International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 5, No. 2, April – June 2014, pp. 49 - 65

Total Eccentric domination in Graphs

M. Bhanumathi, J. John Flavia

Government Arts College for Women,Pudukkottai-622001, TN, India Email: *bhanu_ksp@yahoo.com, flavimaths@gmail.com*

Abstract: A set S \subseteq *V(G) is a total eccentric dominating set if S is an eccentric dominating set and also the induced sub graph S has no isolated vertices. The cardinality of minimum total eccentric dominating set is called the total eccentric domination number and is denoted by* $\gamma_{te}(G)$ *. In this paper, we present several bounds on the total eccentric domination number and exact values of some particular graphs.*

Keyword: Total domination, eccentric domination, total eccentric domination.

1. Introduction

Let G be a finite, simple, undirected graph on n vertices with vertex set $V(G)$ and edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary [4].

Definition 1.1: Let G be a connected graph and u be a vertex of G. The **eccentricity** e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = max{d(u, v) : u \in V}$. The **radius** $r(G)$ is the minimum eccentricity of the vertices, whereas the **diameter** diam(G) = d(G) is the maximum eccentricity. For any connected graph G, $r(G) \leq diam(G) \leq 2r(G)$. v is a central vertex if $e(v) = r(G)$. The **center** $C(G)$ is the set of all central vertices. For a vertex v, each vertex at a distance e(v) from v is an **eccentric vertex of v. Eccentric set of a vertex** v is defined as $E(v) = \{u \in V(G) / d(u, v) = e(v)\}.$

Definition 1.2: The **open neighborhood** $N(v)$ of a vertex v is the set of all vertices adjacent to v in G. N[v] = N(v) \bigcup {v} is called the **closed neighborhood** of v.

Definition 1.3: A **bigraph or bipartite graph** G is a graph whose point set V can be partitioned into two subsets V_1 and V_2 such that every line of G joins V_1 with V_2 . If further G contains every line joining the points of V_1 to the points of V_2 , then G is called a **complete bigraph.** If V_1 contains m points and V_2 contains n points then the complete bigraph G is denoted by $K_{m,n}$.

Definition 1.4: A **star** is a complete bi graph $K_{1,n}$.

Received: 08 January, 2014; Revised: 14 April, 2014; Accepted: 02 May, 2014

Definition 1.5 [5, 11]: A set $D \subseteq V$ is said to be a **dominating set** in G, if every vertex in $V-D$ is adjacent to some vertex in D. The cardinality of minimum dominating set is called the **domination number** and is denoted by $\gamma(G)$.

Definition 1.6[9, 11]: A dominating set $D \subseteq V(G)$ is a **total dominating set** if dominating set and also the induced sub graph $\langle D \rangle$ has no isolated vertices. The cardinality of minimum total dominating set is called the **total domination number** and is denoted by $\gamma_{t}(G)$.

Definition 1.7 [7]: A set $D \subseteq V(G)$ is an **eccentric dominating set** if D is a dominating set of G and for every $v \in V-D$, there exists at least one eccentric point of v in D. The cardinality of minimum eccentric dominating set is called the **eccentric domination number** and is denoted by $\gamma_{\text{ed}}(G)$.

If D is an eccentric dominating set, then every superset $D' \supseteq D$ is also an eccentric dominating set. But $D'' \subseteq D$ is not necessarily an eccentric dominating set.

An eccentric dominating set D is a **minimal eccentric dominating set** if no proper subset $D'' \subset D$ is an eccentric dominating set.

We need the following results to prove certain results in total eccentric domination.

Theorem 1.1[5]: For any graph G, $\left\lceil n/(1+\Delta(G)) \right\rceil \leq \gamma(G) \leq n-\Delta(G)$.

Theorem 1.2 [7]: $\gamma_{\text{ed}}(K_n) = 1$

Theorem 1.3 [7]: $\gamma_{\text{ed}}(K_{m,n}) = 2$.

Theorem 1.4 [7]: $\gamma_{\text{ed}}(W_3) = 1$, $\gamma_{\text{ed}}(W_4) = 2$, $\gamma_{\text{ed}}(W_n) = 3$ for $n \ge 7$.

Theorem 1.5 [7]: $\gamma_{\text{ed}}(P_n) = \gamma(P_n)$ or $\gamma(P_n) + 1$.

Theorem 1.6[7]: (i) $\gamma_{\text{ed}}(C_n) = n/2$ if n is even.

(ii)
$$
\gamma_{\text{ed}}(C_n) = \begin{cases} n/3 & \text{if } n = 3m \text{ and is odd.} \\ \begin{bmatrix} n/3 \\ n/3 \end{bmatrix} & \text{if } n = 3m+1 \text{ and is odd.} \\ \begin{bmatrix} n/3 \\ n/3 \end{bmatrix} + 1 & \text{if } n = 3m+2 \text{ and is odd.} \end{cases}
$$

Theorem 1.7 [9]: If G is a connected graph of order $n \ge 3$, then $\gamma_t(G) \le 2n/3$.

Observation 1.1[9]: If v is a support vertex of a graph G, then v is in every $\gamma_t(G)$ -set.

Observation: 1.2[10]: For any connected graph G with diameter at least three, there exists a $\gamma_{t}(G)$ -set that contains no leaves of G.

Observation: 1.3[10]: Every tree T of order $n \ge 3$ and with s support vertices satisfies $\gamma_{t}(T) \leq (n+s) / 2.$

2. **Total Eccentric domination**

We define total eccentric dominating set of a graph as follows.

A set $S \subseteq V(G)$ is a **total eccentric dominating set** if S is an eccentric dominating set and also the induced sub graph \leq S $>$ has no isolated vertices. The cardinality of minimum total eccentric dominating set is called the **total eccentric domination number** and is denoted by $\gamma_{te}(G)$.

