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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set, if every vertex 
not in D is adjacent to at least one vertex in D. A subset D of V(G) is a restrained dominating set, if 
every vertex not in D is adjacent to a vertex in D and to a vertex in VD.  A subset D of V(G) is a 
restrained eccentric dominating set, if D is a restrained dominating set of G and for every v  VD, 
there exists at least one eccentric point of v in D.  The minimum of the cardinalities of the restrained 
eccentric dominating set of G is called the restrained eccentric domination number of G and it is 
denoted by red(G). In this paper, bounds for red and its exact value for some particular classes of graphs 
are found. 
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1. Introduction 

 Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and 
edge set E(G). For graph theoretic terminology refer to Harary [5] Buckley and Harary 
[1]. 

Definition 1.1: Let G be a connected graph and u be a vertex of G. The eccentricity e(v) 

of  v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}.The 
radius r(G) is the minimum eccentricity of the vertices, whereas the  diameter diam(G) = 
d(G) is the maximum eccentricity. For any connected graph G, r(G) ≤ diam(G) ≤ 2r(G). v 
is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The 
central sub graph < C(G) > of a graph G is the sub graph induced by the center. v is a 
peripheral vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices. 

 For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v . 

Eccentric set of a vertex v is defined as E(v) = {u   V(G) / d(u, v) = e(v)}. 

Definition 1.2: The open neighborhood N(u) of a vertex v is the set of all vertices 

adjacent to v in G. N[v] = N(v){v} is called the closed neighborhood of v. For a vertex   

v  V(G), Ni(u) = {u  V(G)/d(u, v) = i} is defined to be the ith  neighborhood of v in G. 
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Definition 1.3: A bigraph or bipartite graph G is a graph whose point set V can be 
partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2.. If further 
G contains every line joining points of V1 to points of V2 then G is called a complete 
bigraph. If V1 contains m points and V2 contains n points then the complete bigraph G is 
denoted by Km,n. 

Definition 1.4: A star is a complete bi graph K1,n. 

Definition 1.5 [3, 12]: A set D  V(G) is said to be a dominating set in G, if every vertex 

in VD is adjacent to some vertex in D. The cardinality of minimum dominating set is 

called the domination number and is denoted by (G).	 

Definition 1.6 [6]: A set D  V(G) is a restrained dominating set if every vertex not in 

D is adjacent to a vertex in D and to a vertex in VD. The cardinality of minimum 
restrained dominating set is called the restrained domination number and is denoted by 

r(G). 

Definition 1.7 [7]: A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every v  VD, there exists at least one eccentric point of v in D. The 
cardinality of minimum eccentric dominating set is called the eccentric domination 

number and is denoted by ed(G). 

If D is an eccentric dominating set, then every superset D D is also an 

eccentric dominating set. But D  D is not necessarily an eccentric dominating set. 

An eccentric dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 

We need the following results to prove certain results in restrained Eccentric 
domination.  

Theorem: 1.1[3]: For any graph G, n/(1+(G))  (G)  n(G). 

 Theorem: 1.2 [7]: ed(Kn)  = 1 

Theorem: 1.3 [7]: ed(Km,n)  = 2. 

Theorem: 1.4 [7]: ed(W3)  = 1, ed(W4)  = 2, ed(Wn)  = 3 for n  7. 
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Theorem: 1.5 [7]:   ed(Pn)  = (Pn)  or  (Pn) + 1. 

Theorem: 1.6 [4]: If n  2 is a positive integer, then r(Kn)  =  1. 

Theorem: 1.7 [4]: If m and n are integers such that min {m, n}  2, then r(Km,n)  = 2. 

Theorem: 1.8 [4]: Let G be a connected graph of order n. Then r(G) = n if and only if G 
is a star. 

Theorem: 1.9 [4]:  If D is a minimum restrained dominating set of a tree T, then every 

pendent vertices of T belongs  to  D, that is, r(T)  e. 

Theorem: 1.10[10]: For any graph G, p(2/3)q   r(G). 

