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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set, if every vertex
not in D is adjacent to at least one vertex in D. A subset D of V(G) is a restrained dominating set, if
every vertex not in D is adjacent to a vertex in D and to a vertex in V=D. A subset D of V(G) is a
restrained eccentric dominating set, if D is a restrained dominating set of G and for every v € V=D,
there exists at least one eccentric point of v in D. The minimum of the cardinalities of the restrained
eccentric dominating set of G is called the restrained eccentric domination number of G and it is

denoted by y.4(G). In this paper, bounds for Y. and its exact value for some particular classes of graphs
are found.
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1. Introduction

Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and
edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary
(1].

Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v)

of v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u € V}.The
radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) =
d(G) is the maximum eccentricity. For any connected graph G, r(G) < diam(G) < 2r(G). v
is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The
central sub graph < C(G) > of a graph G is the sub graph induced by the center. v is a
peripheral vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices.

For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v .

Eccentric set of a vertex v is defined as E(v) = {u € V(G) / d(u, v) = e(v)}.

Definition 1.2: The open neighborhood N(u) of a vertex v is the set of all vertices
adjacent to v in G. N[v] = N(v)\U{v} is called the closed neighborhood of v. For a vertex
v € V(G), Ny(u) = {u € V(G)/d(u, v) = i} is defined to be the i neighborhood of v in G.
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Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be
partitioned into two subsets V, and V, such that every line of G joins V, with V,. If further
G contains every line joining points of V, to points of V, then G is called a complete
bigraph. If V, contains m points and V, contains n points then the complete bigraph G is
denoted by K, .

Definition 1.4: A star is a complete bi graph K, ,

Definition 1.5 [3, 12]: A set D C V(G) is said to be a dominating set in G, if every vertex
in V=D is adjacent to some vertex in D. The cardinality of minimum dominating set is

called the domination number and is denoted by Y(G).

Definition 1.6 [6]: A set D C V(G) is a restrained dominating set if every vertex not in

D is adjacent to a vertex in D and to a vertex in V—D. The cardinality of minimum

restrained dominating set is called the restrained domination number and is denoted by

Y(G).

Definition 1.7 [7]: A set D C V(G) is an eccentric dominating set if D is a dominating

set of G and for every v € V—D, there exists at least one eccentric point of v in D. The

cardinality of minimum eccentric dominating set is called the eccentric domination
number and is denoted by V.4(G).
If D is an eccentric dominating set, then every superset D' D is also an

eccentric dominating set. But D" C D is not necessarily an eccentric dominating set.

An eccentric dominating set D is a minimal eccentric dominating set if no

proper subset D" C D is an eccentric dominating set.

We need the following results to prove certain results in restrained Eccentric

domination.

Theorem: 1.1[3]: For any graph G, | n/(1+A(G)) | £ ¥(G) < n—A(G).
Theorem: 1.2 [7]: You(K,) = 1

Theorem: 1.3 [7]: Yu(K,.,) = 2.

Theorem: 1.4 [7]: Y .4q(W3) =1, V(W) =2,Y4(W,) =3forn >7.
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Theorem: 1.5 [7]: Y.4(P,) =7Y(P,) or Y(P,) + L
Theorem: 1.6 [4]: If n # 2 is a positive integer, then Y,(K,) = 1.
Theorem: 1.7 [4]: If m and n are integers such that min {m, n} 2 2, then V(Ko =2

Theorem: 1.8 [4]: Let G be a connected graph of order n. Then Y,(G) = n if and only if G

is a star.

Theorem: 1.9 [4]: If D is a minimum restrained dominating set of a tree T, then every

pendent vertices of T belongs to D, that is, Y,(T) = .
Theorem: 1.10[10]: For any graph G, p—(2/3)q < Y(G).

