating set implies $\langle S \rangle$ has no isolated vertices. Since C_n is a cycle if a vertex i is in S implies either i–1 or i+1 is also in S.

Let r be the radius of C_n . We know that C_n is a self – centered graph. When n is even, radius of $C_n = n/2$. Therefore n = 2r. In this case denote the vertices of C_n by 1, 2, 3, ..., 2r. Hence the eccentric vertex of i is i + r (in mod n).

When n is odd, radius of $C_n = \frac{n-1}{2}$. Therefore, n = 2r + 1. In this case denote the vertices of C_n by 1, 2, 3, ..., 2r+1. Hence the eccentric vertices of i is i+r and i+r+1.

When m is odd.

Case (i) n = 4m = 2r. In this case, $S = \{1, 2, 5, 6, ..., r-1, r, r+3, r+4, ..., 2r-3, 2r-2\}$ is a minimum total eccentric dominating set and $|S| = \frac{n}{2}$ Thus, $\gamma_{te}(C_n) \leq n/2$(i) We know that, $\gamma_t(C_n) = n/2$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge n/2$ (ii) From (i) and (ii) $\gamma_{te}(C_n) = n/2$. Case (ii) n = 4m+1 = 2r+1In this case, $S = \{1, 2, 5, 6, ..., r-1, r, r+3, r+4, ..., 2r-3, 2r-2, ..., 2r+1\}$ is a minimum total eccentric dominating set and $\left| S \right| = \left| \frac{n}{2} \right|$ Thus, $\gamma_{te}(C_n) \leq \left[\frac{n}{2}\right]$ (i) We know that, $\gamma_t(C_n) = \left[\frac{n}{2}\right]$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge \left[\frac{n}{2}\right]$(ii) From (i) and (ii) $\gamma_{te}(C_n) = \left| \frac{n}{2} \right|$. Case (iii) n = 4m+2 = 2rIn this case, $S = \{1, 2, 5, 6, 9, 10, ..., r-2, r-1, r+2, r+3, r+6, r+7, ..., 2r-1, 2r\}$ is a minimum total eccentric dominating set and $\left| S \right| = \frac{n}{2} + 1$. Thus, $\gamma_{te}(C_n) \leq (n/2) + 1$(i) We know that, $\gamma_t(C_n) = (n/2)+1$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge (n/2)+1$(ii) From (i) and (ii) $\gamma_{te}(C_n) = (n/2)+1$. Case (iv) n = 4m+3 = 2r+1In this case, $S = \{1, 2, 5, 6, 9, 10, ..., r-2, r-1, r+2, r+3, r+4, r+7, r+8, ..., 2r, 2r+1\}$ is a total eccentric dominating set and $|S| = \left|\frac{n}{2}\right| + 1$. Thus, $\gamma_{te}(C_n) \leq \left\lceil \frac{n}{2} \right\rceil + 1....(i)$ We know that, $\gamma_t(C_n) = \left[\frac{n}{2}\right] + 1$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge \left[\frac{n}{2}\right] + 1$(ii) From (i) and (ii) $\gamma_{te}(C_n) = \left|\frac{n}{2}\right| + 1$. When m is even Case (i) n = 4m = 2rIn this case, $S = \{1, 2, 5, 6, ..., r-3, r-2, r+1, r+2, r+3, r+7, r+8, ..., 2r-1, 2r\}$ is a total eccentric dominating set and