Theorem: 1.11[7]:  (i) ed(Cn) =  n/2 if n is even. 

                      (ii) ed(Cn) =     n/3  if n = 3m and is odd.  

                           n/3 if n = 3m+1 and is odd. 

                            n/3 + 1 if n = 3m+2 and is odd.               

2. Restrained eccentric dominating set 

We define restrained eccentric dominating set of a graph as follows. 

Definition 2.1: A subset D of V(G) is a restrained eccentric dominating set, if D is a 

restrained dominating set of G and for every v  VD, there exists at least one eccentric 
point of v in D.  The minimum of the cardinalities of the restrained eccentric dominating 
set of G is called the restrained eccentric domination number of G and it is denoted by 

red(G).  

Clearly, (G)  red(G), ed(G)  red(G) and  r(G)  red(G). But there is no 

relation between r and ed. Also, for any graph G, 1  red(G)  n.  These lower bound 

and upper bounds are sharp, since red(Kn)  = 1 and red(K1, n1)  = n. 
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Example 2.1: 
 
 
 
 
 
 
 
 

 

 

 

G 

Fig. 2.1 

V = {v1, v2, v3, v4, v5, v 6, v7, v8, v9, v10, v11} is the vertex set of G. 

D1 = {v5, v8, v10} is a minimum dominating set and also a minimum restrained dominating 
set.  

D2 = {v4, v6, v9, v10} is a minimum eccentric dominating set. 

D3 = {v3, v4, v7, v9, v11} is a minimum restrained eccentric dominating set. 

(G) = 3, r(G) = 3, ed(G) = 4,  red(G) = 4 .   

Example:2.2 

 

Fig 2.2 

 D1 = {v2, v5, v8} is a dominating set. (G) = 3.    

 D2 = {v1, v4, v7, v9} is an eccentric dominating set. ed(G) = 4 .   
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  D3 = {v1, v4, v7, v8, v9} is a restrained eccentric dominating set. red(G) = 5 = r(G)    

Theorem: 2.1: For any graph G,   n/(1+(G))  red(G).   

Proof: From Theorem: 1.1, n/(1+(G))  (G)  n(G) and we have                  

(G)  red(G).  Therefore, n/(1+(G))  red(G).  

 This lower bound is sharp, since red(Pn) = n/3 when n = 3k+1. 

Theorem: 2.2: 

(i)  red(Kn)  = 1,  n  ≥ 3. 

(ii)  red(Km,n) = 2. 

(iii)  red(W3)  = 1, red(W4) = 2, red(Wn) = 3 for n ≥ 4. 

(iv) red(K1, n1) =  n. 
Proof of (i) 

When G = Kn.  Radius = Diameter = 1. Hence any vertex u  V(G) dominate other 

vertices and is also an eccentric vertex of other vertices. The elements of V	{u} satisfies 

the restrained conditions.  Hence red(Kn) = 1. 
 Proof of (ii) 

When G = Km,n,, V(G)  =  V1   V2,  |V1|  =  m and |V2|  = n such that each elements of V1 

is adjacent to every vertex of V2 and vice versa.  D = {u, v}, u  V1 and v  V2 is the 
restrained dominating set. u dominate all other vertices of V2 and it is eccentric to 

elements of V1  {u}. Similarly v dominates all the vertices of V1 and it is eccentric to 

elements of V2  {v}. Hence D is a minimum restrained eccentric dominating set.  Hence 

red(Km,n) = 2. 
Proof of (iii) 

G = W3 = K4.  Hence red(W3) = 1.  When G = W4, consider D = {u, v}, where u and v are 
adjacent non central vertices. D is a minimum restrained eccentric dominating set. 

Therefore, red(W4) = 2. 
When G = Wn,  n > 4.   Let D = {u, v, w} where u and v are any two adjacent non central 
vertices and w is the central vertex. Then D is a minimum restrained eccentric dominating 

set of G. Therefore red(Wn) = 3 for n > 4. 
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Proof of (iv) 

G = K1,n1. We know r(K1,n1) = n1 and the end vertices form the minimal restrained 
dominating set. But it is not an eccentric dominating set. The whole vertex set V is the 

only restrained eccentric dominating set. Therefore, red(K1, n1)  = n. 

