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Abstract: A set S  V(G) is a total eccentric dominating set if S is an eccentric dominating set and also 
the induced sub graph S has no isolated vertices. The cardinality of minimum total eccentric 
dominating set is called the total eccentric domination number and is denoted by	ߛ௧ሺܩሻ. In this paper, 
we present several bounds on the total eccentric domination number and exact values of some particular 
graphs. 
Keyword: Total domination, eccentric domination, total eccentric domination. 

 
1. Introduction 
 
 Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and 
edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary 
[4]. 
 
Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v) 

of  v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}.The 
radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) = 
d(G) is the maximum eccentricity. For any connected graph G, r(G) ≤ diam(G) ≤ 2r(G). v 
is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a 
vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. Eccentric set of a 

vertex v is defined as E(v) = {u  V(G) / d(u, v) = e(v)}. 
 
Definition 1.2: The open neighborhood N(v) of a vertex v is the set of all vertices 

adjacent to v in G. N[v] = N(v){v} is called the closed neighborhood of v.  

Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be 
partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2. If further 
G contains every line joining the points of V1 to the points of V2 then G is called a 
complete bigraph. If V1 contains m points and V2 contains n points then the complete 
bigraph G is denoted by Km,n. 
 
Definition 1.4: A star is a complete bi graph K1,n. 
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Definition 1.5 [5, 11]: A set D  V is said to be a dominating set in G, if every vertex in 

VD is adjacent to some vertex in D. The cardinality of minimum dominating set is 

called the domination number and is denoted by (G). 

Definition 1.6[9, 11]: A dominating set D  V(G) is a total dominating set if 

dominating set and also the induced sub graph D has no isolated vertices. The 
cardinality of minimum total dominating set is called the total domination number and is 

denoted by	t(G). 
 

Definition 1.7 [7]: A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every v  VD, there exists at least one eccentric point of v in D. The 
cardinality of minimum eccentric dominating set is called the eccentric domination 

number and is denoted by ed(G). 

If D is an eccentric dominating set, then every superset D D is also an 

eccentric dominating set. But D  D is not necessarily an eccentric dominating set. 
An eccentric dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 
We need the following results to prove certain results in total eccentric 

domination.  
 

Theorem 1.1[5]: For any graph G, n/(1+(G))  (G)  n(G).  
 

Theorem 1.2 [7]: ed(Kn)  = 1 
 

Theorem 1.3 [7]:  ed(Km,n)  = 2. 
 

Theorem 1.4 [7]: ed(W3)  = 1, ed(W4)  = 2, ed(Wn)  = 3 for n  7. 
 

Theorem 1.5 [7]:   ed(Pn)  = (Pn)  or  (Pn) + 1. 
 

Theorem 1.6[7]: (i) ed(Cn) =  n/2 if n is even. 

                     (ii) ed(Cn) =    n/3  if n = 3m and is odd.  

                        n/3 if n = 3m+1 and is odd. 

                        n/3 + 1 if n = 3m+2 and is odd. 

Theorem 1.7 [9]: If G is a connected graph of order n  3, then t(G)  2n/3. 
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Observation 1.1[9]: If v is a support vertex of a graph G, then v is in every t(G)-set. 
 
Observation: 1.2[10]: For any connected graph G with diameter at least three, there exists 

a t(G)-set that contains no leaves of G. 
 

Observation: 1.3[10]: Every tree T of order n  3 and with s support vertices satisfies  

t(T)  (n+s) / 2. 
 
2. Total Eccentric domination 
 

We define total eccentric dominating set of a graph as follows. 

A set S  V(G) is a total eccentric dominating set if S is an eccentric dominating 

set and also the induced sub graph S has no isolated vertices. The cardinality of 
minimum total eccentric dominating set is called the total eccentric domination number 

and is denoted by te(G). 

Clearly, (i) For any graph G, (G)  t(G)  te(G). 

(ii) For any graph G, . (G)  ed(G)  te(G). But t(T) and ed (T) are incomparable. 

Example 2.1: 

 
 
 
 
 
 

G 
Figure 2.1 

 

D1 = {2, 6, 10} is a dominating set, γ(G) = 3. 

D2 = {1, 2, 6, 10} is an eccentric dominating set, γed(G) = 4. 

D3 = {2, 6, 9, 10} is a total dominating set γt(G) = 4.  