Theorem: 1.11[7]: (1) Yea(C,) = n/2 if n is even.
(if) Yea(C,) = n/3 if n = 3m and is odd.
|—n/3—| if n = 3m+1 and is odd.
|_n/3—| + 1 if n = 3m+2 and is odd.

2. Restrained eccentric dominating set

We define restrained eccentric dominating set of a graph as follows.

Definition 2.1: A subset D of V(G) is a restrained eccentric dominating set, if D is a

restrained dominating set of G and for every v.€ V—D, there exists at least one eccentric
point of v in D. The minimum of the cardinalities of the restrained eccentric dominating

set of G is called the restrained eccentric domination number of G and it is denoted by
Y:ea(G).

Clearly, Y(G) < Vrea(G)s Vea(G) < Ya(G) and Y(G) < Y:a(G). But there is no
relation between Y, and Y. Also, for any graph G, 1 < Vrea(G) < n. These lower bound
and upper bounds are sharp, since ¥,.4(K,) =1 and V4K, ,—) =n.
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Fig. 2.1
V = {Vy, Vy, Vi, Vi, Ve, V¢, Vi Vg, Vo, Vpp, vy} 1S the vertex set of G.

D, = {vs, Vg, Vyo} is a minimum dominating set and also a minimum restrained dominating

set.

D, = {vy, Vg, Vo, vy} is @ minimum eccentric dominating set.

D, = {v;, V4, V5, Vo, Vy1}is @ minimum restrained eccentric dominating set.
Y(G) =3, Yr(G) =3, yed(G) =4, yred(G) =4.

Example:2.2

Vi & V3 Vs Vs 6 7 3 Vo

Fig 2.2

D, = {v,, Vs, V;} is a dominating set. Y(G) = 3.

D, = {v,, v,, v, Vo} is an eccentric dominating set.Y.4(G) = 4.
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D, = {v,, V4, V;, Vg, Vo} is a restrained eccentric dominating set.Y,.4(G) = 5 = Y,(G)

Theorem: 2.1: For any graph G, |_n/(l+A(G))—| < Y rea(G).
Proof: From Theorem: 1.1, I_n/(1+A(G))—| < Y(G) < n—A(G) and we have
Y(G) £ V,(G). Therefore, |_n/(l+A(G))—| <Y.ed(G).

This lower bound is sharp, since Y,.4(P,) = |_n/3—| when n = 3k+1.

Theorem: 2.2:

() VraK) =1, n 23,

(i1) Viea(Kon) = 2.

(i) Viea(W3) = 1, Yeea(W,) = 2, Yeea(W,) = 3 for n = 4.

(iv) Vrea(Kys p—1) = 1.

Proof of (i)

When G = K, Radius = Diameter = 1. Hence any vertex u € V(G) dominate other
vertices and is also an eccentric vertex of other vertices. The elements of V— {u} satisfies

the restrained conditions. Hence Y, 4(K,) = 1.
Proof of (ii)

When G =K,,,,, V(G) = V, UV, |[V| = mand |V,| =n such that each elements of V,
is adjacent to every vertex of V, and vice versa. D = {u, v}, u € V, and v € V, is the
restrained dominating set. u dominate all other vertices of V, and it is eccentric to

elements of V, — {u}. Similarly v dominates all the vertices of V, and it is eccentric to

elements of V, — {v}. Hence D is a minimum restrained eccentric dominating set. Hence
Yred(Km,n) = 2
Proof of (iii)
G = W, =K,. Hence ¥,.4(W;) = 1. When G = W,, consider D = {u, v}, where u and v are

adjacent non central vertices. D is a minimum restrained eccentric dominating set.

