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Abstract: Mean labeling of graphs was discussed in [24-26] and the concept of odd mean labeling was
introduced in [22].  k-odd mean labeling and (k, d)-odd mean labeling are introduced and discussed
in [1, 6-8]. k-cven mean and (k, d)-even mean labeling introduced and discussed in [9-17]. In this
paper, we discuss the k-even mean labeling of some graph operations.
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1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here
are used in the sense of Harary [20]. The symbols V (G) and E (G) will denote the vertex
set and edge set of a graph. Labeled graphs serve as useful models for a broad range of
applications [2-4].

A graph labeling is an assignment of integers to the vertices or edges or both
subject to certain conditions. If the domain of the mapping is the set of vertices (or edges)
then the labeling is called a vertex labeling (or an edge labeling).

Graph labeling was first introduced in the late 1960’s. Many studies in graph
labeling refer to Rosa’s research in 1967 [23]. Labeled graphs serve as useful models for a
broad range of applications such as X-ray crystallography, radar, coding theory, astronomy,
circuit design and communication network addressing. Particularly interesting applications
of graph labeling can be found in [5].

Mean labeling of graphs was discussed in [24-26]. Vaidya [29-32] and et al. have
investigated several new families of mean graphs. Nagarajan [31] and et al. have found
some new results on mean graphs.

Ponraj, Jayanthi and Ramya extended the notion of mean labeling to super mean
labeling in [21]. Gayathri and Tamilselvi [18-19, 27] extended super mean labeling to k-
super mean, (k, d)-super mean, k-super edge mean and (k, d)-super edge mean labeling.
Manickam and Marudai [22] introduced the concept of odd mean graph. Gayathri and
Amuthavalli [1, 6-8] extended this concept to k-odd mean and (k, d)-odd mean graphs.

Received: 12 August, 2013; Revised: 24 October, 2013; Accepted: 27 November, 2013


mailto:maduraigayathri@gmail.com
mailto:mrgopi1985@gmail.com

_ﬂ Infernational Journal of Engineering Science, Advanced Computing and Bio-Technology

Gayathri and Gopi[9-17] extended this concept to k-even mean and (k, d)-Even mean
graphs.

In this paper, we have found the k-even mean labeling of some graph
operations. Throughout this paper, k denotes any positive integer greater than or equal to

1. For brevity, we use k-EML for k-even mean labeling.

2. Main Results
Definition2.1.1:

A (p, q) graph G is said to have a k-even mean labeling if there exists a injection
f:V—>1{0,1,2,.., 2k + 2(q - 1)} such that the induced map f* :E(G) = {2k, 2k + 2, ., 2k + 2(q - 1)}
defined by

f+7() if f(u)+ f(v)iseven
2

f(w) =

is a bijection.
F+HFWH et () is odd
2

A graph that admits a k-even mean labeling is called a k-even mean graph.

Definition 2.1.2:
The shadow graph D,(G) of a connected graph G is constructed by taking two
copies of G say G' and G". Join each vertex u' in G' to the neighbours of the corresponding

vertex v' in G".

Theorem 2.1.3:

The graph D, (Kl)n )(n > 2) is a k—even mean graph for k and n.
Proof:

Let {v, 1 < i < 2n, u, v} be the vertices and {ai,l <i<y, a; ,1<5i < n, b,
1<i<n, b;, 1 <i < n} be the edges which are denoted as in Figure 2.1.

Vn+l Vp+2 ... Vopaa Von

Vi V2

Figure 2.1: Ordinary labeling of D,(K, )

Vn-1 Vi
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First we label the vertices as follows:
Define f: V— {0, 1, 2, ..., 2k + 2q - 2} by
For 1<i<2n, f(v,)) =2k+4i-2
f(u)=2k+8n-3;f(v)=2k-2

Then the induces edge labels are:
For 1<i<n, f(a)=2k+26-1); f(a) =2k +2n+2(i-1)
f*(bi) =2k +4n +2(i- 1); f'(b;) =2k+6n+2(i-1)
Therefore, f»(E) = {2k, 2k + 2, .., 2k + 2q - 2}. So, fis a k-even mean labeling

and hence, the graph D, (Kl,” )(n > 2) is a k—even mean graph for any k and n.

3—EML of D, (K1,4) is shown in Figure 2.2.