Theorem:  2.3:  red(Pn)  =   ቐ

n/3  2,						if		n	 ൌ 	3k
	n/3,						if	n	 ൌ 	3k  1

n/3 1,			if	n	 ൌ 	3k  2		
 

Proof: Case (i) n = 3k. 
An eccentric dominating set of Pn  must contains the two end vertices. 
 Let v1, v2, v3, …, v3k represent the path Pn.  D = {v2, v5, v8, …, v3k-1} is the only           

  dominating set of  Pn.  D is not the restrained eccentric dominating set. 
D' = {v1, v4, v7, …, v3k-2, v3k-1, v3k} is the restrained eccentric dominating set,  

and   |D'| =  (Pn)+2  = k+2. Hence red(Pn) =  (Pn)+2. 
Case (ii) n = 3k+1 
D = {v1, v4, v7, …, v3k-3, v3k+1} is the minimum dominating set in Pn.  It contains the two 

end vertices and hence an eccentric dominating set. Also < VD > has no isolated 
vertices. Hence it is the minimum restrained eccentric dominating set. 

                      Therefore, red(Pn)  = (Pn)  =  n/3       
Case (iii) n = 3k+2 
D = {v2, v5, v8, …, v3k+2} is a minimum dominating set. It contains one end vertex v3k+2  and  
it is restrained but not eccentric.  Now, D {v1} is a restrained eccentric dominating set 
with |D {v1}| = k+1 and there is no other restrained eccentric dominating set with         

|S| <  k+1. Hence red(Pn) =  (Pn) + 1 = k+1 =   n/3 +1.     

Theorem: 2.4: Let G be a Caterpillar then red(G) ≤ e +  k/3,  where e is the number of 
pendent vertices of G. 
Proof: Let n be the number of vertices and e be the number of pendent vertices of G. 

Consider, k = ne.  By the definition of caterpillar, after removing the pendent vertices we 

get Pk. Hence red(G) ≤ e + (Pk). That is, red(G) ≤ e +  k/3.     

Theorem: 2.5: Let G be a spider then red(G)  =  n ∆(G)  =  ∆(G)+1. 

Proof: Since G has ∆(G) pendent vertices, red(G)  ∆(G)  =  n  ∆(G)  1. Let S be the 
set of all pendent vertices of G, S is not the restrained eccentric dominating set. Hence, 

red(G)  n  ∆(G). D = S  {u}, where u is a vertex of G with degree two. D is the 

restrained eccentric dominating set. Hence red(G)  =  n  ∆(G). 
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Theorem: 2.6: Let G be a wounded spider which is not a star then red(G)  =  ∆(G). 
Proof: Let S be the set of all pendent vertices of G, S is the minimum restrained eccentric 

dominating set. Hence red(G)  =  ∆(G). 

Theorem: 2.7 (i) When n is even, let n = 2r, where r is the radius of Cn then              

red(Cn)  =  ቐ

n/2	  	2, if		r	 ൌ 	4m

				
୬

ଶ
 1, if		r	 ൌ 	4m  1	or	4m  3

	n/2, if		r	 ൌ 	4m  2
 

(ii)  When n is odd, let n = 2r+1 where r is the radius of Cn, then 

red(Cn)  =   ቐ
	n/3 2, if		r	 ൌ 	3m
	n/3, if		r	 ൌ 	3m  1

		n/3 1, if		r	 ൌ 	3m  2
 

Proof: Let D be minimum restrained eccentric dominating set of Cn. D is a restrained 

dominating set implies VD has no isolated vertices. Since Cn is a cycle, if a vertex i is 

not in D implies either i1 or i+1 is also not in D and if i, i+1 are not in D then i1 and 

i+2 must be in D, since D is a dominating set. So VD = kK2, where k is a positive 

integer. Thus VD always contains even number of vertices.   
Case (a):  n = 2r. 