 $|s| = \frac{n}{2} + 2.$

Thus, $\gamma_{te}(C_n) \leq (n/2)+2$. We know that, $\gamma_t(C_n) = n/2$. Any total dominating set containing n/2 or n/2+1 vertices is not an eccentric dominating set. Hence $\gamma_{te}(C_n) = (n/2)+2$. Case (ii) n = 4m+1 = 2r+1In this case, $S = \{1, 2, 5, 6, 9, 10, ..., r+1, r+2, r+3, r+4, r+7, r+8, ..., 2r-1, 2r\}$ is a total eccentric dominating set and $|s| = \left[\frac{n}{2}\right] + 1$. Thus, $\gamma_{te}(C_n) \leq \left[\frac{n}{2}\right] + 1$ (i) We know that, $\gamma_t(C_n) = \left[\frac{n}{2}\right]$. Any total dominating set containing n/2 or n/2+1 vertices is not an eccentric dominating set. Hence $\gamma_{te}(C_n) = \left[\frac{n}{2}\right] + 1$. Case (iii) n = 4m + 2 = 2rIn this case, S = {1, 2, 5, 6, 9, 10, ..., r, r+1, r+3, r+4, r+7, r+8, ..., 2r-2, 2r-1} is a total eccentric dominating set and $\left| S \right| = \frac{n}{2} + 1$. Thus, $\gamma_{te}(C_n) \leq (n/2) + 1 \dots (i)$ We know that, $\gamma_t(C_n) = (n/2)+1$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge (n/2)+1$(ii) From (i) and (ii) $\gamma_{te}(C_n) = (n/2)+1$. Case (iv) n = 4m+3 = 2r+1In this case, $S = \{1, 2, 5, 6, 9, 10, ..., r, r+1, r+3, r+4, r+7, r+8, ..., 2r-2, 2r-1\}$ is a total eccentric dominating set. $\left| S \right| = \left| \frac{n}{2} \right|$. Thus, $\gamma_{te}(C_n) \leq \left[\frac{n}{2}\right]$(i) We know that, $\gamma_t(C_n) = \left[\frac{n}{2}\right]$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge \left[\frac{n}{2}\right]$(ii) From (i) and (ii) $\gamma_{te}(C_n) = \left| \frac{n}{2} \right|$.

Theorem 2.7: If G is of diameter two, $\gamma_{te}(G) \leq 1 + \delta(G)$.

Proof: diam(G) = 2. Let $u \in V(G)$ such that deg $u = \delta(G)$. Consider, $S = \{u\} \cup N(u)$. This is a total eccentric dominating set of G. the induced sub graph $\langle S \rangle$ has no isolated vertices. Therefore, $\gamma_{te}(G) \leq 1 + \delta(G)$.

Theorem 2.8: If G is of radius two and diameter three and if G has a pendent vertex v of eccentricity three then $\gamma_{te}(G) \leq 1 + \Delta(G)$.

Proof: If G has a pendent vertex v of eccentricity three then its support u is of eccentricity two. In this case, N(u) is an eccentric dominating set. But it is not total eccentric dominating set. N(u) \cup {u} form a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 1 + \Delta(G)$.

Theorem 2.9: If G is a spider, then $\gamma_{te}(G) = \Delta(G)+2$.

Proof: Let G be a spider, and u be a vertex of maximum degree $\Delta(G)$. u is the central vertex, |N[u]| vertices form a total dominating set. Adding any one end vertex form a total eccentric dominating set and this is the minimum total eccentric dominating set. Hence

 $\gamma_{\rm te}(G) = \Delta(G) + 2.$

Theorem 2.10: If G is a wounded spider, then $\gamma_{te}(G) = s+2$. where s is the number of support vertices which are adjacent to non-wounded legs.

Proof: Let G be a wounded spider. Let u be the vertex of maximum degree $\Delta(G)$, and S be the set of support vertices which are adjacent to non-wounded legs. The set $|S| \cup \{u\}$ form a total dominating set. But it is not a total eccentric dominating set. Adding any one end vertex form a minimum total eccentric dominating set. Hence $\gamma_{te}(G) = s+2$, where s = |S|.

Theorem 2.11: For any connected graph G, $\gamma_{te}(G) \leq 2/3(n+e(G))$.

Proof: Let us assume that G be a graph on n vertices, with eccentric number e(G). Let G' be a graph on n+e(G) vertices obtained from G as follows:

Let S = { u₁, u₂, ..., u_{e(G)}} be the minimum eccentric point set of G. Attach a new vertex u₁' to u₁, u₂' to u₂,..., u'_{e(G)} to u_{e(G)} by edges. Denote the new graph obtained as G'. Then |V(G')| = n+e(G) = |V(G)| + e(G). Now, by the previous observations, there exists a γ_t -set D containing no u_i' of G', containing all u_i's and $\gamma_{te}(G') \leq 2/3(n+e(G))$. Therefore, D is a total eccentric dominating set of G. Therefore $\gamma_{te}(G) \leq 2/3(n+e(G))$.