D4 = {1, 2, 6, 9, 10} is a total eccentric dominating set γte(G) =5.  

Here, (G) < t(G) = ed(G) < te(G) 
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Example 2.2: 
 
 
 
 
 
 
 
 
 
 
 
 

G 
Figure 2.2 

D1 = {3, 6, 9, 12, 15, 18} is a dominating set, γ(G) = 6.  
D2 = {1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18} is an eccentric dominating set and also a total 

eccentric dominating set. γed(G) = γte(G) = 12.  

D3 = {3, 6, 9, 12, 15, 18} is a total dominating set, γt(G) = 6.  

γte(G) = 6 = 2n/3. Here, (G) = t(G) = ed(G). 
 
Example 2.3: 
 
 
 
 
 
 
 
 
 
 
 
 
 

G 
Figure 2.3 
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D1 = {3, 6, 9, 12, 15, 18, 21, 24} is a dominating set, γ(G) = 8  

D2 = {1, 4, 7, 10, 14, 17, 20, 23} is an eccentric dominating set, γed(G) = 8  

D3 = {3, 6, 9, 12, 15, 18, 21, 24} is a total dominating set, γt(G) = 8.  
D4 = {1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24} is a total eccentric dominating set,  

γte(G) = 16. Here, ed(G) < te(G), t(G) < te(G), t(G) = ed(G). 

Note: 	ed(G)  (n/3) + (G). 
 

Theorem 2.1: te(Kn) = 2. 

Proof: When G = Kn, radius = diameter r = 1. Hence any vertex u  V(G) dominates 
other vertices and is also an eccentric vertex of other vertices. But the induced sub graph 
has isolated vertex. Hence, any two vertices of G form a total eccentric dominating set, 

that is te(Kn) = 2. 

Theorem 2.2 te(K1,n) = 2, n  2. 
Proof: When G = K1,n. Let S = {u, v}, v central vertex. The central vertex dominates all 

other vertices in V S and u is an eccentric vertex of vertices of V S. The induced sub 

graph S has no isolated vertices. Hence te(K1,n) = 2, n  2. 

Theorem: 2.3: te(Km,n) = 2. 

Proof: When G = Km,n. V(G) = V1  V2. V1= m and V2= n such that each element 

of V1 is adjacent to every vertex of V2 and vice versa. Let S = {u, v}, u  V1 and v  V2. u 

dominates all the vertices of V2 and it is eccentric to elements of V1 {u}. Similarly v 

dominates all the vertices of V1 and it is eccentric to elements of V2  {v}. The induced 

sub graph <S> had no isolated vertices. Hence te(Km,n) = 2. 
 

Theorem 2.4: te(Wn) = 3, n  5,  te(W3) = 2, te(W4) = 2. 

Proof: G = W3 = K4. Hence te(W3) = 2.  
When G = W4. Consider S = {u, v}, where u and v are adjacent non-central vertices. The 
induced sub graph <S> has no isolated vertices, and S is a minimum total eccentric 

dominating set. Therefore te(W4) = 2. 
When G = Wn. Let S = {u, v, w} where u and v are any two adjacent non-central vertices 
and w is the central vertex. The induced sub graph <S> has no isolated vertices, S is an 
eccentric dominating set. Therefore S is a minimum total eccentric dominating set of G.  

Hence te(Wn) = 3, n  5. 
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Theorem 2.5: ߛ௧ሺ ܲሻ ൌ

ە
ۖ
۔

ۖ
ۓ



ଶ
 2	݂݅	݊ ൌ 4݉

ቒ


ଶ
ቓ  1	݂݅	݊ ൌ 4݉  1



ଶ
 1	݂݅	݊ ൌ 4݉  2

ቒ


ଶ
ቓ  1	݂݅	݊ ൌ 4݉  ݊	ݎ݂	3  4

  

te(P3) = 2, te(P4) = 3. 
Proof:  Case (i) n = 4m 

When n  5 an eccentric dominating set of Pn must contain the two end vertices. Let v1, 
v2, …, v4m represent the path Pn. S = { v1, v2, v5, v6, …, v4m-3, v4m-2, v4m-1, v4m} is a minimal 

total eccentric dominating set of G. S = 


ଶ
 2. Thus te(Pn) ≤ 	

ଶ
 2…………….. (i) 

In this case, Pn has exactly one minimum total dominating set. t(Pn) = n/2 and the  t-set 

contains no end vertices. Therefore te(Pn)  


ଶ
 +1. And no eccentric dominating set 

containing 


ଶ
	+1 vertices is not total dominating set. Hence te(Pn)  



ଶ


2.……………(ii) 

From (i) and (ii)te(Pn)	ൌ


ଶ
 2. 