Therefore, Y,.4(W,) = 2.
When G =W, n>4. LetD = {u, v, w} where u and v are any two adjacent non central

vertices and w is the central vertex. Then D is a minimum restrained eccentric dominating

set of G. Therefore ¥,.4(W,) = 3 forn > 4.
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Proof of (iv)

G = K, ,-;. We know Y.(K,,—;) = n—1 and the end vertices form the minimal restrained

dominating set. But it is not an eccentric dominating set. The whole vertex set V is the

only restrained eccentric dominating set. Therefore, V¥, 4(K, ,-)) =n.

n/3+2, ifn= 3k

Theorem: 2.3: V,4(P,) = |—l’1/3—|, ifn = 3k+1

'n/31+1, ifn = 3k+2
Proof: Case (i) n = 3k.
An eccentric dominating set of P, must contains the two end vertices.
Let v;, v,, V3, ..., V5 represent the path P,. D = {v,, v, Vg, ..., V5,} is the only
Y— dominating set of P,. D is not the restrained eccentric dominating set.
D' = {vy, V4 V5 «.ts Vi Vi Vaid 18 the restrained eccentric dominating set,
and |D'| = Y(P)+2 =k+2. Hence Y, 4(P,) = Y(P)+2.
Case (ii) n = 3k+1
D = {v}, V4 V5, .05 Va3 Vi) is the minimum dominating set in P,. It contains the two

end vertices and hence an eccentric dominating set. Also < V=D > has no isolated
vertices. Hence it is the minimum restrained eccentric dominating set.

Therefore, ¥,.«(P,) =7Y(P,) = |_n/3—|
Case (iii) n = 3k+2
D = {v,, V5, Vg ..., V3i,o) is @ minimum dominating set. It contains one end vertex vy, and
it is restrained but not eccentric. Now, DU {v,} is a restrained eccentric dominating set

with |[DU{v;}| = k+1 and there is no other restrained eccentric dominating set with

|S| < k+1. Hence V,.4(P,) = Y(P,) + 1 =k+1 = |—n/3—| +1.

Theorem: 2.4: Let G be a Caterpillar then ¥,.4(G) < e + I_ k/3—|, where e is the number of
pendent vertices of G.

Proof: Let n be the number of vertices and e be the number of pendent vertices of G.
Consider, k = n—e. By the definition of caterpillar, after removing the pendent vertices we

get P,. Hence ¥,.4(G) < e + Y(P). That is, ¥,.a(G) < e + |_ k/3—|.

Theorem: 2.5: Let G be a spider then ¥, 4(G) = n— A(G) = A(G)+1.
Proof: Since G has A(G) pendent vertices, V,.4(G) > A(G) = n— A(G) — 1. Let S be the

set of all pendent vertices of G, S is not the restrained eccentric dominating set. Hence,
Vrea(G) 2 n — A(G). D = S U{u}, where u is a vertex of G with degree two. D is the

restrained eccentric dominating set. Hence Y,.4(G) = n — A(G).
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Theorem: 2.6: Let G be a wounded spider which is not a star then ¥, 4(G) = A(G).

Proof: Let S be the set of all pendent vertices of G, S is the minimum restrained eccentric

dominating set. Hence ¥,4(G) = A(G).

Theorem: 2.7 (i) When n is even, let n = 2r, where r is the radius of C_ then
n/2 + 2, if r = 4m
Yeea(Co) = §+1,ifr = 4m+ 1lor4m+ 3
n/2, if r = 4m+ 2
(ii) When n is odd, let n = 2r+1 where r is the radius of C_, then
|_n/3—| + 2, if r = 3m
Yred(cn) = n/3} lf r = 3m + 1
In/31+1, if r = 3m+2

Proof: Let D be minimum restrained eccentric dominating set of C,. D is a restrained
dominating set implies <V—D> has no isolated vertices. Since C,, is a cycle, if a vertex i is
not in D implies either i—1 or i+1 is also not in D and if i, i+1 are not in D then i—1 and
i+2 must be in D, since D is a dominating set. So <V—D> = kK,, where k is a positive

integer. Thus V—D always contains even number of vertices.

Case (a): n =2r.