Clearly, (i) For any graph G, $\gamma(G) \leq \gamma_t(G) \leq \gamma_{te}(G)$. (ii) For any graph G, . $\gamma(G) \leq \gamma_{\rm ed}(G) \leq \gamma_{\rm te}(G)$. But $\gamma_{\rm t}(T)$ and $\gamma_{\rm ed}(T)$ are incomparable.

Example 2.1:

Figure 2.1

 $D_1 = \{2, 6, 10\}$ is a dominating set, $\gamma(G) = 3$. $D_2 = \{1, 2, 6, 10\}$ is an eccentric dominating set, $\gamma_{\text{ed}}(G) = 4$. $D_3 = \{2, 6, 9, 10\}$ is a total dominating set $\gamma_t(G) = 4$. $D_4 = \{1, 2, 6, 9, 10\}$ is a total eccentric dominating set $\gamma_{te}(G) = 5$. Here, $\gamma(G) < \gamma_t(G) = \gamma_{ed}(G) < \gamma_{te}(G)$

$$
\mathbf{1.5} \mathbf{u} \mathbf{c} \mathbf{2.2}
$$

 $D_1 = \{3, 6, 9, 12, 15, 18\}$ is a dominating set, $\gamma(G) = 6$. $D_2 = \{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18\}$ is an eccentric dominating set and also a total eccentric dominating set. $\gamma_{\text{ed}}(G) = \gamma_{\text{te}}(G) = 12$. $D_3 = \{3, 6, 9, 12, 15, 18\}$ is a total dominating set, $\gamma_t(G) = 6$. $\gamma_{te}(G) = 6 = 2n/3$. Here, $\gamma(G) = \gamma_{t}(G) = \gamma_{ed}(G)$.

Example 2.3:

Figure 2.3

Example 2.2:

 $D_1 = \{3, 6, 9, 12, 15, 18, 21, 24\}$ is a dominating set, $\gamma(G) = 8$ $D_2 = \{1, 4, 7, 10, 14, 17, 20, 23\}$ is an eccentric dominating set, $\gamma_{\text{ed}}(G) = 8$ $D_3 = \{3, 6, 9, 12, 15, 18, 21, 24\}$ is a total dominating set, $γ_t(G) = 8$. $D_4 = \{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24\}$ is a total eccentric dominating set, $\gamma_{te}(G) = 16$. Here, $\gamma_{ed}(G) < \gamma_{te}(G)$, $\gamma_{t}(G) < \gamma_{te}(G)$, $\gamma_{t}(G) = \gamma_{ed}(G)$. Note: $\gamma_{\text{ed}}(G) \leq (n/3) + \gamma(G)$.

Theorem 2.1: $\gamma_{te}(K_n) = 2$.

Proof: When $G = K_n$, radius = diameter $r = 1$. Hence any vertex $u \in V(G)$ dominates other vertices and is also an eccentric vertex of other vertices. But the induced sub graph has isolated vertex. Hence, any two vertices of G form a total eccentric dominating set, that is $\gamma_{te}(K_n) = 2$.

Theorem 2.2 $\gamma_{te}(K_{1,n}) = 2$, $n \ge 2$.

Proof: When $G = K_{1,n}$. Let $S = \{u, v\}$, v central vertex. The central vertex dominates all other vertices in V-S and u is an eccentric vertex of vertices of V-S. The induced sub graph $\langle S \rangle$ has no isolated vertices. Hence $\gamma_{te}(K_{1,n}) = 2$, n ≥ 2 .

Theorem: 2.3: $\gamma_{te}(K_{mn}) = 2$.

Proof: When G = $K_{m,n}$. $V(G) = V_1 \cup V_2$. $|V_1| = m$ and $|V_2| = n$ such that each element of V₁ is adjacent to every vertex of V₂ and vice versa. Let S = {u, v}, u \in V₁ and v \in V₂. u dominates all the vertices of V_2 and it is eccentric to elements of V_1 {u}. Similarly v dominates all the vertices of V_1 and it is eccentric to elements of V_2 \vdash {v}. The induced sub graph <S> had no isolated vertices. Hence $\gamma_{te}(K_{m,n}) = 2$.

Theorem 2.4: $\gamma_{te}(W_n) = 3$, $n \ge 5$, $\gamma_{te}(W_3) = 2$, $\gamma_{te}(W_4) = 2$.

Proof: $G = W_3 = K_4$. Hence $\gamma_{te}(W_3) = 2$.

When $G = W_4$. Consider $S = \{u, v\}$, where u and v are adjacent non-central vertices. The induced sub graph <S> has no isolated vertices, and S is a minimum total eccentric dominating set. Therefore $\gamma_{te}(W_4) = 2$.

When $G = W_n$. Let $S = \{u, v, w\}$ where u and v are any two adjacent non-central vertices and w is the central vertex. The induced sub graph <S> has no isolated vertices, S is an eccentric dominating set. Therefore S is a minimum total eccentric dominating set of G.

Hence $\gamma_{te}(W_n) = 3$, n ≥ 5 .

$$
\text{Theorem 2.5: } \gamma_{te}(P_n) = \begin{cases} \frac{n}{2} + 2 & \text{if } n = 4m\\ \frac{n}{2} + 1 & \text{if } n = 4m + 1\\ \frac{n}{2} + 1 & \text{if } n = 4m + 2 \end{cases}
$$
\n
$$
\left| \frac{n}{2} \right| + 1 & \text{if } n = 4m + 3 \text{ for } n > 4
$$