Case (ii) n = 4m+1 

S = {v1, v2, v5, v6, …, v4m, v4m+1} is a minimal total eccentric dominating set of G. S = 

ቒ


ଶ
ቓ  1. Thus te(Pn)  ≤ 	ቒ



ଶ
ቓ  1…………….. (i) 

In this case, t(Pn) = ቒ


ଶ
ቓ  1. We have t(Pn)  te(Pn) . te(Pn)   ቒ



ଶ
ቓ 

1……………(ii) 

From (i) and (ii) te(Pn)  ൌ ቒ


ଶ
ቓ  1. 

Case (iii) n= 4m+2 
In this case, S = {v1, v2, v5, v6, …, v4m+1, v4m+2} is a minimal total eccentric dominating set of 

G. S =  


ଶ
 1. Thus te(Pn) ≤ 



ଶ
 1…………….. (i) 

We know that, t(Pn) = 


ଶ
 1. We have t(Pn) ≤ te(Pn).	 

Therefore te(Pn)  


ଶ
 1…………… (ii) 

From (i) and (ii) te(Pn) ൌ


ଶ
 1. 

Case (iv) n = 4m+3 
S = {v1, v2, v5, v6, …, v4m+1, v4m+2, v4m+3} is a minimal total eccentric dominating set of G. 

S = ቒ


ଶ
ቓ  1. Thus te(Pn) ≤ 	ቒ



ଶ
ቓ  1…………….. (i) 



 
 

55 Total Eccentric domination in Graphs 
 

In this case, t(Pn) = ቒ


ଶ
ቓ. But no minimum total dominating set of Pn is an eccentric 

dominating set. t(Pn) < te(Pn) . te(Pn) ቒ


ଶ
ቓ…………… (ii) 

From (i) and (ii)ቒ


ଶ
ቓ ൏ ௧ሺߛ ܲሻ  ቒ



ଶ
ቓ  1. 

This implies, te(Pn) = ቒ


ଶ
ቓ +1. When G = P3. S = {v1, v2} is a minimum total eccentric 

dominating set. Hence te(P3) = 2. 

When G = P4. S = {v1, v2, v3} is a minimum total eccentric dominating set. Hence te(P4) = 
3. 

Theorem 2.6: te(C3) = 2.  

ሻܥ௧ሺߛ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

݊
2
	݂݅	݊ ൌ 4݉

ቒ
݊
2
ቓ 	݂݅	݊ ൌ 4݉  1

݊
2
 1	݂݅	݊ ൌ 4݉  2

ቒ
݊
2
ቓ  1		݂݅	݊ ൌ 4݉  ݀݀	ݏ݅	݉	݁ݎ݄݁ݓ,3

 

ሻܥ௧ሺߛ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

݊
2
 2	݂݅	݊ ൌ 4݉

ቒ
݊
2
ቓ  1	݂݅	݊ ൌ 4݉  1
݊
2
 1	݂݅	݊ ൌ 4݉  2

ቒ
݊
2
ቓ 		݂݅	݊ ൌ 4݉  ݊݁ݒ݁	ݏ݅	݉	݁ݎ݄݁ݓ,3

 

Proof: When G = C3. S = {v1, v2} is a minimum total eccentric dominating set. Hence  

te(C3) = 2. 
Let S be a minimum total eccentric dominating set of Cn. S is a total dominating set 
implies <S> has no isolated vertices. Since Cn is a cycle if a vertex i is in S implies either 

i1 or i+1 is also in S. 

Let r be the radius of Cn. We know that Cn is a self  centered graph. When n is even, 
radius of Cn = n/2. Therefore n = 2r. In this case denote the vertices of Cn by 1, 2, 3, …, 2r. 
Hence the eccentric vertex of i is i + r (in mod n). 

When n is odd, radius of Cn = 
ିଵ

ଶ
. Therefore, n = 2r + 1. In this case denote the vertices 

of Cn by 1, 2, 3, …, 2r+1. Hence the eccentric vertices of i is i+r and i+r+1. 
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When m is odd. 
Case (i) n = 4m = 2r. 