First let us consider even n. When n is even C, is a unique eccentric point graph
with radius r = n/2. If we label the vertices of C, by 1, 2, 3, ..., n, then eccentric vertex of i
is i+r. Let D be a restrained eccentric dominating set. If D is an eccentric dominating set

of C,, i is not in D means i+r must be in D. i, i+1 are not in D implies i—1 and i+2 must

be in D, since D is a dominating set, but their eccentric vertices i—r, i+1—r may not be in
D. So we can group the vertices in such a way that beginning with vertex 1, first 2 vertices
1, 2 are in D next two vertices 3, 4 are not in D etc., but r+3, r+4 must be in D etc. So we
can split V into two parts V, containing 1% r vertices and 2" part V, containing 2" ¢
vertices to find the restrained eccentric dominating set.

Sub case (i) r = 4m, n = 8m.

D={1,2,5,6,9 10, ..., r—3, r—2, r—1, r+2, r+3, r+4, r+7, r+8, ..., 2r—>5, 2r—4,
2r—1, 2r} is a restrained eccentric dominating set, and |D| = n/2+2. This implies that
Y:ea(Ca) < 1n/2+2. By theorem 1.11, Y4(C,) = n/2 if n is even. But no minimum eccentric
dominating set of C, is restrained. So, ¥,.4(C,) 2> n/2+1. If Yrea(C,) = n/2+1 = 4m+1, V=D

contains 4m—1 vertices, where 4m—1 is odd, which is not possible. Hence,

Yeea(Co) = 0/2+2. Thus Y,.4(C,) = n/2+2.
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Sub case (ii) r = 4m+1, n = 8m+2.

In this case, D = {1, 2, 5, 6, ..., r—4, r—3, 1, r+3, r+4, r+7, 48, ..., 2r—2, 2r—1, 2r}

is the restrained eccentric dominating set and D contains 4m+2 = n/2+1 vertices and
hence V,.4(C,) < n/2+1. But we have Y.a(C,) = n/2 and no minimum eccentric dominating
set S is a restrained dominating set since V—S contains odd number of vertices. Therefore,

Yrea(Cy) 2 n/2+1. Hence ¥,o(C,) = n/2+1.

Sub case (iii) r = 4m+2, n = Sm+4.
In this case, D = {1, 2, 5, 6, ..., r—1, 1, r+3, r+4, r+7, r+8, ..., 2r—3, 2r—2} is an
restrained eccentric dominating set. Therefore 7V, .4(C,) < n/2, and we know that

Vrea(Cr) > Y.a(C,) = n/2. Hence, ¥,.4(C,) = n/2.

Sub case (iv) r = 4m+3, n = 8m+6.

In this case, D = {1, 2, 5, 6, ..., r—2, r—1, 1, 143, r+4, ..., 2r—4, 2r—3, 2r—2} is the
restrained eccentric dominating set, and |D| =n/2+1. Thus, ¥,.4(C,) < n/2+1. But we have
Y.a(C,) = n/2 and no minimum eccentric dominating set S is a restrained dominating set,
since V=S contains odd number of vertices. Hence, V.4(C,) 2 n/2+1. This gives

Vrea(Cp) = n/2+1.
Case (b): n = 2r+1.

When n is odd, we know n = 2r+1 where r is the radius of C.. In this case C, is

an bi-eccentric point graph. That is every vertex has exactly two eccentric vertices. So, if D
is an eccentric dominating set, for a vertex not in D any one of its eccentric vertices must
be in D and it must be a restrained dominating set.

Sub case (i) r =3m, n = 6m+1.

In this case, D = {1, 4, 7, 10, ..., r—2, r+1, r+2, r+3, r+6, r+9, ..., 21, 2r+1} is a
minimum restrained eccentric dominating set, and |D| = |—n/3—|+2. Thus,
Vrea(Cr) < |_n/3—|+2. But, in this case, we have Y 4(C,) = |_n/3—|+1 and no minimum
eccentric dominating set S is a restrained dominating set, since V—S contains odd number

of vertices. Hence, Y,.4(C,) > |_n/3—|+2. This gives ¥,.4(C,) = |_n/3—|+2.

