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1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined
here are used in the sense of Harary [20]. The symbols V (G) and E (G) will denote the
vertex set and edge set of a graph. Labeled graphs serve as useful models for a broad
range of applications [2-4].

A graph labeling is an assignment of integers to the vertices or edges or both
subject to certain conditions. If the domain of the mapping is the set of vertices (or
edges) then the labeling is called a vertex labeling (or an edge labeling).

Graph labeling was first introduced in the late 1960’s. Many studies in graph
labeling refer to Rosa’s research in 1967 [23].

Labeled graphs serve as useful models for a broad range of applications such as
X-ray crystallography, radar, coding theory, astronomy, circuit design and
communication network addressing. Particularly interesting applications of graph
labeling can be found in [5].

Mean labeling of graphs was discussed in [24-26].

Vaidya [29-32] and et al. have investigated several new families of mean graphs.
Nagarajan [31] and et al. have found some new results on mean graphs.

Ponraj, Jayanthi and Ramya extended the notion of mean labeling to super mean
labeling in [21].

Received: 24 March, 2013; Revised: 21 May, 2013; Accepted: 11 June, 2013


mailto:maduraigayathri@gmail.com
mailto:mrgopi1985@gmail.com

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Gayathri and Tamilselvi [18-19, 27] extended super mean labeling to k-super
mean, (k, d)-super mean, k-super edge mean and (k, d)-super edge mean labeling.
Manickam and Marudai [22] introduced the concept of odd mean graph.

Gayathri and Amuthavalli [1, 6-8] extended this concept to k-odd mean and

(k, d)-odd mean graphs. Gayathri and Gopi[9-17] extended this concept to k-even mean
and (k, d)-Even mean graphs.
All graphs in this paper are finite, simple and undirected. Terms not defined here are
used in the sense of Harary [20]. The symbols V (G) and E (G) will denote the vertex set
and edge set of a graph. Labeled graphs serve as useful models for a broad range of
applications [2-4].

A graph labeling is an assignment of integers to the vertices or edges or both
subject to certain conditions. If the domain of the mapping is the set of vertices (or
edges) then the labeling is called a vertex labeling (or an edge labeling).

Graph labeling was first introduced in the late 1960’s. Many studies in graph
labeling refer to Rosa’s research in 1967 [23].

Labeled graphs serve as useful models for a broad range of applications such as
X-ray crystallography, radar, coding theory, astronomy, circuit design and
communication network addressing. Particularly interesting applications of graph
labeling can be found in [5].

Mean labeling of graphs was discussed in [24-26].

Vaidya [29-32] and et al. have investigated several new families of mean graphs.
Nagarajan [31] and et al. have found some new results on mean graphs.

Ponraj, Jayanthi and Ramya extended the notion of mean labeling to super mean
labeling in [21].

Gayathri and Tamilselvi [18-19, 27] extended super mean labeling to k-super
mean, (k, d)-super mean,  k-super edge mean and (k, d)-super edge mean labeling.
Manickam and Marudai [22] introduced the concept of odd mean graph.

Gayathri and Amuthavalli [1, 6-8] extended this concept to k-odd mean and (k,
d)-odd mean graphs. Gayathri and Gopi[9-17] extended this concept to k-even mean and
(k, d)-Even mean graphs.

In this paper, we have proved the Necessary Condition for mean labeling.

2. Main Results
Definition 2.1.1:
A graph G with p vertices and g edges is called a mean labeling if there is an

injective function f from the vertices of G to {0, 1, 2, ..., g} such that when each edge uv is

+ + )+
labeled with M if flu) + f(v) is even, and M if flu) + flv) is
2 2

odd, then the resulting edge labels are distinct.
The induced edge labeling is represented by a function f (E(G)) ={1,2,.. 49}
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A graph which admits mean labeling is called a mean graph.

Theorem 2.1.2:
If G is a mean graph then any vertex x with label f(x)e{o, 1, 2, ...,q} has

number of adjacent vertex labels as

+1

i when g is odd, 1 when g is even if f(x)=0.
2 2
+3 q+2

- hen g is odd, —— when g is even if f(x)=0(mod4) and f(x)#0
2 2
+1 q+2

i when q is odd, —— when q is even if f(x)=1(mod4).
2 2
+3 q+t2

it hen g is odd, —— when g is even if f(x)=2(mod4).
2 2
+1 q+2

it when q is odd, —— when q is even if f(x)=3(mod4).
2 2

Proof:

Case 1: qis odd

Subcase (i): f (X)=0(mod4)

subcase (a): f(x)=0

If flx) = 0, then its adjacent vertex labels are from the set {1, 3, 5, ..., g} ... (*) or from the
set {2,4,6,...,q9-1} U {gq} ... (**)