 $\gamma_{te}(P_3) = 2, \gamma_{te}(P_4) = 3.$ **Proof: Case (i) n = 4m**

When $n \geq 5$ an eccentric dominating set of P_n must contain the two end vertices. Let v₁, v_2 , ..., v_{4m} represent the path P_n . $S = \{v_1, v_2, v_5, v_6, ..., v_{4m-3}, v_{4m-2}, v_{4m-1}, v_{4m}\}$ is a minimal total eccentric dominating set of G. S = ଶ 2. Thus te(Pn) ≤ ଶ 2…………….. (i) In this case, P_n has exactly one minimum total dominating set. $\gamma_t(P_n) = n/2$ and the γ_t -set contains no end vertices. Therefore $\gamma_{te}(P_n) \geq \frac{n}{2}$ +1. And no eccentric dominating set containing $\frac{n}{2}+1$ vertices is not total dominating set. Hence $\gamma_{te}(P_n) \geq \frac{n}{2}+1$ 2.……………(ii)

From (i) and (ii) $\gamma_{te}(P_n) = \frac{n}{2}$ $\frac{n}{2}$ + 2. **Case (ii) n = 4m+1**

 $S = \{v_1, v_2, v_5, v_6, ..., v_{4m}, v_{4m+1}\}\$ is a minimal total eccentric dominating set of G. $\|S\|$ = $\left[\frac{n}{2}\right]$ ଶ ቓ1. Thus te(Pn) ≤ ቒ ଶ ቓ1…………….. (i) In this case, $\gamma_t(P_n) = \frac{n}{2}$ $\left\{ \frac{n}{2} \right\} + 1$. We have $\gamma_{t}(P_{n}) \leq \gamma_{te}(P_{n})$. $\gamma_{te}(P_{n}) \geq \left\lceil \frac{n}{2} \right\rceil$ $\frac{n}{2}$ + 1……………(ii) From (i) and (ii) $\gamma_{te}(P_n) = \left\lceil \frac{n}{2} \right\rceil + 1$.

Case (iii) n= 4m+2

In this case, $S = \{v_1, v_2, v_5, v_6, ..., v_{4m+1}, v_{4m+2}\}\$ is a minimal total eccentric dominating set of G. $|s| = \frac{n}{2} + 1$. Thus $\gamma_{te}(P_n) \leq \frac{n}{2}$ ଶ 1…………….. (i) We know that, $\gamma_t(P_n) = \frac{n}{2}$ $\frac{n}{2}+1$. We have $\gamma_{t}(P_{n}) \leq \gamma_{te}(P_{n})$. Therefore te(Pn) ଶ 1…………… (ii) From (i) and (ii) $\gamma_{\text{te}}(P_n) = \frac{n}{2} + 1$. **Case (iv) n = 4m+3** $S = \{v_1, v_2, v_5, v_6, \ldots, v_{4m+1}, v_{4m+2}, v_{4m+3}\}\$ is a minimal total eccentric dominating set of G. $\left|S\right| = \frac{n}{2}$ ଶ ቓ1. Thus te(Pn) ≤ ቒ ଶ ቓ1…………….. (i)

In this case, $\gamma_t(P_n) = \frac{n}{2}$ $\frac{n}{2}$. But no minimum total dominating set of P_n is an eccentric dominating set. $\gamma_{\rm t}({\rm P}_{\rm n}) < \gamma_{\rm te}({\rm P}_{\rm n})$. $\gamma_{\rm te}({\rm P}_{\rm n}) > \left\lceil \frac{n}{2} \right\rceil$ ଶ ቓ…………… (ii) From (i) and (ii) $\left[\frac{n}{2}\right]$ $\left| \frac{n}{2} \right| < \gamma_{te}(P_n) \leq \left| \frac{n}{2} \right| + 1.$ This implies, $\gamma_{te}(P_n) = \frac{n}{2}$ $\frac{n}{2}$ +1. When G = P₃. S = {v₁, v₂} is a minimum total eccentric dominating set. Hence $\gamma_{te}(P_3) = 2$.

When G = P₄. S = {v₁, v₂, v₃} is a minimum total eccentric dominating set. Hence $\gamma_{te}(P_4)$ = 3.

Theorem 2.6:
$$
\gamma_e(C_3) = 2
$$
.
\n
$$
\gamma_{te}(C_n) = \begin{cases}\n\frac{n}{2} & \text{if } n = 4m \\
\frac{n}{2} & \text{if } n = 4m + 1 \\
\frac{n}{2} + 1 & \text{if } n = 4m + 2\n\end{cases}
$$
\n
$$
\gamma_{te}(C_n) = \begin{cases}\n\frac{n}{2} + 2 & \text{if } n = 4m + 1 \\
\frac{n}{2} + 1 & \text{if } n = 4m + 1 \\
\frac{n}{2} + 1 & \text{if } n = 4m + 1\n\end{cases}
$$
\n
$$
\gamma_{te}(C_n) = \begin{cases}\n\frac{n}{2} + 2 & \text{if } n = 4m + 1 \\
\frac{n}{2} + 1 & \text{if } n = 4m + 2 \\
\frac{n}{2} & \text{if } n = 4m + 3, \text{ where } m \text{ is even}\n\end{cases}
$$

Proof: When $G = C_3$. $S = \{v_1, v_2\}$ is a minimum total eccentric dominating set. Hence $\gamma_{te}(C_3) = 2.$

Let S be a minimum total eccentric dominating set of C_n . S is a total dominating set implies $<$ S> has no isolated vertices. Since C_n is a cycle if a vertex i is in S implies either $i-1$ or $i+1$ is also in S.

Let r be the radius of C_n . We know that C_n is a self – centered graph. When n is even, radius of $C_n = n/2$. Therefore $n = 2r$. In this case denote the vertices of C_n by 1, 2, 3, ..., 2r. Hence the eccentric vertex of i is $i + r$ (in mod n).

When n is odd, radius of $C_n = \frac{n-1}{2}$. Therefore, n = 2r + 1. In this case denote the vertices of C_n by 1, 2, 3, ..., 2r+1. Hence the eccentric vertices of i is i+r and i+r+1.

When m is odd.

