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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set, if every vertex 
not in D is adjacent to at least one vertex in D. A subset D of V(G) is a restrained dominating set, if 
every vertex not in D is adjacent to a vertex in D and to a vertex in VD.  A subset D of V(G) is a 
restrained eccentric dominating set, if D is a restrained dominating set of G and for every v  VD, 
there exists at least one eccentric point of v in D.  The minimum of the cardinalities of the restrained 
eccentric dominating set of G is called the restrained eccentric domination number of G and it is 
denoted by red(G). In this paper, bounds for red and its exact value for some particular classes of graphs 
are found. 
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1. Introduction 

 Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and 
edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary 
[1]. 

Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v) 

of  v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}.The 
radius r(G) is the minimum eccentricity of the vertices, whereas the  diameter diam(G) = 
d(G) is the maximum eccentricity. For any connected graph G, r(G) ≤ diam(G) ≤ 2r(G). v 
is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The 
central sub graph < C(G) > of a graph G is the sub graph induced by the center. v is a 
peripheral vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices. 

 For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v . 

Eccentric set of a vertex v is defined as E(v) = {u   V(G) / d(u, v) = e(v)}. 

Definition 1.2: The open neighborhood N(u) of a vertex v is the set of all vertices 

adjacent to v in G. N[v] = N(v){v} is called the closed neighborhood of v. For a vertex   

v  V(G), Ni(u) = {u  V(G)/d(u, v) = i} is defined to be the ith  neighborhood of v in G. 
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Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be 
partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2.. If further 
G contains every line joining points of V1 to points of V2 then G is called a complete 
bigraph. If V1 contains m points and V2 contains n points then the complete bigraph G is 
denoted by Km,n. 

Definition 1.4: A star is a complete bi graph K1,n. 

Definition 1.5 [3, 12]: A set D  V(G) is said to be a dominating set in G, if every vertex 

in VD is adjacent to some vertex in D. The cardinality of minimum dominating set is 

called the domination number and is denoted by (G).	 

Definition 1.6 [6]: A set D  V(G) is a restrained dominating set if every vertex not in 

D is adjacent to a vertex in D and to a vertex in VD. The cardinality of minimum 
restrained dominating set is called the restrained domination number and is denoted by 

r(G). 

Definition 1.7 [7]: A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every v  VD, there exists at least one eccentric point of v in D. The 
cardinality of minimum eccentric dominating set is called the eccentric domination 

number and is denoted by ed(G). 

If D is an eccentric dominating set, then every superset D D is also an 

eccentric dominating set. But D  D is not necessarily an eccentric dominating set. 

An eccentric dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 

We need the following results to prove certain results in restrained Eccentric 
domination.  

Theorem: 1.1[3]: For any graph G, n/(1+(G))  (G)  n(G). 

 Theorem: 1.2 [7]: ed(Kn)  = 1 

Theorem: 1.3 [7]: ed(Km,n)  = 2. 

Theorem: 1.4 [7]: ed(W3)  = 1, ed(W4)  = 2, ed(Wn)  = 3 for n  7. 
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Theorem: 1.5 [7]:   ed(Pn)  = (Pn)  or  (Pn) + 1. 

Theorem: 1.6 [4]: If n  2 is a positive integer, then r(Kn)  =  1. 

Theorem: 1.7 [4]: If m and n are integers such that min {m, n}  2, then r(Km,n)  = 2. 

Theorem: 1.8 [4]: Let G be a connected graph of order n. Then r(G) = n if and only if G 
is a star. 

Theorem: 1.9 [4]:  If D is a minimum restrained dominating set of a tree T, then every 

pendent vertices of T belongs  to  D, that is, r(T)  e. 

Theorem: 1.10[10]: For any graph G, p(2/3)q   r(G). 

Theorem: 1.11[7]:  (i) ed(Cn) =  n/2 if n is even. 

                      (ii) ed(Cn) =     n/3  if n = 3m and is odd.  

                           n/3 if n = 3m+1 and is odd. 