Corollary 2.1: $\gamma_{te}(T) \leq 2/3(n+2)$.

Theorem 2.12: If G is a connected graph with |V(G)| = n. Then $\gamma_{te}(G^{\circ}K_1) \leq n + e(G)$.

Proof: Let V (G) = { $v_1, v_2, ..., v_n$ }. Let v_i' be the pendent vertex adjacent to v_i in GoK₁, for i = 1, 2, ..., n.

Let k = e(G) be the number of eccentric vertices of G and let them be $\{x_1, x_2, ..., x_k\}$. Then V(G) $\cup \{x'_1, x'_2, ..., x'_k\}$ is a total eccentric dominating set.

Therefore $\gamma_{te}(G \circ K_1) \leq n + e(G) = n + k$.

Corollary 2.2: $\gamma_{ced}(G) \leq n+e(G)$, where $\gamma_{ced}(G)$ is a connected eccentric dominating set.

Theorem: 2.13: If G is of radius one and diameter two, then $\gamma_{te}(G) \leq (n-t+2) / 2$, where t is the number of vertices with eccentricity one.

Proof: V(G) can be partitioned into two sets V_1 and V_2 as follows. $V_1 = \{v \in V/e(v) = 1\}$ and $V_2 = \{v \in V/e(v) = 2\}$. Let $u \in V(G)$ such that e(u) = 1. Let t be the number of vertices with eccentricity one. u dominates all other vertices and for t-1 other vertices u is an eccentric point. Consider the remaining (n-t) vertices of G. Let S be the subset of V_2 vertices such that vertices in V_2 -S have their eccentric vertices in S. Now S \cup {u} is a total eccentric dominating set.

Hence
$$\gamma_{te}(G) \leq 1 + \frac{(n-t)}{2} = (n-t+2) / 2.$$

Theorem 2.14: If G is of radius one and diameter two, then $\gamma_{te}(G) \leq 2 + \left\lceil \frac{\delta(G) - t}{2} \right\rceil$, where t is the number of vertices with eccentricity one.

Proof: V(G) can be partitioned into two sets V_1 and V_2 as follows. $V_1 = \{v \in V/e(v) = 1\}$ and $V_2 = \{v \in V/e(v) = 2\}$. Let u be a vertex in V_2 such that degree of u in $H = \langle V_2 \rangle$ is minimum. Let $deg_H u = \delta_2 = \delta(G)$ —t. Then u is eccentric to the remaining n—t— δ_2 vertices. Let S be a subset of $N_H(u)$ such that vertices in $N_H(u)$ —S have their eccentric vertices in S. Hence $\{u, v\} \cup S$, where $v \in V_1$ is a total eccentric dominating set of G.

Therefore, $\gamma_{te}(G) \leq 2 + \left[\frac{\delta(G)-t}{2}\right]$.

Theorem 2.15: If G is of radius two and diameter three, then $\gamma_{te}(G) \leq 1 + \frac{(n + \deg_G u - 1)}{2}$.

Proof: Let u be a central vertex with minimum degree. Consider N[u]. N[u] dominates all other vertices of G. Let S be a subset of N₂(u) with minimum cardinality such that vertices in N₂(u)—S has their eccentric vertices in S. Then $|S| \le \frac{|N_2(u)|}{2} = \frac{(n - \deg_G u - 1)}{2}$. Now N[u]US is a total eccentric dominating set of G. Hence, $\gamma_{te}(G) \le |N[u]| + |S| \le 1 + \deg_G u + \frac{(n - \deg_G u - 1)}{2} = 1 + \frac{(n + \deg_G u - 1)}{2}$.