Case (i) $n = 4m = 2r$. In this case, $S = \{1, 2, 5, 6, ..., r-1, r, r+3, r+4, ..., 2r-3, 2r-2\}$ is a minimum total eccentric dominating set and $|S| = \frac{n}{2}$. Thus, te(Cn) n/2….…………. (i) We know that, $\gamma_t(C_n) = n/2$. $\gamma_{te}(C_n) \ge \gamma_t(C_n)$. $\gamma_{te}(C_n) \ge n/2$ (ii) From (i) and (ii) $\gamma_{te}(C_n) = n/2$. **Case (ii) n = 4m+1 = 2r+1** In this case, $S = \{1, 2, 5, 6, ..., r-1, r, r+3, r+4, ..., 2r-3, 2r-2, ..., 2r+1\}$ is a minimum total eccentric dominating set and $\left|S\right|=\frac{n}{2}$ $\frac{n}{2}$ Thus, $\gamma_{te}(C_n) \leq \left[\frac{n}{2}\right]$ ଶ ቓ ..………….(i) We know that, $\gamma_t(C_n) = \frac{n}{2}$ $\left\{ \frac{n}{2} \right\}$. $\gamma_{te}(C_n) \geq \gamma_t(C_n)$. $\gamma_{te}(C_n) \geq \left\{ \frac{n}{2} \right\}$ ଶ ቓ.……………..(ii) From (i) and (ii) $\gamma_{te}(C_n) = \frac{n}{2}$ $\frac{n}{2}$. **Case (iii) n = 4m+2 = 2r** In this case, $S = \{1, 2, 5, 6, 9, 10, \ldots, r-2, r-1, r+2, r+3, r+6, r+7, \ldots, 2r-1, 2r\}$ is a minimum total eccentric dominating set and $|s| = \frac{n}{2} + 1$. Thus, $\gamma_{te}(C_n) \leq (n/2)+1$. …………..(i) We know that, ^t (Cn) = (n/2)+1. te(Cn) ^t (Cn). te(Cn) (n/2)+1…………..(ii) From (i) and (ii) $\gamma_{te}(C_n) = (n/2)+1$. **Case (iv) n = 4m+3 = 2r+1** In this case, $S = \{1, 2, 5, 6, 9, 10, \ldots, r-2, r-1, r+2, r+3, r+4, r+7, r+8, \ldots, 2r, 2r+1\}$ is a total eccentric dominating set and $|s| = \left\lceil \frac{n}{2} \right\rceil + 1$. Thus, $\gamma_{te}(C_n) \leq \left[\frac{n}{2}\right]$ ଶ ቓ+1.………….(i) We know that, $\gamma_t(C_n) = \frac{n}{2}$ $\left\{ \frac{n}{2} \right\}$ +1. $\gamma_{te}(C_n) \geq \gamma_t(C_n)$. $\gamma_{te}(C_n) \geq \left\lceil \frac{n}{2} \right\rceil$ $\frac{n}{2}$ +1…………..(ii) From (i) and (ii) $\gamma_{te}(C_n) = \frac{n}{2}$ $\frac{n}{2}$ +1. **When m is even Case (i) n = 4m = 2r** In this case, $S = \{1, 2, 5, 6, \ldots, r-3, r-2, r+1, r+2, r+3, r+7, r+8, \ldots, 2r-1, 2r\}$ is a total

eccentric dominating set and

$$
|s|=\frac{n}{2}+2.
$$

Thus, $\gamma_{te}(C_n) \leq (n/2)+2$. We know that, $\gamma_t(C_n) = n/2$. Any total dominating set containing n/2 or n/2+1 vertices is not an eccentric dominating set. Hence $\gamma_{te}(C_n) = (n/2)+2$. **Case (ii) n = 4m+1 = 2r+1** In this case, $S = \{1, 2, 5, 6, 9, 10, \ldots, r+1, r+2, r+3, r+4, r+7, r+8, \ldots, 2r-1, 2r\}$ is a total eccentric dominating set and $\Big|S\Big|=\Big[\frac{n}{2}\Big]$ $\frac{n}{2}$ + 1. Thus, $\gamma_{te}(C_n) \leq \sqrt{\frac{n}{2}}$ ଶ ቓ+1………….(i) We know that, $\gamma_t(C_n) = \frac{n}{2}$ $\frac{n}{2}$. Any total dominating set containing n/2 or n/2+1 vertices is not an eccentric dominating set. Hence $\gamma_{te}(C_n) = \frac{n}{2}$ $\frac{n}{2}$ +1. **Case (iii) n = 4m+2 = 2r** In this case, $S = \{1, 2, 5, 6, 9, 10, ..., r, r+1, r+3, r+4, r+7, r+8, ..., 2r-2, 2r-1\}$ is a total eccentric dominating set and $|s| = \frac{n}{2} + 1$. Thus, $\gamma_{te}(C_n) \leq (n/2)+1$ …………..(i) We know that, ^t (Cn) = (n/2)+1. te(Cn) ^t (Cn). te(Cn) (n/2)+1…………..(ii) From (i) and (ii) $\gamma_{te}(C_n) = (n/2)+1$. **Case (iv) n = 4m+3 = 2r+1** In this case, $S = \{1, 2, 5, 6, 9, 10, ..., r, r+1, r+3, r+4, r+7, r+8, ..., 2r-2, 2r-1\}$ is a total eccentric dominating set. $\Big|S\Big|=\Big[\frac{n}{2}\Big]$ $\frac{n}{2}$. Thus, $\gamma_{te}(C_n) \leq \sqrt{\frac{n}{2}}$ ଶ ቓ. ………….(i) We know that, $\gamma_t(C_n) = \frac{n}{2}$ $\left\{ \frac{n}{2} \right\}$. $\gamma_{te}(C_n) \geq \gamma_t(C_n)$. $\gamma_{te}(C_n) \geq \left\{ \frac{n}{2} \right\}$ ଶ ቓ. …………..(ii) From (i) and (ii) $\gamma_{te}(C_n) = \frac{n}{2}$ $\frac{n}{2}$.