                            n/3 + 1 if n = 3m+2 and is odd.               

2. Restrained eccentric dominating set 

We define restrained eccentric dominating set of a graph as follows. 

Definition 2.1: A subset D of V(G) is a restrained eccentric dominating set, if D is a 

restrained dominating set of G and for every v  VD, there exists at least one eccentric 
point of v in D.  The minimum of the cardinalities of the restrained eccentric dominating 
set of G is called the restrained eccentric domination number of G and it is denoted by 

red(G).  

Clearly, (G)  red(G), ed(G)  red(G) and  r(G)  red(G). But there is no 

relation between r and ed. Also, for any graph G, 1  red(G)  n.  These lower bound 

and upper bounds are sharp, since red(Kn)  = 1 and red(K1, n1)  = n. 
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Example 2.1: 
 
 
 
 
 
 
 
 

 

 

 

G 

Fig. 2.1 

V = {v1, v2, v3, v4, v5, v 6, v7, v8, v9, v10, v11} is the vertex set of G. 

D1 = {v5, v8, v10} is a minimum dominating set and also a minimum restrained dominating 
set.  

D2 = {v4, v6, v9, v10} is a minimum eccentric dominating set. 

D3 = {v3, v4, v7, v9, v11} is a minimum restrained eccentric dominating set. 

(G) = 3, r(G) = 3, ed(G) = 4,  red(G) = 4 .   

Example:2.2 

 

Fig 2.2 

 D1 = {v2, v5, v8} is a dominating set. (G) = 3.    

 D2 = {v1, v4, v7, v9} is an eccentric dominating set. ed(G) = 4 .   
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  D3 = {v1, v4, v7, v8, v9} is a restrained eccentric dominating set. red(G) = 5 = r(G)    

Theorem: 2.1: For any graph G,   n/(1+(G))  red(G).   

Proof: From Theorem: 1.1, n/(1+(G))  (G)  n(G) and we have                  

(G)  red(G).  Therefore, n/(1+(G))  red(G).  

 This lower bound is sharp, since red(Pn) = n/3 when n = 3k+1. 

Theorem: 2.2: 

(i)  red(Kn)  = 1,  n  ≥ 3. 

(ii)  red(Km,n) = 2. 

(iii)  red(W3)  = 1, red(W4) = 2, red(Wn) = 3 for n ≥ 4. 

(iv) red(K1, n1) =  n. 
Proof of (i) 

When G = Kn.  Radius = Diameter = 1. Hence any vertex u  V(G) dominate other 

vertices and is also an eccentric vertex of other vertices. The elements of V	{u} satisfies 

the restrained conditions.  Hence red(Kn) = 1. 
 Proof of (ii) 

When G = Km,n,, V(G)  =  V1   V2,  |V1|  =  m and |V2|  = n such that each elements of V1 

is adjacent to every vertex of V2 and vice versa.  D = {u, v}, u  V1 and v  V2 is the 
restrained dominating set. u dominate all other vertices of V2 and it is eccentric to 

elements of V1  {u}. Similarly v dominates all the vertices of V1 and it is eccentric to 

elements of V2  {v}. Hence D is a minimum restrained eccentric dominating set.  Hence 

red(Km,n) = 2. 
Proof of (iii) 

G = W3 = K4.  Hence red(W3) = 1.  When G = W4, consider D = {u, v}, where u and v are 
adjacent non central vertices. D is a minimum restrained eccentric dominating set. 

Therefore, red(W4) = 2. 
When G = Wn,  n > 4.   Let D = {u, v, w} where u and v are any two adjacent non central 
vertices and w is the central vertex. Then D is a minimum restrained eccentric dominating 

set of G. Therefore red(Wn) = 3 for n > 4. 
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Proof of (iv) 

G = K1,n1. We know r(K1,n1) = n1 and the end vertices form the minimal restrained 
dominating set. But it is not an eccentric dominating set. The whole vertex set V is the 

only restrained eccentric dominating set. Therefore, red(K1, n1)  = n. 