In this case, S = {1, 2, 5, 6, …, r1,  r,  r+3, r+4,…, 2r-3, 2r-2} is a minimum total 

eccentric dominating set and S=	


ଶ
. 

Thus, te(Cn)  n/2….…………. (i) 

We know that, t(Cn) = n/2. te(Cn)  t(Cn).  te(Cn)  n/2 …………..(ii) 

From (i) and (ii) te(Cn) = n/2. 
Case (ii) n = 4m+1 = 2r+1 

In this case, S = {1, 2, 5, 6, …, r1,  r, r+3, r+4, …, 2r-3, 2r-2, …, 2r+1} is a minimum 

total eccentric dominating set andS=ቒ


ଶ
ቓ 

Thus, te(Cn)  ቒ


ଶ
ቓ ..………….(i) 

We know that, t(Cn) = ቒ


ଶ
ቓ. te(Cn)  t(Cn). te(Cn)  ቒ



ଶ
ቓ.……………..(ii) 

From (i) and (ii) te(Cn) = ቒ


ଶ
ቓ. 

Case (iii) n = 4m+2 = 2r 

In this case, S = {1, 2, 5, 6, 9, 10, …, r2, r1, r+2, r+3, r+6, r+7, …, 2r1, 2r} is a 

minimum total eccentric dominating set and S=	


ଶ
 1. 

Thus, te(Cn)  (n/2)+1. ………….(i) 

We know that, t(Cn) = (n/2)+1. te(Cn)  t(Cn). te(Cn)  (n/2)+1…………..(ii) 

From (i) and (ii) te(Cn) = (n/2)+1. 
Case (iv) n = 4m+3 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r2,  r1, r+2, r+3, r+4, r+7, r+8, …, 2r, 2r+1} is a 

total eccentric dominating set and S=	ቒ


ଶ
ቓ  1.	 

Thus, te(Cn)  ቒ


ଶ
ቓ+1.………….(i) 

We know that, t(Cn) =ቒ


ଶ
ቓ+1. te(Cn)  t(Cn). te(Cn)  ቒ



ଶ
ቓ+1…………..(ii) 

From (i) and (ii) te(Cn) = ቒ


ଶ
ቓ+1. 

When m is even 
Case (i) n = 4m = 2r 

In this case, S = {1, 2, 5, 6 ,…,  r3, r2, r+1, r+2, r+3, r+7, r+8, …, 2r1, 2r} is a total 
eccentric dominating set and  

S=	


	ଶ
 2. 
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Thus, te(Cn)  (n/2)+2. We know that, t(Cn) = n/2. Any total dominating set containing 

n/2 or n/2+1 vertices is not an eccentric dominating set. Hence te(Cn) =  (n/2)+2. 
Case (ii) n = 4m+1 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r+1, r+2, r+3, r+4, r+7, r+8, …, 2r1, 2r} is a total 

eccentric dominating set and S=ቒ


ଶ
ቓ  1. 

Thus, te(Cn) ቒ


ଶ
ቓ+1 .....………….(i) 

We know that, t(Cn) = ቒ


ଶ
ቓ. Any total dominating set containing n/2 or n/2+1 vertices is 

not an eccentric dominating set. Hencete(Cn) = ቒ


ଶ
ቓ+1. 

Case (iii) n = 4m+2 = 2r 

In this case, S = {1, 2, 5, 6, 9, 10, …, r,  r+1, r+3, r+4, r+7, r+8, …, 2r2, 2r1} is a total 

eccentric dominating set and S=	


ଶ
 1. 

Thus, te(Cn)  (n/2)+1………….(i) 

We know that, t(Cn) = (n/2)+1. te(Cn)  t(Cn). te(Cn)  (n/2)+1…………..(ii) 

From (i) and (ii) te(Cn) = (n/2)+1. 
Case (iv) n = 4m+3 = 2r+1 

In this case, S = {1, 2, 5, 6, 9, 10, …, r, r+1, r+3, r+4, r+7, r+8, …, 2r2, 2r1} is a total 

eccentric dominating set. S=ቒ


ଶ
ቓ. 

Thus, te(Cn) ቒ


ଶ
ቓ. ………….(i) 

We know that, t(Cn) = ቒ


ଶ
ቓ. te(Cn)  t(Cn). te(Cn)  ቒ



ଶ
ቓ. …………..(ii) 

From (i) and (ii) te(Cn) = ቒ


ଶ
ቓ. 