First let us consider even n. When n is even Cn is a unique eccentric point graph 
with radius r = n/2.  If we label the vertices of Cn by 1, 2, 3, ..., n, then eccentric vertex of i 
is i+r. Let D be a restrained eccentric dominating set. If D is an eccentric dominating set 

of Cn, i is not in D means i+r must be in D. i, i+1 are not in D implies i1 and i+2 must 

be in D, since D is a dominating set, but their eccentric vertices ir, i+1r may not be in 
D. So we can group the vertices in such a way that beginning with vertex 1, first 2 vertices 
1, 2 are in D next two vertices 3, 4 are not in D etc., but r+3, r+4 must be in D etc. So we 
can split V into two parts V1 containing 1st r vertices and 2nd part V2 containing 2nd r 
vertices to find the restrained eccentric dominating set.  
Sub case (i) r = 4m, n = 8m. 

D = {1, 2, 5, 6, 9, 10, ..., r3, r2, r1, r+2, r+3, r+4, r+7, r+8, ..., 2r5, 2r4, 

2r1, 2r} is a restrained eccentric dominating set, and D = n/2+2. This implies that 

red(Cn)  n/2+2. By theorem 1.11, ed(Cn) =  n/2 if n is even. But no minimum eccentric 

dominating set of Cn is restrained. So, red(Cn)  n/2+1. If red(Cn) = n/2+1 = 4m+1, VD 

contains 4m1 vertices, where 4m1 is odd, which is not possible. Hence,               

red(Cn)  n/2+2. Thus red(Cn) = n/2+2. 
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Sub case (ii) r = 4m+1, n = 8m+2.   

In this case, D = {1, 2, 5, 6, ..., r4, r3, r, r+3, r+4, r+7, r+8, ..., 2r2, 2r1, 2r} 
is the restrained eccentric dominating set and D contains 4m+2 = n/2+1 vertices and 

hence red(Cn)  n/2+1. But we have ed(Cn) = n/2 and no minimum eccentric dominating 

set S is a restrained dominating set since VS contains odd number of vertices. Therefore, 

red(Cn)  n/2+1. Hence red(Cn)  =  n/2+1. 
Sub case (iii) r = 4m+2, n = 8m+4.  

In this case, D = {1, 2, 5, 6, ..., r1, r, r+3, r+4, r+7, r+8, ..., 2r3, 2r2} is an 

restrained eccentric dominating set. Therefore red(Cn)  n/2, and  we know that      

red(Cn)    ed(Cn)  =  n/2. Hence, red(Cn) = n/2. 
Sub case (iv) r = 4m+3, n = 8m+6.  

In this case, D = {1, 2, 5, 6, ..., r2, r1, r, r+3, r+4, ..., 2r4, 2r3, 2r2} is the 

restrained eccentric dominating set, and D = n/2+1. Thus, red(Cn)  n/2+1.  But we have 

ed(Cn) = n/2 and no minimum eccentric dominating set S is a restrained dominating set, 

since VS contains odd number of vertices.  Hence, ed(Cn)  n/2+1. This gives      

red(Cn) = n/2+1. 
Case (b): n = 2r+1.  

 When n is odd, we know n = 2r+1 where r is the radius of Cn. In this case Cn is 
an bi-eccentric point graph. That is every vertex has exactly two eccentric vertices. So, if D 
is an eccentric dominating set, for a vertex not in D any one of its eccentric vertices must 
be in D and it must be a restrained dominating set.  
Sub case (i) r = 3m, n = 6m+1. 

In this case, D = {1, 4, 7, 10, ..., r2, r+1, r+2, r+3, r+6, r+9, ..., 2r, 2r+1} is a 

minimum restrained eccentric dominating set, and D = n/3+2. Thus,                  

red(Cn)  n/3+2. But, in this case, we have ed(Cn) = n/3+1 and no minimum 

eccentric dominating set S is a restrained dominating set, since VS contains odd number 

of vertices. Hence, red(Cn)  n/3+2. This gives red(Cn) =  n/3+2. 
Sub case (ii) r = 3m+1, n = 6m+3.  