Theorem:  2.3:  red(Pn)  =   ቐ

n/3 ൅ 2,						if		n	 ൌ 	3k
	n/3,						if	n	 ൌ 	3k ൅ 1

n/3൅ 1,			if	n	 ൌ 	3k ൅ 2		
 

Proof: Case (i) n = 3k. 
An eccentric dominating set of Pn  must contains the two end vertices. 
 Let v1, v2, v3, …, v3k represent the path Pn.  D = {v2, v5, v8, …, v3k-1} is the only           

  dominating set of  Pn.  D is not the restrained eccentric dominating set. 
D' = {v1, v4, v7, …, v3k-2, v3k-1, v3k} is the restrained eccentric dominating set,  

and   |D'| =  (Pn)+2  = k+2. Hence red(Pn) =  (Pn)+2. 
Case (ii) n = 3k+1 
D = {v1, v4, v7, …, v3k-3, v3k+1} is the minimum dominating set in Pn.  It contains the two 

end vertices and hence an eccentric dominating set. Also < VD > has no isolated 
vertices. Hence it is the minimum restrained eccentric dominating set. 

                      Therefore, red(Pn)  = (Pn)  =  n/3       
Case (iii) n = 3k+2 
D = {v2, v5, v8, …, v3k+2} is a minimum dominating set. It contains one end vertex v3k+2  and  
it is restrained but not eccentric.  Now, D {v1} is a restrained eccentric dominating set 
with |D {v1}| = k+1 and there is no other restrained eccentric dominating set with         

|S| <  k+1. Hence red(Pn) =  (Pn) + 1 = k+1 =   n/3 +1.     

Theorem: 2.4: Let G be a Caterpillar then red(G) ≤ e +  k/3,  where e is the number of 
pendent vertices of G. 
Proof: Let n be the number of vertices and e be the number of pendent vertices of G. 

Consider, k = ne.  By the definition of caterpillar, after removing the pendent vertices we 

get Pk. Hence red(G) ≤ e + (Pk). That is, red(G) ≤ e +  k/3.     

Theorem: 2.5: Let G be a spider then red(G)  =  n ∆(G)  =  ∆(G)+1. 

Proof: Since G has ∆(G) pendent vertices, red(G)  ∆(G)  =  n  ∆(G)  1. Let S be the 
set of all pendent vertices of G, S is not the restrained eccentric dominating set. Hence, 

red(G)  n  ∆(G). D = S  {u}, where u is a vertex of G with degree two. D is the 

restrained eccentric dominating set. Hence red(G)  =  n  ∆(G). 
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Theorem: 2.6: Let G be a wounded spider which is not a star then red(G)  =  ∆(G). 
Proof: Let S be the set of all pendent vertices of G, S is the minimum restrained eccentric 

dominating set. Hence red(G)  =  ∆(G). 

Theorem: 2.7 (i) When n is even, let n = 2r, where r is the radius of Cn then              

red(Cn)  =  ቐ

n/2	 ൅ 	2, if		r	 ൌ 	4m

				
୬

ଶ
൅ 1, if		r	 ൌ 	4m ൅ 1	or	4m ൅ 3

	n/2, if		r	 ൌ 	4m ൅ 2
 

(ii)  When n is odd, let n = 2r+1 where r is the radius of Cn, then 

red(Cn)  =   ቐ
	n/3൅ 2, if		r	 ൌ 	3m
	n/3, if		r	 ൌ 	3m ൅ 1

		n/3൅ 1, if		r	 ൌ 	3m ൅ 2
 

Proof: Let D be minimum restrained eccentric dominating set of Cn. D is a restrained 

dominating set implies VD has no isolated vertices. Since Cn is a cycle, if a vertex i is 

not in D implies either i1 or i+1 is also not in D and if i, i+1 are not in D then i1 and 

i+2 must be in D, since D is a dominating set. So VD = kK2, where k is a positive 

integer. Thus VD always contains even number of vertices.   
Case (a):  n = 2r. 