 

Theorem 2.7: If G is of diameter two, te(G)  1+(G).   

Proof: diam(G) = 2. Let u  V(G) such that deg u = (G). Consider, S = {u}N(u). This 
is a total eccentric dominating set of G. the induced sub graph <S> has no isolated 

vertices. Therefore, te(G)  1+(G).   
 
Theorem 2.8: If G is of radius two and diameter three and if G has a pendent vertex v of 

eccentricity three then te(G)  1+(G).    
Proof: If G has a pendent vertex v of eccentricity three then its support u is of eccentricity 
two. In this case, N(u) is an eccentric dominating set. But it is not total eccentric 

dominating set. N(u){u} form a total eccentric dominating set. Hence te(G)  1+(G). 
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Theorem 2.9: If G is a spider, then te(G) = (G)+2.  

Proof: Let G be a spider, and u be a vertex of maximum degree (G). u is the central 

vertex,N[u] vertices form a total dominating set. Adding any one end vertex form a 
total eccentric dominating set and this is the minimum total eccentric dominating set. 
Hence 

 te(G) = (G)+2.  

Theorem 2.10: If G is a wounded spider, then te(G) = s+2. where s is the number of 
support vertices which are adjacent to non-wounded legs. 

Proof: Let G be a wounded spider. Let u be the vertex of maximum degree (G), and S be 

the set of support vertices which are adjacent to non-wounded legs. The set S{u} 
form a total dominating set. But it is not a total eccentric dominating set. Adding any one 

end vertex form a minimum total eccentric dominating set. Hence te(G) = s+2, where s = 

S. 

Theorem 2.11: For any connected graph G, te(G)  2/3(n+e(G)).  

Proof: Let us assume that G be a graph on n vertices, with eccentric number e(G). Let G 
be a graph on n+e(G) vertices obtained from G as follows:  

Let S = { u1, u2, …, ue(G)} be the minimum eccentric point set of G. Attach a new vertex u1 
to u1, u2 to u2,…, u e(G) to ue(G) by edges. Denote the new graph obtained as G. Then 

V(G)= n+e(G) =V(G)+e(G). Now, by the previous observations, there exists a t-

–set D containing no u i  of G, containing all u i s and te(G)  2/3(n+e(G)).Therefore, 

D is a total eccentric dominating set of G. Therefore te(G)  2/3(n+e(G)).  

Corollary 2.1: te(T)  2/3(n+2).   

Theorem 2.12: If G is a connected graph with V(G)= n. Then te(GK1)  n+e(G).  

Proof: Let V (G) = {v1, v2, …, vn}. Let vi be the pendent vertex adjacent to vi in GoK1, for i 
= 1, 2, …, n. 
Let k = e(G) be the number of eccentric vertices of G and let them be {x1, x2, …, xk}. Then  

V(G) {x1, x2 ,…, xk} is a total eccentric dominating set.  

Therefore te(GK1)  n+e(G) = n+k.   

Corollary 2.2: ced(G)  n+e(G), where ced(G) is a connected eccentric dominating set. 

Theorem: 2.13: If G is of radius one and diameter two, then te(G)  (n-t+2) / 2, where t 
is the number of vertices with eccentricity one. 
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Proof: V(G) can be partitioned into two sets V1 and V2 as follows. V1 = {v  V/e(v) = 1}  

and V2 = {v  V/e(v) = 2}. Let u  V(G) such that e(u) = 1. Let t be the number of 

vertices with eccentricity one. u dominates all other vertices and for t1 other vertices u is 
an eccentric point. Consider the remaining (n-t) vertices of G. Let S be the subset of V2 

vertices such that vertices in V2S have their eccentric vertices in S. Now S{u} is a total 
eccentric dominating set. 

Hence te(G)  1 + 
ሺି௧ሻ

ଶ
  = (n-t+2) / 2. 

 

Theorem 2.14: If G is of radius one and diameter two, then te(G)  2 + ቒ
ఋሺீሻି௧

ଶ
ቓ, 

where t is the number of vertices with eccentricity one. 

Proof: V(G) can be partitioned into two sets V1 and V2 as follows. V1 = {v  V/e(v) = 1}  

and V2 = {v  V/e(v) = 2}. Let u be a vertex in V2 such that degree of u in H = <V2> is 

minimum. Let degHu = 2 = (G)t. Then u is eccentric to the remaining nt2 

vertices. Let S be a subset of NH(u) such that vertices in NH(u)S have their eccentric 

vertices in S. Hence      {u, v}  S, where v  V1 is a total eccentric dominating set of G.  