In this case n is an odd multiple of 3. D = {1, 4, 7, ..., r, r+3, r+6, ..., 2r1} is a 

minimum restrained eccentric dominating set and D contains n/3 vertices. Thus, ed(Cn) =   

red(Cn) = n/3. 
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Sub case (iii) r = 3m+2, n = 6m+5.  

In this case, D = {1, 4, 7, 10, ..., r4, r1, r, r+3, r+6, r+9, ..., 2r5, 2r2, 2r1} is 

a minimum restrained eccentric dominating set and D = n/3+1. Thus, ed(Cn) = 

red(Cn)  =  n/3+1.  
Hence the theorem is proved. 

Now, let us present bounds for restrained eccentric domination number of trees. 
Each restrained dominating set of a tree is a dominating set containing all the pendent 
vertices. Therefore restrained dominating set of a tree is always an eccentric dominating 
set. Hence in trees restrained eccentric domination is same as restrained domination. 

Therefore, r(T)  = red(T). 

In [8], Mustapha Chellali has proved that (n+2+ls)/3  r(T)  

(n+2l+s+1)/3 where l denotes the number of pendent vertices of T and s denotes the 
number of supports in T. Therefore, we have,  

For a tree with l pendent vertices and s support vertices, (n+2+ls)/3   red(T)  

  (n+2l+s+1)/3. 

Theorem: 2.8: For any graph G, p  (2/3) q    red(G). 

Proof: From theorem [1.10], For any graph G, p  (2/3)q    r(G) and we know that  

r(G)  red(G). Therefore, p  (2/3) q    red(G). 

Theorem: 2.9: If G is a connected graph, red(G)  ed(G) + o(G). 

Proof: Let D be a ed – set of G. Suppose < VD > has no isolated vertices. Then D is a 

restrained eccentric dominating set of G. On the other hand, if there exists a set S  VD 

such that each vertex in  S is an isolated vertex in < VD >. Then D  S is a restrained 

eccentric dominating set of G. Hence, red(G)  D  S 

          D + S 

          red(G)  ed(G)+o(G). 

Theorem: 2.10: Let G be a connected graph with V(G)  = n. Then red(G o K1) = n. 
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Proof: Let V(G) = {v1, v2, …, vn}. Let vi be the pendent vertex adjacent to vi in GoK1 for     

i =1, 2, …, n. Then {v1, v2, …, vn } is an eccentric dominating set for GoK1 and is also a 

minimum restrained eccentric dominating set for GoK1. Hence red(GoK1) = n. 

Theorem: 2.11: If G is of radius one and diameter two, then red(G)  
ି௧ାଶ

ଶ
, where        

t  2 is the number of vertices with eccentricity one. 

Proof: Let u  V(G) such that e(u) = 1. Let t be the number of vertices with eccentricity 

one. u dominates all other vertices and for t1 other vertices u is an eccentric point. 

Consider the remaining (n  t) vertices of G. They are also dominated by u but their 

eccentric points are different from u. (VE1(G))  {u} is a restrained eccentric 

dominating set of G, where E1(G) = {u  V(G)/e(u) = 1}. Hence 

                                          red(G)  1 
ି௧

ଶ
 = 
ି௧ାଶ

ଶ
. 

                                     red(G)  
ି௧ାଶ

ଶ
. 

Theorem: 2.12: Let G be a connected graph with cycles of diameter two with < N2(u) > 

has no isolated vertices. Then red(G)  1+(G). 

Proof: diam(G) = 2. Let u  V(G) such that deg u = (G). Consider {u}  N(u) = D. 

This is a restrained eccentric dominating set for G. Hence red(G)  1+(G). 