First let us consider even n. When n is even Cn is a unique eccentric point graph 
with radius r = n/2.  If we label the vertices of Cn by 1, 2, 3, ..., n, then eccentric vertex of i 
is i+r. Let D be a restrained eccentric dominating set. If D is an eccentric dominating set 

of Cn, i is not in D means i+r must be in D. i, i+1 are not in D implies i1 and i+2 must 

be in D, since D is a dominating set, but their eccentric vertices ir, i+1r may not be in 
D. So we can group the vertices in such a way that beginning with vertex 1, first 2 vertices 
1, 2 are in D next two vertices 3, 4 are not in D etc., but r+3, r+4 must be in D etc. So we 
can split V into two parts V1 containing 1st r vertices and 2nd part V2 containing 2nd r 
vertices to find the restrained eccentric dominating set.  
Sub case (i) r = 4m, n = 8m. 

D = {1, 2, 5, 6, 9, 10, ..., r3, r2, r1, r+2, r+3, r+4, r+7, r+8, ..., 2r5, 2r4, 

2r1, 2r} is a restrained eccentric dominating set, and D = n/2+2. This implies that 

red(Cn)  n/2+2. By theorem 1.11, ed(Cn) =  n/2 if n is even. But no minimum eccentric 

dominating set of Cn is restrained. So, red(Cn)  n/2+1. If red(Cn) = n/2+1 = 4m+1, VD 

contains 4m1 vertices, where 4m1 is odd, which is not possible. Hence,               

red(Cn)  n/2+2. Thus red(Cn) = n/2+2. 
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Sub case (ii) r = 4m+1, n = 8m+2.   

In this case, D = {1, 2, 5, 6, ..., r4, r3, r, r+3, r+4, r+7, r+8, ..., 2r2, 2r1, 2r} 
is the restrained eccentric dominating set and D contains 4m+2 = n/2+1 vertices and 

hence red(Cn)  n/2+1. But we have ed(Cn) = n/2 and no minimum eccentric dominating 

set S is a restrained dominating set since VS contains odd number of vertices. Therefore, 

red(Cn)  n/2+1. Hence red(Cn)  =  n/2+1. 
Sub case (iii) r = 4m+2, n = 8m+4.  

In this case, D = {1, 2, 5, 6, ..., r1, r, r+3, r+4, r+7, r+8, ..., 2r3, 2r2} is an 

restrained eccentric dominating set. Therefore red(Cn)  n/2, and  we know that      

red(Cn)    ed(Cn)  =  n/2. Hence, red(Cn) = n/2. 
Sub case (iv) r = 4m+3, n = 8m+6.  

In this case, D = {1, 2, 5, 6, ..., r2, r1, r, r+3, r+4, ..., 2r4, 2r3, 2r2} is the 

restrained eccentric dominating set, and D = n/2+1. Thus, red(Cn)  n/2+1.  But we have 

ed(Cn) = n/2 and no minimum eccentric dominating set S is a restrained dominating set, 

since VS contains odd number of vertices.  Hence, ed(Cn)  n/2+1. This gives      

red(Cn) = n/2+1. 
Case (b): n = 2r+1.  

 When n is odd, we know n = 2r+1 where r is the radius of Cn. In this case Cn is 
an bi-eccentric point graph. That is every vertex has exactly two eccentric vertices. So, if D 
is an eccentric dominating set, for a vertex not in D any one of its eccentric vertices must 
be in D and it must be a restrained dominating set.  
Sub case (i) r = 3m, n = 6m+1. 

In this case, D = {1, 4, 7, 10, ..., r2, r+1, r+2, r+3, r+6, r+9, ..., 2r, 2r+1} is a 

minimum restrained eccentric dominating set, and D = n/3+2. Thus,                  

red(Cn)  n/3+2. But, in this case, we have ed(Cn) = n/3+1 and no minimum 

eccentric dominating set S is a restrained dominating set, since VS contains odd number 

of vertices. Hence, red(Cn)  n/3+2. This gives red(Cn) =  n/3+2. 
Sub case (ii) r = 3m+1, n = 6m+3.  