 Therefore, te(G)  2 + ቒ
ఋሺீሻି௧

ଶ
ቓ. 

 

Theorem 2.15: If G is of radius two and diameter three, thente(G)  1+

.
2

)1deg(  un G  

Proof: Let u be a central vertex with minimum degree. Consider N[u]. N[u] dominates all 
other vertices of G. Let S be a subset of N2(u) with minimum cardinality such that vertices 

in N2(u)S has their eccentric vertices in S. Then S≤ 
2

)(2 uN
 = .

2

)1deg(  un G  

Now N[u]S is a total eccentric dominating set of G. Hence, te(G)  N[u] + S   1 + 

degGu + 
2

)1deg(  un G   = 1+ .
2

)1deg(  un G  

 

Observation 2.1: 1 te(G) 

Proof: Every te(G)-set does not contain isolated vertex. Hence 1  te(G). 
 
Observation: 2.2: 

(i) If G =


 2112 KKKK , then (G) = 2, ed(G) = 4, t(G) = 2, te(G) = 4. 

(ii) If G = Kn+K1+K1+Kn, n > 2 then,  (G) = 2, ed(G) = 2, t(G) = 2, te (G) = 4. 
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Theorem 2.16: Let G be a connected graph. Then, te(G) = 2, if and only if G is any one of 
the following 
(i) G = Kn. 

(ii) r(G) = 1, d(G) = 2 and u  V(G) such that e(u) = 2 and d(u, v) = 2 for all v  V(G) 
with e(v)  = 2. 
(iii) G is self – cantered of diameter 2, having a dominating edge which is not in a triangle. 

Proof: When G satisfies any one of the above conditions obviously, te(G) = 2. On the 

other hand, assume that, te(G) = 2. Therefore (G) = 1 or (G) = 2. 
Case (i) 

(G) = 1 and, te(G) = 2. This implies that G satisfies (i) and (ii). 
Case (ii) 

(G) = 2 = te(G) . 

Let D be a minimum tedominating set of G. Let D = {u, v}V(G). Since (G) = 2, r(G) 

 2. Since D is connected u and v are adjacent and the edge uv is dominating edge for G. 

Therefore r(G)  2 and 2  d(G)  3. Suppose d(G) = 3, there exists a vertex x with 
eccentricity 3 and x is dominated by u or v. 

Let xu  E(G). Now, d is a teset. Hence v must be an eccentric point of x. this implies 
that d(x, v) = 3. But xuv is a path imples d(x, v) = 2. Which is a contradiction. Hence, x 
must be a vertex with eccentricity 2. This implies that d(G) = 2, G is a self –cantered  with 
diameter 2. There exists no w, adjacent to both u and v, since in that case, w has no 

eccentric point in D. Since r(G)  2. 
 

Theorem 2.17: If G is bieccentric with (G) = 2, that is r(G) = 2, d(G) = 3, then te(G)  
4. 

Proof: (G) = 2 implies D = {u, v} is a dominating set. Since d(G) = 3. Then d(u, v) = 1, 2 
or 3. 
Case (i) 
d(u, v) = 1. 
Since D is connected. u and v are adjacent and the edge uv is a dominating edge for G. let 

x, w  V(G) such that e(x) = e(w) = 3. w, x are dominated by u or v. Consider D1 = {u, 

v}{w, x} is an eccentric dominating set, and if y  VD and e(y) = 2, it can’t be 

adjacent to both x and w. Therefore w, x are eccentric to y. If s  VD and e(s) = 3, it 
can’t be adjacent to w or x. therefore w or x is eccentric to s. <D1> has no isolated vertices. 

Thus D1 is a total eccentric dominating set. Hence te(G)  4. 
Case (ii) 
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d(u,v) = 2. Then e(u) = e(v) = 2 and uxv is a shortest path. Let y, w  V(G) such that e(y) 

= e(w) = 3. y and w are dominated by u or v. If z  VD with e(z) = 2, it cannot be 

adjacent to y. Therefore y is eccentric to z. Then D = {u, v}{y, w} is a total dominating 

set. Hence te(G)  4. 
Case (iii) 
d(u, v) = 3. Then e(u) = e(v) = 3 and uxyw is a shortest path. Eccentric point of y must be 

u and eccentric point of x must be w. Therefore e(x) = e(y) = 2. Then D = {u, v}{x, y} 

is a total eccentric dominating set. Hence te(G)  4. 
 