Observation 2.1: $1 \le \gamma_{te}(G)$

Proof: Every $\gamma_{te}(G)$ -set does not contain isolated vertex. Hence $1 < \gamma_{te}(G)$.

Observation: 2.2:

(i) If
$$G = K_2 + K_1 + K_1 + K_2$$
, then $\gamma(G) = 2$, $\gamma_{ed}(G) = 4$, $\gamma_t(G) = 2$, $\gamma_{te}(G) = 4$.
(ii) If $G = K_n + K_1 + K_1 + K_n$, $n > 2$ then, $\gamma(G) = 2$, $\gamma_{ed}(G) = 2$, $\gamma_t(G) = 2$, $\gamma_{te}(G) = 4$.

Theorem 2.16: Let G be a connected graph. Then, $\gamma_{te}(G) = 2$, if and only if G is any one of the following

(i) $G = K_n$.

(ii) r(G) = 1, d(G) = 2 and $u \in V(G)$ such that e(u) = 2 and d(u, v) = 2 for all $v \in V(G)$ with e(v) = 2.

(iii) G is self - cantered of diameter 2, having a dominating edge which is not in a triangle. **Proof:** When G satisfies any one of the above conditions obviously, $\gamma_{te}(G) = 2$. On the other hand, assume that, $\gamma_{te}(G) = 2$. Therefore $\gamma(G) = 1$ or $\gamma(G) = 2$.

Case (i)

 $\gamma(G) = 1$ and, $\gamma_{te}(G) = 2$. This implies that G satisfies (i) and (ii). Case (ii)

 $\gamma(G) = 2 = \gamma_{te}(G)$.

Let D be a minimum γ_{te} -dominating set of G. Let D = {u, v} $\subseteq V(G)$. Since $\gamma(G) = 2$, r(G) \geq 2. Since D is connected u and v are adjacent and the edge uv is dominating edge for G. Therefore $r(G) \ge 2$ and $2 \le d(G) \le 3$. Suppose d(G) = 3, there exists a vertex x with eccentricity 3 and x is dominated by u or v.

Let $xu \in E(G)$. Now, d is a γ_{te} -set. Hence v must be an eccentric point of x. this implies that d(x, v) = 3. But xuv is a path imples d(x, v) = 2. Which is a contradiction. Hence, x must be a vertex with eccentricity 2. This implies that d(G) = 2, G is a self –cantered with diameter 2. There exists no w, adjacent to both u and v, since in that case, w has no eccentric point in D. Since $r(G) \ge 2$.

Theorem 2.17: If G is bi–eccentric with $\gamma(G) = 2$, that is r(G) = 2, d(G) = 3, then $\gamma_{re}(G) \leq 2$ 4.

Proof: $\gamma(G) = 2$ implies $D = \{u, v\}$ is a dominating set. Since d(G) = 3. Then d(u, v) = 1, 2or 3.

Case (i)

d(u, v) = 1.

Since D is connected. u and v are adjacent and the edge uv is a dominating edge for G. let x, $w \in V(G)$ such that e(x) = e(w) = 3. w, x are dominated by u or v. Consider $D_1 = \{u, v\}$ $v \cup \{w, x\}$ is an eccentric dominating set, and if $y \in V - D$ and e(y) = 2, it can't be adjacent to both x and w. Therefore w, x are eccentric to y. If $s \in V-D$ and e(s) = 3, it can't be adjacent to w or x. therefore w or x is eccentric to s. $\langle D_1 \rangle$ has no isolated vertices. Thus D₁ is a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 4$.

Case (ii)

d(u,v) = 2. Then e(u) = e(v) = 2 and uxv is a shortest path. Let $y, w \in V(G)$ such that e(y) = e(w) = 3. y and w are dominated by u or v. If $z \in V-D$ with e(z) = 2, it cannot be adjacent to y. Therefore y is eccentric to z. Then $D' = \{u, v\} \cup \{y, w\}$ is a total dominating set. Hence $\gamma_{te}(G) \leq 4$.