Sub case (ii) r = 3m+1, n = 6m+3.
In this case n is an odd multiple of 3. D = {1, 4, 7, ..., 1, 1+3, 1+6, ..., 2r—1} is a
minimum restrained eccentric dominating set and D contains n/3 vertices. Thus, Y.4(C,) =

Yred(cn) =n/3.
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Sub case (iii) r = 3m+2, n = 6m+5.
In this case, D = {1, 4, 7, 10, ..., r—4, r—1, 1, r+3, r+6, r+9, ..., 2r—>5, 2r—2, 2r—1} is
a minimum restrained eccentric dominating set and |D| = |—n/ 3—|+1. Thus, Y.(C,) =

Veea(Co) = |_n/3—|+1.

Hence the theorem is proved.

Now, let us present bounds for restrained eccentric domination number of trees.
Each restrained dominating set of a tree is a dominating set containing all the pendent
vertices. Therefore restrained dominating set of a tree is always an eccentric dominating

set. Hence in trees restrained eccentric domination is same as restrained domination.
Therefore, Y.(T) = V,(T).
In [8], Mustapha Chellali has proved that |_(n+2+1—s)/3—| < Y(T) <

|_(n+21+s+1)/3J where | denotes the number of pendent vertices of T and s denotes the

number of supports in T. Therefore, we have,

For a tree with | pendent vertices and s support vertices, I_(n+2+1—s)/ 3—| < Y rea(T)
< |_(n+2l+s+1)/3J.

Theorem: 2.8: For any graph G, p — (2/3) @ < 7V,.(G).
Proof: From theorem [1.10], For any graph G, p — (2/3)q < Y.(G) and we know that
Y:(G) £ V.a(G). Therefore, p— (2/3) ¢ < V,ea(G).

Theorem: 2.9: If G is a connected graph, V,.4(G) < Ya(G) + BO(G).

Proof: Let D be a Y4 - set of G. Suppose < V—D > has no isolated vertices. Then D is a
restrained eccentric dominating set of G. On the other hand, if there exists a set S C V—D
such that each vertex in S is an isolated vertex in < V—D >. Then D U S is a restrained

eccentric dominating set of G. Hence, Y,.4(G) < | DUS |
<[pl+ s
Ve G) SVl G+B(G).

Theorem: 2.10: Let G be a connected graph with | V(G) | =n. Then ¥, 4(Go K)) = n.
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Proof: Let V(G) = {v,, v,, ..., v,}. Let Vi, be the pendent vertex adjacent to v; in GoK, for
i=1,2,..,n Then{v,’, v, ..., v,' } is an eccentric dominating set for GoK, and is also a

minimum restrained eccentric dominating set for GoK,. Hence Y,.4(GoK;,) = n.

n—t+2

Theorem: 2.11: If G is of radius one and diameter two, then ¥,4(G) < , where

t = 2 is the number of vertices with eccentricity one.

Proof: Let u € V(G) such that e(u) = 1. Let t be the number of vertices with eccentricity
one. u dominates all other vertices and for t—1 other vertices u is an eccentric point.
Consider the remaining (n — t) vertices of G. They are also dominated by u but their
eccentric points are different from u. (V—E,(G)) U {u} is a restrained eccentric
dominating set of G, where E;(G) = {u € V(G)/e(u) = 1}. Hence

n—-t n-—-t+2
< _ =
Yred(G) —_ 1 + 2 2

n—t+2

’Yred(G) S

Theorem: 2.12: Let G be a connected graph with cycles of diameter two with < N,(u) >
has no isolated vertices. Then Y,.4(G) < 1+6(G).
Proof: diam(G) = 2. Let u € V(G) such that deg u = S(G). Consider {u} U N(u) = D.