Theorem 2.18; If T is a non-trivial tree of order n with l leaves, then,	
ାଶି

ଶ
  te(G)  

ାଶା௦

ଶ
,	where s is the number of support vertices of T. 

Proof: Let us assume that T be a tree on n vertices and with l leaves. Let T be a tree on 
n+2 vertices with attaching 2 vertices x and y with u and v, where u and v are peripheral 

vertices of T at distance ‘d’ to each other. From [Observation: 1.3]. Therefore t(T) 

	ାଶା௦
ଶ

, from [Observation: 1.2]. Therefore T is a total eccentric dominating set of T. 

Therefore te(T)  (n+2+s)/2. Also, te(T)  (n+2-l)/2. Therefore te(T)  t(T)  (n+2-

l)/2,	implies te(T)  (n+2-l)/2. 
 

Theorem 2.19: For a bi-central tree with radius 2, te(T)   min {n-(G)+1, 4} . 
Proof: Let u and v be the central vertices of T, then N[u] and N[v] are total eccentric 

dominating sets of T. VN(u)  {v}, VN(v)  {u} are also total eccentric dominating 
sets of T.  

Also deg u + deg v = n. Hence, te(T)   n  (G) + 1. All the four vertices of a diametral 

path also form a total dominating set. Hence te(T)   min {n-(G)+1, 4} . 

Observation 2.3: For any tree T, t(T)  te(T)  t(T)+ 2.   

Theorem 2.20 For a tree T, with radius two which is not a path 

(i) te(T) = t(T)  + 1if there exists at least one peripheral vertex with support vertex s, 
such that deg s = 2. 

(ii) te(T) = t(T)  + 2 if degree of all the support vertices are greater than two. 
Proof: Let T be a bi - central tree. 

In this case, diam(T) = 3 and T = mn KKKK  11  for n, m  1. When n = m = 1, 

te(T) = 3, t(T) = 2. Hence te(T) = t(T) +1 
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 When n, m > 1, te(T) = t(T) + 2 = 4. 
Let T be a unicentral tree. 

In this case, diam(T) = 4 and let T  P5. Let S be the set of all support vertices of T and let 
v be the central vertex of T. 
(a) If there exists only one peripheral vertex with degree of its support = 2. Let x be a 

peripheral vertex and it is eccentric to all other vertices except its support. Then (S{v}) 

is a t-set of T and (S{v} {x}) is a te-set  of T. Hence te(T) = t(T) +1. 
(b) If there exists two peripheral vertices with degree of their supports = 2, then the degree 
of v is greater than two. Let x and y be two peripheral vertices and u, w be their supports 

such that deg u = deg w = 2. x or y is eccentric to each other vertices. Then S{v} is a t-

set of T and (S{v}{x}) is a te-set  of T. Hence   te(T) = t(T) +1. 

 (ii) If degree of all the support vertices are greater than two, S is ߛ௧set of T and 

S{x,y}, where x and y are two peripheral vertices at distance 4 to each other  is ߛ௧set  
of T. Hence 

  te(T) = t(T) + 2  

Corollary 2.3: (i) For a bi central tree T with radius 2, te(T) = 3  if and only if T = P4 or T 

= 111 KKKKn   

(ii) For a bi central tree T with radius 2, te(T) = 4 if and only if degree of the central 

vertices are  3. 
 
Theorem 2.21: Let n be an even integer. Let G be obtained from the complete graph Kn by 

deleting edges of a linear factor. Then te(G) = n/2. 

Proof: Let u and v be a pair of nonadjacent vertices in G. Then u and v are eccentric to 

each other. Also, G is unique eccentric point graph. Therefore te(G)  n/2.…………(i). 

Consider D  V(G) such that <D> = Kn/2. D contains n/2 vertices such that each vertex in 

VD is adjacent to at least one element in D and each element in VD has its eccentric 

vertex in D and also <D> has no isolated vertices. Hence te(G)  n/2.…………..(ii). 

From (i) and (ii) te(G) = n/2. 

Theorem 2.22: ,4)( 4 Cte ,3)( 5 Cte and 




3

)(
n

Cnte , for n  6. 