Case (iii)

d(u, v) = 3. Then e(u) = e(v) = 3 and uxyw is a shortest path. Eccentric point of y must be u and eccentric point of x must be w. Therefore e(x) = e(y) = 2. Then D'' = {u, v} \cup {x, y} is a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 4$.

Theorem 2.18; If T is a non-trivial tree of order n with l leaves, then, $\frac{n+2-l}{2} \le \gamma_{te}(G) \le \frac{n+2+s}{2}$, where s is the number of support vertices of T.

Proof: Let us assume that T be a tree on n vertices and with l leaves. Let T' be a tree on n+2 vertices with attaching 2 vertices x and y with u and v, where u and v are peripheral vertices of T at distance 'd' to each other. From [Observation: 1.3]. Therefore $\gamma_t(T) \leq \frac{n+2+s}{2}$, from [Observation: 1.2]. Therefore T' is a total eccentric dominating set of T. Therefore $\gamma_{te}(T) \leq (n+2+s)/2$. Also, $\gamma_{te}(T) \geq (n+2-l)/2$. Therefore $\gamma_{te}(T) \geq \gamma_t(T) \geq (n+2-l)/2$.

Theorem 2.19: For a bi-central tree with radius 2, $\gamma_{te}(T) \leq \min \{n-\Delta(G)+1, 4\}$.

Proof: Let u and v be the central vertices of T, then N[u] and N[v] are total eccentric dominating sets of T. V $-N(u) \cup \{v\}$, V $-N(v) \cup \{u\}$ are also total eccentric dominating sets of T.

Also deg u + deg v = n. Hence, $\gamma_{te}(T) \leq n - \Delta(G) + 1$. All the four vertices of a diametral path also form a total dominating set. Hence $\gamma_{te}(T) \leq \min \{n-\Delta(G)+1, 4\}$.

Observation 2.3: For any tree T, $\gamma_t(T) \leq \gamma_{te}(T) \leq \gamma_t(T) + 2$.

Theorem 2.20 For a tree T, with radius two which is not a path

(i) $\gamma_{te}(T) = \gamma_t(T) + 1$ if there exists at least one peripheral vertex with support vertex s, such that deg s = 2.

(ii) $\gamma_{te}(T) = \gamma_t(T) + 2$ if degree of all the support vertices are greater than two. **Proof:** Let T be a **bi** - **central** tree.

In this case, diam(T) = 3 and T = $\overline{K_n} + K_1 + K_1 + \overline{K_m}$ for n, m \geq 1. When n = m = 1, $\gamma_{te}(T) = 3$, $\gamma_t(T) = 2$. Hence $\gamma_{te}(T) = \gamma_t(T) + 1$ When n, m > 1, $\gamma_{te}(T) = \gamma_t(T) + 2 = 4$. Let T be a **unicentral** tree.

In this case, diam(T) = 4 and let $T \neq P_5$. Let S be the set of all support vertices of T and let v be the central vertex of T.

(a) If there exists only one peripheral vertex with degree of its support = 2. Let x be a peripheral vertex and it is eccentric to all other vertices except its support. Then $(S \cup \{v\})$ is a γ_t -set of T and $(S \cup \{v\} \cup \{x\})$ is a γ_{te} -set of T. Hence $\gamma_{te}(T) = \gamma_t(T) + 1$.

(b) If there exists two peripheral vertices with degree of their supports = 2, then the degree of v is greater than two. Let x and y be two peripheral vertices and u, w be their supports such that deg u = deg w = 2. x or y is eccentric to each other vertices. Then $S \cup \{v\}$ is a γ_t -set of T and $(S \cup \{v\} \cup \{x\})$ is a γ_{te} -set of T. Hence $\gamma_{te}(T) = \gamma_t(T) + 1$.

(ii) If degree of all the support vertices are greater than two, S is γ_t -set of T and SU{x,y}, where x and y are two peripheral vertices at distance 4 to each other is γ_{te} -set of T. Hence

$$\gamma_{te}(T) = \gamma_t(T) + 2$$

Corollary 2.3: (i) For a bi central tree T with radius 2, $\gamma_{te}(T) = 3$ if and only if $T = P_4$ or T = $\overline{K_n} + K_1 + K_1 + K_1$

(ii) For a bi central tree T with radius 2, $\gamma_{te}(T) = 4$ if and only if degree of the central vertices are ≥ 3 .