Theorem 2.13: A restrained eccentric dominating set D of G is minimal if and only if for 

each vertex v  D, one of the following conditions holds. 
(i) v is an isolated vertex in <D> or v has no eccentric vertex in D. 

(ii) there exists a vertex u  V D such that N(u)  D = {v} or E(u)  D = {v}. 

(iii) v is an isolated vertex in < (V  D)  {v} >. 
Proof: 
Assume that D is a minimal restrained eccentric dominating set of G. Then for every 

vertex v  D, D  {v} is not a restrained eccentric dominating set. That is there exists 

some vertex u in (V  D)  {v} which is not dominated by any vertex in D {v} or there 

exists u in (V  D)  {v} such that u has no eccentric point in D  {v} or v is an isolated 

vertex in < (V  D)  {v} >. 
Case (i)  
Suppose u = v, then v is an isolated vertex in <D> or v has no eccentric vertex in D. 
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Case (ii) 

Suppose u  V  D. 

(i) If u is not dominated by D  {v}, but is dominated by D, then u is adjacent to only v in 

D, that is N(u)  D = {v}. 

(ii) Suppose u has no eccentric point in D {v}, but u has an eccentric point in D. Then v 

is the only eccentric point of u in D, that is E(u)   D = {v}. 

Conversely, suppose that D is a restrained eccentric dominating set and for each v  D, 
one of the above conditions holds, we show that D is a minimal restrained eccentric 
dominating set. 
Suppose that D is not a minimal restrained eccentric dominating set, that is there exist a 

vertex v  D, D  {v} is a restrained eccentric dominating set. Hence, v is adjacent to at 

least one vertex in D  {v}, and v has an eccentric point in D  {v}. Therefore, condition 
(i) does not hold. 

Also, every element x in V  D is adjacent to at least one vertex in D  {v} and x has an 

eccentric point in D  {v}. Hence condition (ii) does not hold. There exists a vertex v  

D such that v is not isolated in < (V  D)  {v} >. Hence, condition (iii) does not hold. 

This is a contradiction to our assumption that for each v  D, one of the conditions 
holds. 

Theorem: 2.14: Let n be an even integer n  4. Let G be obtained from the complete 

graph Kn by deleting edges of a linear factor. Then ߛௗሺܩሻ ൌ


ଶ
. 

Proof: Let u and v be a pair of nonadjacent vertices in G. Then u and v are eccentric to 
each other. Also, G is unique eccentric point graph. Therefore,                       

ሻܩௗሺߛ 


ଶ
…………(i). 

Consider D  V(G) such that <D> = Kn/2. D contains n/2 vertices such that each vertex in     

V  D is adjacent to at least one element in D and each element in V  D has its eccentric 

vertex in D and also <D> has no isolated vertices. Hence ߛௗሺܩሻ 


ଶ
…………..(ii). 

From (i) and (ii) ߛௗሺܩሻ ൌ


ଶ
. 

Theorem: 2.15: 

,4)( 4 Cred ,3)( 5 Cred and 





3
)(

n
Cnred , for n  6. 
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Proof: 

Clearly, ,4)( 4 Cred 3)( 5 Cred . Now, assume that n  6. Let v1, v2, v3, …, vn, v1 

form Cn. Then nC = Kn  Cn and each vertex vi is adjacent to all other vertices except vi-1 

and vi+1 in nC . Hence eccentric point of vi in nC  is vi-1 and vi+1 only. Hence any restrained 
eccentric dominating set must contain either vi or any one of 

 vi-1, vi+1. Thus 




3

)(
n

Cnred ………..(i).  

 Now, consider a restrained eccentric dominating set as follows. 
{v1, v4, v7, …, v3m-2} if n = 3m. 
{v1, v4, v7, …, v3m+1} if n = 3m+1. 

{v1, v4, v7, …, v3m+1, v3m+2} if n = 3m+2. Hence 




3

)(
n

Cnred ………….(ii) 

From (i) and (ii) 





3
)(

n
Cnred , for n  6. 

Note: If G is a connected graph with n vertices then .
3

2
)(

n
Gred   
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