Proof: Clearly ,4)( 4 Cte 3)( 5 Cte . Now, assume that n  6. Let v1, v2, v3, …, vn, v1 

form Cn. Then nC = KnCn and each vertex vi is adjacent to all other vertices except vi-1 

and vi+1 in nC . Hence eccentric point of vi in nC  is vi-1 and vi+1 only. Hence any total 
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eccentric dominating set must contain either vi or any one of  vi-1,vi+1. Thus 






3

)(
n

Cnte ………..(i). Now, consider a total eccentric dominating set as follows. 

{v1, v4, v7, …, v3m-2} if n = 3m. 
{v1, v4, v7, ..., v3m+1} if n = 3m+1. 

{v1, v4, v7, …, v3m+1, v3m+2} if n = 3m+2. Hence 




3

)(
n

Cnte ………….(ii) 

From (i) and (ii) 




3

)(
n

Cnte , for n  6. 

Observations 2.4: 

(i)  ߛ௧ሺܩሻ  ሻܩ௧ሺߛ ≰
ସ

ଷ
. 

 
Example: G = C7. 
 

(ii) )  ߛ௧ሺܩሻ  ሻܩௗሺߛ 
ସ

ଷ
. 

 

(iii) ߛሺܩሻ  ሻܩ௧ሺߛ ≰
ସ

ଷ
. 

 
Example: G = C7. 

(iv) i(G) + te(T) ≰ ݊. 
 

Example: G = H2K1, where H = C6. te(G) = 2n/3 and i(G) = n/2, where i(G) is the 
independent dominating number of G. 
 
Theorem 2.23: If D is a minimal total eccentric dominating set of a connected graph G = 

(V, E), then each vertex u  D, one of the following is true 

(i) There exists some vVD such that N(v)D = {u} (or) E(v)D = {u}. 

(ii) <D{u}> contains an isolated vertex or u has no eccentric vertex in D. 
Proof: Assume that D is a minimal total eccentric dominating set of G. then for every 

vertex u  D, D{u} is not a total eccentric dominating set. That is there exists some 

vertex v in (VD){u} which is not dominated by any vertex in D{u} or there exists v 

in (VD){u} such that v has no eccentric point in D{u} or there exists a vertex v in D 

such that N(v)(D{u}) = . 
Case (i) 

Suppose v  VD. 
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(a) If v is not dominated by D{u}, but is dominated by D, then v is adjacent only u in D, 

that is N(v)D = {u}. 

(b) Suppose v has no eccentric point in D{u} but v has an eccentric point in D. Then u is 

the only eccentric point of v in D, that is E(v)D = {u}. 
Case (ii) 

Suppose u = v, then <D{u}> contains an isolated vertex or u has no eccentric vertex in 
D. 

Conversely, suppose D is a total eccentric dominating set and for each u  D one of the 
conditions holds, we show that D is a minimal total eccentric dominating set. 
Suppose that D is not a minimal total eccentric dominating set. That is, there exists a 

vertex u  D such that D{u} is a total eccentric dominating set. Hence every element x 

in VD is adjacent to at least one vertex in D{u} and x has an eccentric point in D{u}. 
Hence (i) does not hold. 

Also, if D{u} is a total eccentric dominating set. Hence, <D{u}> has no isolated vertex 

and u has an eccentric point in D{u}. Therefore, condition (ii) does not hold. This is a 

contradiction to our assumption that for each u  D, one of the conditions holds. 
 

Theorem 2.24: If H is any selfcentered unique eccentric point graph with m vertices and 

G = Ho2K1, then te(G) = 2n/3 where n = 3m. 

Proof: If H is any selfcentered unique eccentric point graph, then every vertex of H is an 
eccentric vertex. Hence m is even and G has 3m vertices. Let v1, v2, v3, …, vm represent the 

vertices of H and {v i  ,v i  } for i = 1, 2, 3, …, m be the vertices of m copies of 2K1. Then 

in G, v i  , v i  are adjacent to vi and if vj is the eccentric vertex of vi in H, then v i , v i  
are eccentric vertices of vj in G and v j  , v j  are the eccentric vertices of vi. It is clear that 

{v1, v2, v3, …, vm}{ x1, x2, x3, …, xm }, where xi = v i  or v i  are minimum total eccentric 

dominating sets of G. Hence te(G) = 2n/3. 
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