Theorem 2.7: If G is of diameter two, $\gamma_{te}(G) \leq 1+\delta(G)$.

Proof: diam(G) = 2. Let $u \in V(G)$ such that deg $u = \delta(G)$. Consider, $S = \{u\} \cup N(u)$. This is a total eccentric dominating set of G. the induced sub graph <S> has no isolated vertices. Therefore, $\gamma_{te}(G) \leq 1+\delta(G)$.

Theorem 2.8: If G is of radius two and diameter three and if G has a pendent vertex v of eccentricity three then $\gamma_{te}(G) \leq 1+\Delta(G)$.

Proof: If G has a pendent vertex v of eccentricity three then its support u is of eccentricity two. In this case, $N(u)$ is an eccentric dominating set. But it is not total eccentric dominating set. N(u) $\bigcup \{u\}$ form a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 1+\Delta(G)$.

Theorem 2.9: If G is a spider, then $\gamma_{te}(G) = \Delta(G)+2$.

Proof: Let G be a spider, and u be a vertex of maximum degree $\Delta(G)$. u is the central vertex, $N[u]$ vertices form a total dominating set. Adding any one end vertex form a total eccentric dominating set and this is the minimum total eccentric dominating set. Hence

 $\gamma_{te}(G) = \Delta(G)+2.$

Theorem 2.10: If G is a wounded spider, then $\gamma_{te}(G) = s+2$. where s is the number of support vertices which are adjacent to non-wounded legs.

Proof: Let G be a wounded spider. Let u be the vertex of maximum degree $\Delta(G)$, and S be the set of support vertices which are adjacent to non-wounded legs. The set $\|S\| \cup \{u\}$ form a total dominating set. But it is not a total eccentric dominating set. Adding any one end vertex form a minimum total eccentric dominating set. Hence $\gamma_{te}(G) = s+2$, where s = $|s|$.

Theorem 2.11: For any connected graph G, $\gamma_{te}(G) \leq 2/3(n+e(G))$.

Proof: Let us assume that G be a graph on n vertices, with eccentric number $e(G)$. Let G' be a graph on n+e(G) vertices obtained from G as follows:

Let S = { $u_1, u_2, ..., u_{e(G)}$ } be the minimum eccentric point set of G. Attach a new vertex u_1 to u₁, u₂' to u₂,..., u'_{e(G)} to u_{e(G)} by edges. Denote the new graph obtained as G'. Then $|V(G')| = n+e(G) = |V(G)|+e(G)$. Now, by the previous observations, there exists a γ_t -–set D containing no u i ' of G', containing all u i 's and $\gamma_{te}(G') \leq 2/3(n+e(G))$. Therefore, D is a total eccentric dominating set of G. Therefore $\gamma_{te}(G) \leq 2/3(n+e(G))$.

Corollary 2.1: $\gamma_{te}(T) \leq 2/3(n+2)$.

Theorem 2.12: If G is a connected graph with $|V(G)| = n$. Then $\gamma_{te}(G \circ K_1) \leq n+e(G)$.

Proof: Let V (G) = { $v_1, v_2, ..., v_n$ }. Let v'_i be the pendent vertex adjacent to v_i in GoK₁, for i $= 1, 2, ..., n$.

Let $k = e(G)$ be the number of eccentric vertices of G and let them be $\{x_1, x_2, ..., x_k\}$. Then $V(G) \cup \{x_1, x_2, ..., x_k\}$ is a total eccentric dominating set.

Therefore $\gamma_{te}(G \circ K_1) \leq n+e(G) = n+k$.

Corollary 2.2: $\gamma_{\text{ced}}(G) \leq n + e(G)$, where $\gamma_{\text{ced}}(G)$ is a connected eccentric dominating set.

Theorem: 2.13: If G is of radius one and diameter two, then $\gamma_{te}(G) \leq (n-t+2) / 2$, where t is the number of vertices with eccentricity one.

Proof: $V(G)$ can be partitioned into two sets V_1 and V_2 as follows. $V_1 = \{v \in V/e(v) = 1\}$ and $V_2 = \{v \in V/e(v) = 2\}$. Let $u \in V(G)$ such that $e(u) = 1$. Let t be the number of vertices with eccentricity one. u dominates all other vertices and for $t-1$ other vertices u is an eccentric point. Consider the remaining (n-t) vertices of G. Let S be the subset of V_2 vertices such that vertices in V_2 –S have their eccentric vertices in S. Now S \cup {u} is a total eccentric dominating set.

Hence
$$
\gamma_{te}(G) \le 1 + \frac{(n-t)}{2} = (n-t+2) / 2.
$$

Theorem 2.14: If G is of radius one and diameter two, then $\gamma_{te}(G) \leq 2 + \left[\frac{\delta(G)-t}{2} \right]$, where t is the number of vertices with eccentricity one.

Proof: $V(G)$ can be partitioned into two sets V_1 and V_2 as follows. $V_1 = \{v \in V/e(v) = 1\}$ and $V_2 = \{v \in V/e(v) = 2\}$. Let u be a vertex in V_2 such that degree of u in $H = \langle V_2 \rangle$ is minimum. Let deg_Hu = $\delta_2 = \delta(G)$ -t. Then u is eccentric to the remaining n-t- δ_2 vertices. Let S be a subset of $N_H(u)$ such that vertices in $N_H(u)$ –S have their eccentric vertices in S. Hence $\{u, v\} \cup S$, where $v \in V_1$ is a total eccentric dominating set of G.

Therefore, $\gamma_{te}(G) \leq 2 + \left\lceil \frac{\delta(G) - t}{2} \right\rceil$.