Figure 2.2: 3-EML of D,(K, ,)
Definition 2.1.4:

Consider a cycle C, and let e, = v, v, | be an edge in it with e, , =v, v, and ¢, =

k+1 k

be its incident edges and e;( =v v; ,, be a new edge. The duplication of an edge

v k

k+1 vk+2

e, by an edge e;c produces a new graph G in such a way that N(vk)ﬂN(v;c ) = {vk_l}

and N(vk+1 ) f\N(V ) = {vk+2} which is called edge duplication of C, and denoted by

k+1

ED(CH) where N(vk) denotes the set of vertices adjacent to v,.

Theorem 2.1.5:

The graph ED(C,) (n 2 4) is a k-even mean graph for any k and n.

Proof:
Let {v‘_, 05i<n—1, v;, vz} be the vertices and {ei, 05iln—1, e;, e;, e;} be the

edges of C . The duplication of an edge e, of C, by an edge e; is denoted as ED(CH) and

its ordinary labeling is given in Figure 2.3.
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We observe that,

and N(vl)mN(v;)z VO}, N(vz)ﬂN(V;)Z{va}
Case (i): nis even

First we label the vertices as follows:
Define f: V— {0, 1, 2, ..., 2k + 2q - 2} by
f(vo) =2k+2n+1
n+2

For1<i< ——, f(v,)=2k+2i-3
2
n+4
For <i<n-1, f(v,)=2k+2i+1
4

f(v;) =2k +2n+3; f(v'z) =2k +2n + 4
Then the induced edge labels are:

For1<i< o, f”(ei):2k+2(i-1); flew |=2k+n+2
5 w2
2

n+4

For <i<n-1, f(e)=2k+2i+2

=2k+n ; f*(e;):2k+2n+4

(<)
f*(e'z):zk+n+4; F(ey)=2k+2n+2.
Case (ii): nis odd

First we label the vertices as follows:
Define f: V— {0, 1, 2, ..., 2k + 2q - 2} by
F(v,) =2k+2n5 f(v,)=2n+2k-1

n+3 2k+2i—6 iliSeven
For2<i< —, f(v,)= e
2 2k+2i—5 iisodd
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n+5 2k+2i—2 iliSeven
For <i<n-1, f(vi) - i l-
2k+2i—1 iisodd

f(v;) =2k+2n+3 ; f(v;)=2k+2n+4
Then the induced edge labels are:
Fe,) =2k+2ns f(e)=2k+n-1
+1

n . .
For2<i< —, f(ei)=2k+2i—4; fleu |[=2k+n+1
5 L]

2

n+5

For <i<n-1, f(e)=2k+2i5 (o) =2k+2n+4

2
f*(e;)=2k+ n+3 f*(e;) =2k +2n +2.
Therefore, f (E) = {2k, 2k + 2, .., 2k + 2q - 2}. So, f is a k—even mean labeling
and hence, the graph ED(C,) (n 2 4) is a k-even mean graph for any k and n.
4—EML of ED(C,) is shown in Figure 2.4.

18 24
1 1 0
13 9
16 8 24
19 7
20 21 14
22 23

Figure 2.4: 4—EML of ED(C,)
2—EML of ED(C,) is shown in Figure 2.5.

» 26

26

25

Figure 2.5: 2—EML of ED(C,)
Definition 2.1.6:

Duplication of a vertex v, of a graph G produces a new graph by adding a new
vertex vl; in such a way that N (vk ) =N (vk ) It is called vertex duplication of graph and

denoted by VD(G).
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Theorem 2.1.7:
The graph VD(P” )(n > 4) is a k—even mean graph for any k and n.

Proof:

Let P, denoted a path on n vertices {vl, 15i<n, vz} be the vertices and

{ei, 1<i<n—1, e;, elz}be the edges of VD(Pn) obtained by the duplication of the

vertex v, which are denoted as in Figure 2.6.

€ €3 €n-1

V3 \Z T Vn-1 Vn
Figure 2.6: Ordinary labeling of VD(P)
We observe that N(v,) = N(vz’).

First we label the vertices as follows:

Define f: V— {0, 1, 2, ..., 2k + 2q - 2} by
f(v,) =2k-1 ; f(v,) =2k+1
For3<i<n-1,
f(vi) =2k+2i+1

f(v,) =2k +2n ; f(v,) =2k +5.
Then the induced edge labels are:
£ (e) =2k ; fe,)=2k+4

For3<i<n—1,
Fe) =2k+2i+2
Fle) =2k+2 ; f(e,) =2k+6
Therefore, f*(E) = {2k, 2k + 2, ..., 2k + 2q - 2}. So, f is a k—even mean labeling
and hence, the graph VD(Pn )(n > 4) is a k-even mean graph for any k and n.