Theorem 2.21: Let n be an even integer. Let G be obtained from the complete graph K_n by deleting edges of a linear factor. Then $\gamma_{te}(G) = n/2$.

Proof: Let u and v be a pair of non-adjacent vertices in G. Then u and v are eccentric to each other. Also, G is unique eccentric point graph. Therefore $\gamma_{te}(G) \ge n/2....(i)$.

Consider $D \subseteq V(G)$ such that $\langle D \rangle = K_{n/2}$. D contains n/2 vertices such that each vertex in V–D is adjacent to at least one element in D and each element in V–D has its eccentric vertex in D and also $\langle D \rangle$ has no isolated vertices. Hence $\gamma_{te}(G) \leq n/2$(ii). From (i) and (ii) $\gamma_{te}(G) = n/2$.

Theorem 2.22: $\gamma_{te}(\overline{C}_4) = 4$, $\gamma_{te}(\overline{C}_5) = 3$, and $\gamma_{te}(\overline{C}_n) = \left\lceil \frac{n}{3} \right\rceil$, for $n \ge 6$.

Proof: Clearly $\gamma_{te}(\overline{C}_4) = 4$, $\gamma_{te}(\overline{C}_5) = 3$. Now, assume that $n \ge 6$. Let $v_1, v_2, v_3, ..., v_n, v_1$ form C_n . Then $\overline{C}_n = K_n - C_n$ and each vertex v_i is adjacent to all other vertices except v_{i-1} and v_{i+1} in \overline{C}_n . Hence eccentric point of v_i in \overline{C}_n is v_{i-1} and v_{i+1} only. Hence any total

eccentric dominating set must contain either v_i or any one of $v_{i,1}, v_{i+1}$. Thus $\gamma_{te}(\overline{C}_n) \ge \left\lceil \frac{n}{3} \right\rceil$(i). Now, consider a total eccentric dominating set as follows. $\{v_1, v_4, v_7, ..., v_{3m-2}\}$ if n = 3m. $\{v_1, v_4, v_7, ..., v_{3m+1}\}$ if n = 3m+1. $\{v_1, v_4, v_7, ..., v_{3m+1}, v_{3m+2}\}$ if n = 3m+2. Hence $\gamma_{te}(\overline{C}_n) \le \left\lceil \frac{n}{3} \right\rceil$(ii) From (i) and (ii) $\gamma_{te}(\overline{C}_n) = \left\lceil \frac{n}{3} \right\rceil$, for $n \ge 6$. **Observations 2.4:** (i) $\gamma_{te}(G) + \gamma_t(G) \le \frac{4n}{3}$. **Example:** $G = C_7$. (ii) $\gamma_{te}(G) + \gamma_{ed}(G) \le \frac{4n}{3}$.

(iii)
$$\gamma(G) + \gamma_{te}(G) \leq \frac{4n}{3}$$
.

Example: $G = C_7$.

(iv) i(G) + $\gamma_{te}(T) \leq n$.

Example: G = H°2K₁, where H = C₆. $\gamma_{te}(G) = 2n/3$ and i(G) = n/2, where i(G) is the independent dominating number of G.

Theorem 2.23: If D is a minimal total eccentric dominating set of a connected graph G = (V, E), then each vertex $u \in D$, one of the following is true

(i) There exists some $v \in V - D$ such that $N(v) \cap D = \{u\}$ (or) $E(v) \cap D = \{u\}$.

(ii) $\langle D-\{u\} \rangle$ contains an isolated vertex or u has no eccentric vertex in D.

Proof: Assume that D is a minimal total eccentric dominating set of G. then for every vertex $u \in D$, $D-\{u\}$ is not a total eccentric dominating set. That is there exists some vertex v in $(V-D)\cup\{u\}$ which is not dominated by any vertex in $D-\{u\}$ or there exists v in $(V-D)\cup\{u\}$ such that v has no eccentric point in $D-\{u\}$ or there exists a vertex v in D such that $N(v)\cap(D-\{u\}) = \phi$.