In this case n is an odd multiple of 3. D = {1, 4, 7, ..., r, r+3, r+6, ..., 2r1} is a 

minimum restrained eccentric dominating set and D contains n/3 vertices. Thus, ed(Cn) =   

red(Cn) = n/3. 
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Sub case (iii) r = 3m+2, n = 6m+5.  

In this case, D = {1, 4, 7, 10, ..., r4, r1, r, r+3, r+6, r+9, ..., 2r5, 2r2, 2r1} is 

a minimum restrained eccentric dominating set and D = n/3+1. Thus, ed(Cn) = 

red(Cn)  =  n/3+1.  
Hence the theorem is proved. 

Now, let us present bounds for restrained eccentric domination number of trees. 
Each restrained dominating set of a tree is a dominating set containing all the pendent 
vertices. Therefore restrained dominating set of a tree is always an eccentric dominating 
set. Hence in trees restrained eccentric domination is same as restrained domination. 

Therefore, r(T)  = red(T). 

In [8], Mustapha Chellali has proved that (n+2+ls)/3  r(T)  

(n+2l+s+1)/3 where l denotes the number of pendent vertices of T and s denotes the 
number of supports in T. Therefore, we have,  

For a tree with l pendent vertices and s support vertices, (n+2+ls)/3   red(T)  

  (n+2l+s+1)/3. 

Theorem: 2.8: For any graph G, p  (2/3) q    red(G). 

Proof: From theorem [1.10], For any graph G, p  (2/3)q    r(G) and we know that  

r(G)  red(G). Therefore, p  (2/3) q    red(G). 

Theorem: 2.9: If G is a connected graph, red(G)  ed(G) + o(G). 

Proof: Let D be a ed – set of G. Suppose < VD > has no isolated vertices. Then D is a 

restrained eccentric dominating set of G. On the other hand, if there exists a set S  VD 

such that each vertex in  S is an isolated vertex in < VD >. Then D  S is a restrained 

eccentric dominating set of G. Hence, red(G)  D  S 

          D + S 

          red(G)  ed(G)+o(G). 

Theorem: 2.10: Let G be a connected graph with V(G)  = n. Then red(G o K1) = n. 
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Proof: Let V(G) = {v1, v2, …, vn}. Let vi be the pendent vertex adjacent to vi in GoK1 for     

i =1, 2, …, n. Then {v1, v2, …, vn } is an eccentric dominating set for GoK1 and is also a 

minimum restrained eccentric dominating set for GoK1. Hence red(GoK1) = n. 

Theorem: 2.11: If G is of radius one and diameter two, then red(G)  
௡ି௧ାଶ

ଶ
, where        

t  2 is the number of vertices with eccentricity one. 

Proof: Let u  V(G) such that e(u) = 1. Let t be the number of vertices with eccentricity 

one. u dominates all other vertices and for t1 other vertices u is an eccentric point. 

Consider the remaining (n  t) vertices of G. They are also dominated by u but their 

eccentric points are different from u. (VE1(G))  {u} is a restrained eccentric 

dominating set of G, where E1(G) = {u  V(G)/e(u) = 1}. Hence 

                                          red(G)  1 ൅
௡ି௧

ଶ
 = 
௡ି௧ାଶ

ଶ
. 

                                     red(G)  
௡ି௧ାଶ

ଶ
. 

Theorem: 2.12: Let G be a connected graph with cycles of diameter two with < N2(u) > 

has no isolated vertices. Then red(G)  1+(G). 

Proof: diam(G) = 2. Let u  V(G) such that deg u = (G). Consider {u}  N(u) = D. 

This is a restrained eccentric dominating set for G. Hence red(G)  1+(G). 

Theorem 2.13: A restrained eccentric dominating set D of G is minimal if and only if for 

each vertex v  D, one of the following conditions holds. 
(i) v is an isolated vertex in <D> or v has no eccentric vertex in D. 