Theorem 2.15: If G is of radius two and diameter three, then $\gamma_{\mu}(G) \leq 1+$ $\frac{(n + \deg_G u - 1)}{2}$

Proof: Let u be a central vertex with minimum degree. Consider N[u]. N[u] dominates all other vertices of G. Let S be a subset of $N_2(u)$ with minimum cardinality such that vertices in N₂(u)–S has their eccentric vertices in S. Then $|S| \le \frac{|N_2(u)|}{2} = \frac{(n - \deg_G u - 1)}{2}$. Now N[u] \bigcup S is a total eccentric dominating set of G. Hence, $\gamma_{te}(G) \leq |N[u]| + |S| \leq 1 +$ deg_Gu + $\frac{(n - \deg_G u - 1)}{2} = 1 + \frac{(n + \deg_G u - 1)}{2}$.

Observation 2.1: $1 \leq \gamma_{te}(G)$

Proof: Every $\gamma_{te}(G)$ -set does not contain isolated vertex. Hence $1 \leq \gamma_{te}(G)$.

Observation: 2.2:

(i) If
$$
G = K_2 + K_1 + K_1 + K_2
$$
, then $\gamma(G) = 2$, $\gamma_{ed}(G) = 4$, $\gamma_t(G) = 2$, $\gamma_{te}(G) = 4$.
\n(ii) If $G = K_n + K_1 + K_1 + K_n$, $n > 2$ then, $\gamma(G) = 2$, $\gamma_{ed}(G) = 2$, $\gamma_t(G) = 2$, $\gamma_{te}(G) = 4$.

Theorem 2.16: Let G be a connected graph. Then, $\gamma_{te}(G) = 2$, if and only if G is any one of the following

(i) $G = K_n$.

(ii) $r(G) = 1$, $d(G) = 2$ and $u \in V(G)$ such that $e(u) = 2$ and $d(u, v) = 2$ for all $v \in V(G)$ with $e(v) = 2$.

(iii) G is self – cantered of diameter 2, having a dominating edge which is not in a triangle. **Proof:** When G satisfies any one of the above conditions obviously, $\gamma_{te}(G) = 2$. On the other hand, assume that, $\gamma_{te}(G) = 2$. Therefore $\gamma(G) = 1$ or $\gamma(G) = 2$.

Case (i)

 $\gamma(G) = 1$ and, $\gamma_{te}(G) = 2$. This implies that G satisfies (i) and (ii). **Case (ii)**

 $\gamma(G) = 2 = \gamma_{te}(G)$.

Let D be a minimum γ_{te} —dominating set of G. Let D = {u, v} $\subseteq V(G)$. Since $\gamma(G)$ = 2, r(G) \geq 2. Since D is connected u and v are adjacent and the edge uv is dominating edge for G. Therefore $r(G) \ge 2$ and $2 \le d(G) \le 3$. Suppose $d(G) = 3$, there exists a vertex x with eccentricity 3 and x is dominated by u or v.

Let xu \in E(G). Now, d is a γ_{te} –set. Hence v must be an eccentric point of x. this implies that $d(x, y) = 3$. But xuv is a path imples $d(x, y) = 2$. Which is a contradiction. Hence, x must be a vertex with eccentricity 2. This implies that $d(G) = 2$, G is a self-cantered with diameter 2. There exists no w, adjacent to both u and v, since in that case, w has no eccentric point in D. Since $r(G) \geq 2$.

Theorem 2.17: If G is bi-eccentric with $\gamma(G) = 2$, that is $r(G) = 2$, $d(G) = 3$, then $\gamma_{tr}(G) \leq$ 4.

Proof: $\gamma(G) = 2$ implies $D = \{u, v\}$ is a dominating set. Since $d(G) = 3$. Then $d(u, v) = 1, 2$ or 3.

Case (i)

 $d(u, v) = 1.$

Since D is connected. u and v are adjacent and the edge uv is a dominating edge for G. let x, $w \in V(G)$ such that $e(x) = e(w) = 3$. w, x are dominated by u or v. Consider $D_1 = \{u, v\}$ $v\}\bigcup{\{w, x\}}$ is an eccentric dominating set, and if $y \in V-D$ and $e(y) = 2$, it can't be adjacent to both x and w. Therefore w, x are eccentric to y. If $s \in V-D$ and $e(s) = 3$, it can't be adjacent to w or x. therefore w or x is eccentric to s. $\langle D_1 \rangle$ has no isolated vertices. Thus D_1 is a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 4$. **Case (ii)**

 $d(u,v) = 2$. Then $e(u) = e(v) = 2$ and uxv is a shortest path. Let y, $w \in V(G)$ such that $e(v)$ $= e(w) = 3$. y and w are dominated by u or v. If $z \in V-D$ with $e(z) = 2$, it cannot be adjacent to y. Therefore y is eccentric to z. Then $D' = \{u, v\} \cup \{y, w\}$ is a total dominating set. Hence $\gamma_{te}(G) \leq 4$.

Case (iii)

 $d(u, v) = 3$. Then $e(u) = e(v) = 3$ and uxyw is a shortest path. Eccentric point of y must be u and eccentric point of x must be w. Therefore $e(x) = e(y) = 2$. Then $D'' = \{u, v\} \cup \{x, y\}$ is a total eccentric dominating set. Hence $\gamma_{te}(G) \leq 4$.

Theorem 2.18; If T is a non-trivial tree of order n with l leaves, then, $\frac{n+2-l}{2}$ $\frac{c_2 - i}{2} \leq \gamma_{te}(G) \leq$ $\frac{n+2+s}{2}$, where s is the number of support vertices of T.