This is a restrained eccentric dominating set for G. Hence ¥,.4(G) < 1+5(G).

Theorem 2.13: A restrained eccentric dominating set D of G is minimal if and only if for

each vertex v € D, one of the following conditions holds.

(i) v is an isolated vertex in <D> or v has no eccentric vertex in D.
(ii) there exists a vertex u € V— D such that N(u) M D = {v} or E(u) M D = {v}.

(iii) v is an isolated vertex in < (V — D) U {v} >.
Proof:

Assume that D is a minimal restrained eccentric dominating set of G. Then for every
vertex v € D, D — {v} is not a restrained eccentric dominating set. That is there exists
some vertex u in (V — D) U {v} which is not dominated by any vertex in D —{v} or there
exists u in (V — D) U {v} such that u has no eccentric point in D — {v} or v is an isolated

vertex in < (V— D) U {v} >.
Case (i)

Suppose u = v, then v is an isolated vertex in <D> or v has no eccentric vertex in D.
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Case (ii)

Supposeu € V —D.

(i) If u is not dominated by D — {v}, but is dominated by D, then u is adjacent to only v in
D, that is N(u) M D = {v}.

(ii) Suppose u has no eccentric point in D— {v}, but u has an eccentric point in D. Then v
is the only eccentric point of u in D, that is E(u) M D = {v}.

Conversely, suppose that D is a restrained eccentric dominating set and for each v € D,
one of the above conditions holds, we show that D is a minimal restrained eccentric
dominating set.

Suppose that D is not a minimal restrained eccentric dominating set, that is there exist a
vertex v € D, D — {v} is a restrained eccentric dominating set. Hence, v is adjacent to at

least one vertex in D — {v}, and v has an eccentric point in D — {v}. Therefore, condition
(i) does not hold.

Also, every element x in V — D is adjacent to at least one vertex in D — {v} and x has an
eccentric point in D — {v}. Hence condition (ii) does not hold. There exists a vertex v €
D such that v is not isolated in < (V — D) U {v} >. Hence, condition (iii) does not hold.

This is a contradiction to our assumption that for each v € D, one of the conditions
holds.

Theorem: 2.14: Let n be an even integer n = 4. Let G be obtained from the complete

n
graph K, by deleting edges of a linear factor. Then Vg (G ) = 7

Proof: Let u and v be a pair of non—adjacent vertices in G. Then u and v are eccentric to

each  other. Also, G is wunique eccentric point graph. Therefore,

Yrea(G) = % ............ ).

Consider D C V(G) such that <D> = K, ,,. D contains n/2 vertices such that each vertex in

V — D is adjacent to at least one element in D and each element in V — D has its eccentric

n
vertex in D and also <D> has no isolated vertices. Hence Vyeq (G ) < PRREREEE ().
n
From (i) and (ii) Vyed (G) = E

Theorem: 2.15:

}/red (64) :4’ yred ((TS) :31 and 7red (c_:n) zlrg—‘ > forn26'
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Proof:
Clearly, y,oq (64) =4, ¥ e (65) =3. Now, assume that n = 6. Let v, vV, Vs, ..., Vy, V;
form C,. Then CTn = K, — C, and each vertex v, is adjacent to all other vertices except v;

and v;,,;in C, . Hence eccentric point of v; in C is v, and v;,, only. Hence any restrained

eccentric dominating set must contain either v, or any one of

Vi Vi Thus 4 (En) > lrg—l ........... i).

Now, consider a restrained eccentric dominating set as follows.
Vi Vs Vo oey V3ot if n=3m.

Vi Vap Vo oens Vay} if n = 3m+1.

{Vis Va» Vs w5 Vains Vameo) if n = 3m+2. Hence } (C_:n) < lrg—l ............. (ii)
— n
From (i) and (ii) 7,4 (C,) = lrg—l ,forn 2 6.

2n
Note: If G is a connected graph with n vertices then 7,4 (G) < ?
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