2—EML of VD(P,) is shown in Figure 2.7.
9

4 8 12 14 16 18
3 5 11 13 15 17 18

Figure 2.7: 2—EML of VD(P,)
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Theorem 2.1.8:
The graph VD(Cﬂ )(n > 4) is a k—even mean graph for any k and n.

Proof:

Let {vi, 1<i<n, v'n}be the vertices and {ei, 1<i<n, e;, e;} be the edges of

VD(C” ) obtained by the duplication of the vertex v, which are denoted as in Figure 2.8.

Figure 2.8: Ordinary labeling of VD(Cn)

We observe that, N(vn ) = N(v;, )

Case (i): n =0 (mod 4)

First we label the vertices as follows:
Define f: V—> {0, 1, 2, ..., 2k + 2q - 2} by

For1<i< 2, f(vi):2k+2i—3
2

<i< , .
2 ' 2k+2i+4 il1sodd

n+2 2k+2i—3 ilseven
For n, f(v)

F(v,)=2k+2n+1.
Then the induced edge labels are:
f*(e;):2k+n+2 ; f*(e'z) =2k +2n+2
n—2

For 1Si<——, f'(e)=2k+26-1)
2
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For — <iS<n-1, f(e)=2k+2i+2; f(e) =2k+n-2

n

2

Case (ii): n =1 (mod 4)

First we label the vertices as follows:

Define f: V—> {0, 1, 2, ..., 2k + 2q - 2} by
f(v;l) =2k+2n+1

For 1 <i<mn,iodd, f(vi) =2k + 2i

n—I1
For1<i< ,ieven
2
n—1
2k+2i—5 ifi<
2
n—1
f(vi) =<2k+2i+3  ifi>
2

2k+2n+2 ifi=n—1.

Then the induced edge labels are:

n—I1
For1<i<

Fe)=2k+2i-2
2
n+1

For <i<n-1,

2
Fe)=2k+2i+2; f(e,)=2k+n-1
f*(e;) =2k+2n+2; f'(e'z) =2k+n+2
Case (iii): n = 2 (mod 4)
First we label the vertices as follows:
Define f: V—> {0, 1, 2, ..., 2k + 2q - 2} by
f(v,) =20k-1)

n—2 2k+2i—2 iiseven
For2<i< ——, f(vi): : l_
2 2k+2i—5 ilsodd

2k+2i—1 iliseven
<i<n-2, f(v,)= o
2k+2i+3 iisodd

f(vnﬂ) =2k+2n+1 ;f(vn) =2k+2n-6

fv,) =2k+2n+2.
Then the induced edge labels are:

n—4 . .
For 1Si<——, f'(¢)=2k+2i-2; f|e,, |=2k+n-2
2

n—2
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For — <i<n-3, f(e)=2k+2i+2; f(e_) =2k+2n

f*(e“_l) =2k+2n-2; f»(e”)=2k+n—4
f*(e;) =2k+2n+2 f*(e'z)=2k+n
Case (iv): n = 3 (mod 4)
First we label the vertices as follows:

Define f: V—> {0, 1, 2, ..., 2k + 2q - 2} by

n—1 2k+2i—2 ilisodd
For1 <i< —, f(v,) = e
2 2k+2i—5 i lS€even

n+1 i—1 i
For <i<n-_3, f(v,-): 2k+2i—1 ilSeven
2 2k+2i+3 iisodd
flv,,)=2k+2m-25 f(v,_)=2k+2n+2
f(vn):2k+2n—6; f(v;l):2k+2n+l.
Then the induced edge labels are:
n—3 . »
For 1Si<——, f(e)=2k+2i-25 f|e,,
5 nl

2

=2k+n-1

n+1

For <i<n-3, f(e)=2k+2i+2

2
e )=2k+2ns (e )=2k+2n-25 f (e )=2k+n-3
f*(e;):2k+2n+2 s (e)) =2k+n+1
Therefore, f (E) = {2k, 2k + 2, ..., 2k + 2q - 2}. So, f is a k—even mean labeling
and hence, the graph VD(Cn )(n > 4) is a k—even mean graph for any k and n. 6—EML

of VD(CS) is shown in Figure 2.9.

17

Figure 2.9: 6—EML of VD(Cs)
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3—EML of vD(C, ) is shown in Figure 2.10.

Figure 2.10: 3-EML of VD(C;)

5—EML of VD(C,, ) is shown in Figure 2.11.

Figure 2.11: 5-EML of VD(C,,)

2—EML of VD(C7 ) is shown in Figure 2.12.

Figure 2.12: 2—EML of VD(C,)
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