Proof: Let us assume that T be a tree on n vertices and with l leaves. Let T' be a tree on $n+2$ vertices with attaching 2 vertices x and y with u and v, where u and v are peripheral vertices of T at distance 'd' to each other. From [Observation: 1.3]. Therefore $\gamma_t(T)$ $\leq \frac{n+2+s}{2}$, from [Observation: 1.2]. Therefore T' is a total eccentric dominating set of T. Therefore $\gamma_{te}(T) \le (n+2+s)/2$. Also, $\gamma_{te}(T) \ge (n+2-l)/2$. Therefore $\gamma_{te}(T) \ge \gamma_{t}(T) \ge (n+2-l)/2$ l)/2, implies $\gamma_{te}(T) \geq (n+2-l)/2$.

Theorem 2.19: For a bi-central tree with radius 2, $\gamma_{te}(T) \leq \min \{n - \Delta(G)+1, 4\}$.

Proof: Let u and v be the central vertices of T, then $N[u]$ and $N[v]$ are total eccentric dominating sets of T. V-N(u) \cup {v}, V-N(v) \cup {u} are also total eccentric dominating sets of T.

Also deg u + deg v = n. Hence, $\gamma_{te}(T) \le n - \Delta(G) + 1$. All the four vertices of a diametral path also form a total dominating set. Hence $\gamma_{te}(T) \leq \min \{n-\Delta(G)+1, 4\}$.

Observation 2.3: For any tree T, $\gamma_t(T) \leq \gamma_{te}(T) \leq \gamma_t(T) + 2$.

Theorem 2.20 For a tree T, with radius two which is not a path

(i) $\gamma_{t}(\text{T}) = \gamma_{t}(\text{T}) + 1$ if there exists at least one peripheral vertex with support vertex s, such that deg $s = 2$.

(ii) $\gamma_{te}(T) = \gamma_{t}(T) + 2$ if degree of all the support vertices are greater than two. **Proof:** Let T be a **bi - central** tree.

In this case, diam(T) = 3 and T = $\overline{K_n} + K_1 + \overline{K_n}$ for n, m \geq 1. When n = m = 1, $\gamma_{te}(T) = 3$, $\gamma_{t}(T) = 2$. Hence $\gamma_{te}(T) = \gamma_{t}(T) + 1$

When n, m > 1, $\gamma_{te}(T) = \gamma_{t}(T) + 2 = 4$. Let T be a **unicentral** tree.

In this case, diam(T) = 4 and let $T \neq P_5$. Let S be the set of all support vertices of T and let v be the central vertex of T.

(a) If there exists only one peripheral vertex with degree of its support = 2. Let x be a peripheral vertex and it is eccentric to all other vertices except its support. Then $(S \cup \{v\})$ is a γ_t -set of T and $(S \cup \{v\} \cup \{x\})$ is a γ_{te} -set of T. Hence $\gamma_{te}(T) = \gamma_t(T) + 1$.

(b) If there exists two peripheral vertices with degree of their supports $= 2$, then the degree of v is greater than two. Let x and y be two peripheral vertices and u, w be their supports such that deg u = deg w = 2. x or y is eccentric to each other vertices. Then $S \cup \{v\}$ is a γ_t set of T and $(S \cup \{v\} \cup \{x\})$ is a γ_{te} -set of T. Hence $\gamma_{te}(T) = \gamma_{t}(T) + 1$.

(ii) If degree of all the support vertices are greater than two, S is γ_t set of T and S \cup {x,y}, where x and y are two peripheral vertices at distance 4 to each other is γ_{te} -set of T. Hence

$$
\gamma_{\rm te}(T)=\gamma_{\rm t}(T)+2
$$

Corollary 2.3: (i) For a bi central tree T with radius 2, $\gamma_{te}(T) = 3$ if and only if T = P₄ or T $=\overline{K_n} + K_1 + K_1 + K_1$

(ii) For a bi central tree T with radius 2, $\gamma_{te}(T) = 4$ if and only if degree of the central vertices are \geq 3.

Theorem 2.21: Let n be an even integer. Let G be obtained from the complete graph K_n by deleting edges of a linear factor. Then $\gamma_{te}(G) = n/2$.

Proof: Let u and v be a pair of non-adjacent vertices in G. Then u and v are eccentric to each other. Also, G is unique eccentric point graph. Therefore te(G) n/2.…………(i). Consider $D \subseteq V(G)$ such that $\langle D \rangle = K_{n/2}$. D contains n/2 vertices such that each vertex in

V $-D$ is adjacent to at least one element in D and each element in V $-D$ has its eccentric vertex in D and also <D> has no isolated vertices. Hence $\gamma_{\nu}(\mathrm{G}) \leq n/2$(ii). From (i) and (ii) $\gamma_{te}(G) = n/2$.

Theorem 2.22: $\gamma_{te}(\overline{C}_4) = 4$, $\gamma_{te}(\overline{C}_5) = 3$, and $\gamma_{te}(\overline{C}_n) = \left\lceil \frac{n}{3} \right\rceil$, for $n \ge 6$.

Proof: Clearly $\gamma_{te}(\overline{C}_4) = 4$, $\gamma_{te}(\overline{C}_5) = 3$. Now, assume that $n \ge 6$. Let $v_1, v_2, v_3, ..., v_n, v_1$ form C_n. Then $\overline{C}_n = K_n - C_n$ and each vertex v_i is adjacent to all other vertices except v_{i-1} and v_{i+1} in \overline{C}_n . Hence eccentric point of v_i in \overline{C}_n is v_{i+1} and v_{i+1} only. Hence any total

eccentric dominating set must contain either v_i or any one of v_{i-1}, v_{i+1} . Thus $\left|\frac{n}{3}\right|$ $\gamma_{te}(\overline{C}_n) \ge \boxed{\frac{n}{3}}$ (i). Now, consider a total eccentric dominating set as follows. ${v_1, v_4, v_7, ..., v_{3m-2}}$ if n = 3m. ${v_1, v_4, v_7, ..., v_{3m+1}}$ if n = 3m+1. ${v_1, v_4, v_7, ..., v_{3m+1}, v_{3m+2}}$ if n = 3m+2. Hence $\gamma_{te}(\overline{C}_n) \le \frac{n}{3}$ $\gamma_{te}(\overline{C}_n) \leq \left\lceil \frac{n}{3} \right\rceil$(ii) From (i) and (ii) $\gamma_{te}(\overline{C}_n) = \left[\frac{n}{3}\right]$, for $n \ge 6$. **Observations 2.4:** (i) $\gamma_{te}(G) + \gamma_t(G) \nleq \frac{4n}{3}$. **Example:** $G = C_7$. (ii)) $\gamma_{te}(G) + \gamma_{ed}(G) \leq \frac{4n}{3}$.