Case (i)

Suppose $v \in V-D$.

(a) If v is not dominated by $D-\{u\}$, but is dominated by D, then v is adjacent only u in D, that is $N(v) \cap D = \{u\}$.

(b) Suppose v has no eccentric point in $D-\{u\}$ but v has an eccentric point in D. Then u is the only eccentric point of v in D, that is $E(v) \cap D = \{u\}$. Case (ii)

Suppose u = v, then $\langle D-\{u\} \rangle$ contains an isolated vertex or u has no eccentric vertex in D.

Conversely, suppose D is a total eccentric dominating set and for each $u \in D$ one of the conditions holds, we show that D is a minimal total eccentric dominating set.

Suppose that D is not a minimal total eccentric dominating set. That is, there exists a vertex $u \in D$ such that $D-\{u\}$ is a total eccentric dominating set. Hence every element x in V-D is adjacent to at least one vertex in D- $\{u\}$ and x has an eccentric point in D- $\{u\}$. Hence (i) does not hold.

Also, if $D-\{u\}$ is a total eccentric dominating set. Hence, $\langle D-\{u\}\rangle$ has no isolated vertex and u has an eccentric point in $D-\{u\}$. Therefore, condition (ii) does not hold. This is a contradiction to our assumption that for each $u \in D$, one of the conditions holds.

Theorem 2.24: If H is any self—centered unique eccentric point graph with m vertices and $G = Ho2K_1$, then $\gamma_{te}(G) = 2n/3$ where n = 3m.

Proof: If H is any self—centered unique eccentric point graph, then every vertex of H is an eccentric vertex. Hence m is even and G has 3m vertices. Let $v_1, v_2, v_3, ..., v_m$ represent the vertices of H and $\{v_i', v_i''\}$ for i = 1, 2, 3, ..., m be the vertices of m copies of $2K_1$. Then in G, v_i', v_i'' are adjacent to v_i and if v_j is the eccentric vertex of v_i in H, then v_i', v_i'' are eccentric vertices of v_j in G and v_j', v_j'' are the eccentric vertices of v_i . It is clear that $\{v_1, v_2, v_3, ..., v_m\} \cup \{x_1, x_2, x_3, ..., x_m\}$, where $x_i = v_i'$ or v_i'' are minimum total eccentric dominating sets of G. Hence $\gamma_{te}(G) = 2n/3$.

References:

- Bhanumathi M and Muthammai S, Eccentric domatic number of a Graph, International Journal of Engineering Science, Advanced Computing and Bio-Technology- Volume 1, No. 3, pp 118-128, 2010.
- [2] M.Bhanumathi, S.Muthammai, On Eccentric domination in Trees, International Journal of Engineering Science, Advanced Computing and Bio-Technology- Volume 2, No. 1, pp 38-46, 2011.
- [3] M.Bhanumathi, S.Muthammai, Further Results on Eccentric domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 3, Issue 4, pp. 185-190, 2012
- [4] Buckley. F, Harary. F, Distance in graphs, Addison-Wesley, Publishing Company (1990).

- [5] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Networks, 7:247-261,1977.
- [6] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
- [7] Janakiraman T.N., Bhanumathi M and Muthammai S, Eccentric domination in graphs, International Journal of Engineering Science, Computing and Bio-Technology, Volume 1, No.2, pp 1-16, 2010.
- [8] T.N. Janakiraman, P.J.A. Alphonse and V. Sangeetha, Distance Closed Domination in Graphs, International Journal of Engineering Science, Computing and Bio-Technology, Vol.1, No. 1-4, 109-117, 2010.
- [9] Kulli V.R, Theory of domination in graphs, Vishwa International publications (2010).
- [10] Mustapha Chellali, Teresa W.Haynes, Total and Paired domination numbers of a tree, AKCE J.Graphs Combin., 1, No.2(2004), 69-75.
- [11] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York (1998).