(ii) there exists a vertex u  V D such that N(u)  D = {v} or E(u)  D = {v}. 

(iii) v is an isolated vertex in < (V  D)  {v} >. 
Proof: 
Assume that D is a minimal restrained eccentric dominating set of G. Then for every 

vertex v  D, D  {v} is not a restrained eccentric dominating set. That is there exists 

some vertex u in (V  D)  {v} which is not dominated by any vertex in D {v} or there 

exists u in (V  D)  {v} such that u has no eccentric point in D  {v} or v is an isolated 

vertex in < (V  D)  {v} >. 
Case (i)  
Suppose u = v, then v is an isolated vertex in <D> or v has no eccentric vertex in D. 
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Case (ii) 

Suppose u  V  D. 

(i) If u is not dominated by D  {v}, but is dominated by D, then u is adjacent to only v in 

D, that is N(u)  D = {v}. 

(ii) Suppose u has no eccentric point in D {v}, but u has an eccentric point in D. Then v 

is the only eccentric point of u in D, that is E(u)   D = {v}. 

Conversely, suppose that D is a restrained eccentric dominating set and for each v  D, 
one of the above conditions holds, we show that D is a minimal restrained eccentric 
dominating set. 
Suppose that D is not a minimal restrained eccentric dominating set, that is there exist a 

vertex v  D, D  {v} is a restrained eccentric dominating set. Hence, v is adjacent to at 

least one vertex in D  {v}, and v has an eccentric point in D  {v}. Therefore, condition 
(i) does not hold. 

Also, every element x in V  D is adjacent to at least one vertex in D  {v} and x has an 

eccentric point in D  {v}. Hence condition (ii) does not hold. There exists a vertex v  

D such that v is not isolated in < (V  D)  {v} >. Hence, condition (iii) does not hold. 

This is a contradiction to our assumption that for each v  D, one of the conditions 
holds. 

Theorem: 2.14: Let n be an even integer n  4. Let G be obtained from the complete 

graph Kn by deleting edges of a linear factor. Then ߛ௥௘ௗሺܩሻ ൌ
௡

ଶ
. 

Proof: Let u and v be a pair of nonadjacent vertices in G. Then u and v are eccentric to 
each other. Also, G is unique eccentric point graph. Therefore,                       

ሻܩ௥௘ௗሺߛ ൒
௡

ଶ
…………(i). 

Consider D  V(G) such that <D> = Kn/2. D contains n/2 vertices such that each vertex in     

V  D is adjacent to at least one element in D and each element in V  D has its eccentric 

vertex in D and also <D> has no isolated vertices. Hence ߛ௥௘ௗሺܩሻ ൑
௡

ଶ
…………..(ii). 

From (i) and (ii) ߛ௥௘ௗሺܩሻ ൌ
௡

ଶ
. 

Theorem: 2.15: 

,4)( 4 Cred ,3)( 5 Cred and 





3
)(

n
Cnred , for n  6. 
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Proof: 

Clearly, ,4)( 4 Cred 3)( 5 Cred . Now, assume that n  6. Let v1, v2, v3, …, vn, v1 

form Cn. Then nC = Kn  Cn and each vertex vi is adjacent to all other vertices except vi-1 

and vi+1 in nC . Hence eccentric point of vi in nC  is vi-1 and vi+1 only. Hence any restrained 
eccentric dominating set must contain either vi or any one of 

 vi-1, vi+1. Thus 




3

)(
n

Cnred ………..(i).  

 Now, consider a restrained eccentric dominating set as follows. 
{v1, v4, v7, …, v3m-2} if n = 3m. 
{v1, v4, v7, …, v3m+1} if n = 3m+1. 

{v1, v4, v7, …, v3m+1, v3m+2} if n = 3m+2. Hence 




3

)(
n

Cnred ………….(ii) 

From (i) and (ii) 





3
)(

n
Cnred , for n  6. 

Note: If G is a connected graph with n vertices then .
3

2
)(

n
Gred   
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