(iii)
$$
\gamma(G) + \gamma_{te}(G) \nleq \frac{4n}{3}
$$
.

Example: $G = C_7$.

(iv) i(G) + $\gamma_{te}(T) \nleq n$.

Example: G = H°2K₁, where H = C₆. $\gamma_{te}(G) = 2n/3$ and i(G) = n/2, where i(G) is the independent dominating number of G.

Theorem 2.23: If D is a minimal total eccentric dominating set of a connected graph $G =$

(V, E), then each vertex $u \in D$, one of the following is true

(i) There exists some $v \in V-D$ such that $N(v) \cap D = \{u\}$ (or) $E(v) \cap D = \{u\}$.

(ii) $\langle D-\{u\}\rangle$ contains an isolated vertex or u has no eccentric vertex in D.

Proof: Assume that D is a minimal total eccentric dominating set of G. then for every vertex $u \in D$, $D-\{u\}$ is not a total eccentric dominating set. That is there exists some vertex v in $(V-D)\cup \{u\}$ which is not dominated by any vertex in D-{u} or there exists v in $(V-D)\cup\{u\}$ such that v has no eccentric point in D- $\{u\}$ or there exists a vertex v in D such that $N(v) \cap (D-\{u\}) = \phi$. **Case (i)**

Suppose $v \in V-D$.

(a) If v is not dominated by $D-\{u\}$, but is dominated by D, then v is adjacent only u in D, that is $N(v) \cap D = \{u\}.$

(b) Suppose v has no eccentric point in D-{u} but v has an eccentric point in D. Then u is the only eccentric point of v in D, that is $E(v) \cap D = \{u\}.$

Case (ii)

Suppose $u = v$, then $\langle D-\{u\}\rangle$ contains an isolated vertex or u has no eccentric vertex in D.

Conversely, suppose D is a total eccentric dominating set and for each $u \in D$ one of the conditions holds, we show that D is a minimal total eccentric dominating set.

Suppose that D is not a minimal total eccentric dominating set. That is, there exists a vertex $u \in D$ such that $D-\{u\}$ is a total eccentric dominating set. Hence every element x in V-D is adjacent to at least one vertex in D-{u} and x has an eccentric point in D-{u}. Hence (i) does not hold.

Also, if $D-\{u\}$ is a total eccentric dominating set. Hence, $\langle D-\{u\}\rangle$ has no isolated vertex and u has an eccentric point in $D-\{u\}$. Therefore, condition (ii) does not hold. This is a contradiction to our assumption that for each $u \in D$, one of the conditions holds.

Theorem 2.24: If H is any self-centered unique eccentric point graph with m vertices and G = Ho2K₁, then $\gamma_{te}(G) = 2n/3$ where n = 3m.

Proof: If H is any self-centered unique eccentric point graph, then every vertex of H is an eccentric vertex. Hence m is even and G has 3m vertices. Let $v_1, v_2, v_3, ..., v_m$ represent the vertices of H and ${v_i}'$, ${v_i}''$ for $i = 1, 2, 3, ..., m$ be the vertices of m copies of $2K_1$. Then in G, v_i', v_i'' are adjacent to v_i and if v_j is the eccentric vertex of v_i in H, then v_i', v_i'' are eccentric vertices of v_j in G and v_j' , v_j'' are the eccentric vertices of v_i . It is clear that ${v_1, v_2, v_3, ..., v_m} \cup {x_1, x_2, x_3, ..., x_m}$, where $x_i = v_i'$ or v_i'' are minimum total eccentric dominating sets of G. Hence $\gamma_{te}(G) = 2n/3$.

References:

- [1] Bhanumathi M and Muthammai S, Eccentric domatic number of a Graph, International Journal of Engineering Science, Advanced Computing and Bio-Technology- Volume 1, No. 3, pp 118-128, 2010.
- [2] M.Bhanumathi , S.Muthammai, On Eccentric domination in Trees, International Journal of Engineering Science, Advanced Computing and Bio-Technology- Volume 2, No. 1,pp 38-46, 2011.
- [3] M.Bhanumathi, S.Muthammai, Further Results on Eccentric domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 3, Issue 4, pp. 185-190, 2012
- [4] Buckley. F, Harary. F, Distance in graphs, Addison–Wesley, Publishing Company (1990).
- [5] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Networks, 7:247-261,1977.
- [6] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
- [7] Janakiraman T.N., Bhanumathi M and Muthammai S, Eccentric domination in graphs, International Journal of Engineering Science, Computing and Bio-Technology, Volume 1, No.2, pp 1-16, 2010.
- [8] T.N. Janakiraman, P.J.A. Alphonse and V. Sangeetha, Distance Closed Domination in Graphs, International Journal of Engineering Science, Computing and Bio-Technology, Vol.1, No. 1-4, 109-117, 2010.
- [9] Kulli V.R, Theory of domination in graphs,Vishwa International publications (2010).
- [10] Mustapha Chellali, Teresa W.Haynes, Total and Paired domination numbers of a tree, AKCE J.Graphs Combin., 1, No.2(2004), 69-75.
- [11] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York (1998).