Hence, the total number of possible adjacent vertex labels is:

—1 +1
1 1= 17 (From ()]
2 2
-3 +1
or 1 -1 [From (**)]
2 2
Therefore, if f(x)=0 then the total number of adjacent vertex labels of
] q+1
X 18 .
2

subcase (b): f(x)=0
Any number f(x)€ {4, 8, 12,...} will have the adjacent vertex labels as
{o} U{l, 3, ...,q}...(* **) or from the set

{0} U{2 4, 6, .oq—1} —{F()} U{f(x) =1} U{g}..(+***)

Hence, the total number of possible adjacent vertex labels is:

-1 +3
I v1v1=12 (From ()]
2 2
q—3 q+3
or — +1+2-1+1=—— [From (**¥)]

2 2
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Therefore if f(x)7#0 then the total number of adjacent vertex labels of

.q+3
x is .
2

Subcase (ii): flx) =1 (mod 4)
Any number flx) € {1, 5, 9, ..} will have the adjacent vertex labels as

{0,2,4,..,q9 -1} ... (*) or from the set {1, 3, 5, ..., q} - {f(x)} U {fix) - 1} ... (**)
Hence, the total number of possible adjacent vertex labels is

—1 +1
1 1= 27 (From ()]

2 2

—1 +1
1 +1—1+1:q—[From(**)]
2 2
Therefore, if f(x) = 1 (mod 4) then the total number of adjacent vertex labels of

or

Subcase (iii): f(x) =2 (mod 4)
Any number fx) € {2, 4, 6, ...} will have the adjacent vertex labels as {0} \U {1,

3, s q} ... (*) or from the set {2, 4, 6, ..., g - 1} U {q} U {0} ... (**)
Hence, the total number of possible adjacent vertex labels is,

—1 +3
1 2= 1 [From ()]
2 2
—3 +3
or 1 +3= 1 [From (**)]
2 2

Therefore, if f(x) = 2 (mod 4) then the total number of adjacent vertex labels of

q+3

X is
2

Subcase (iv): f(x) = 3 (mod 4)
Any number f(x) € {3, 7, 11, ...} will have the adjacent vertex labels as {0, 2, 4, ...,

q - 1}..(*) or from the set {1, 3, 5, ..., g}-{fAx) N I{f(x) - 1}... (**)
Hence, the total number of possible adjacent vertex labels is

—1 +1
1 1= 2 (From ()]
2 2
q—1 q+1
or ——+1—1+1 = —— [From (**)]
2 2

Therefore, if f(x) = 3 (mod 4) then the total number of adjacent vertex labels of

q+1

X is
2
Case (ii): q is even

Subcase (i): f(x) = 0 (mod 4)
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subcase (a): f(x)#0
Any number flx) € {0, 4, 8, ...} will have the adjacent vertex labels as {0} \U {1,

3,5, .., g = 1} ... (*) or from the set {0} \U {2, 4, 6, ..., g} - {f(x)} U {fix) - 1} ... (**).
Hence, the total number of possible adjacent vertex labels is:

—2 +2
1 2 = 22 [From ()]
2 2
q—2 q+t2
or ——+2—1+1 = —— [From (**)]
2 2
Therefore if f ( X) #0 then the total number of adjacent vertex labels of
o gqt2
X is .
2
subcase (b): f(x)=0

If f{x) = 0, then the adjacent vertex labels are {1, 3, 5, .., g - 1} ... (***) or from the set
2,4, o g ... (77%)
Hence, the total number of possible adjacent vertex labels is,
q—2
2

+1 = [From (***)]

or —+1 [From (****)]

11

(SR O SRS

Therefore, if f(x)=0 then the total number of adjacent vertex labels of x is 1 .
2

Subcase (ii): flx) =1 (mod 4)
Any number f(x) € {1, 5, 9, ...} will have the adjacent vertex labels as {0, 2, 4, ...,
q} ... (*) or from the set {1, 3,5, .., q -1} - {f(x)} U {fix) - 1} U {q} ... (**)

Hence, total number of possible adjacent vertex labels is

—0 +2
1 1 = 272 (Brom ()]
2 2
q—2 q+t2
or ——+2—14+1 = —— [From (*)]
2 2
Therefore, if f{x) =1 (mod 4) then the total number of adjacent vertex labels x is
q+2
2

Subcase (iii):  f(x) =2 (mod 4)
Any number f(x) € {2, 6, 10, ...} will have the adjacent vertex labels as {0}\U{1, 3,
5, ., ¢ = 1} ... (*) or from the set {0} \U {2, 4, 6, ..., ¢} - {f(0)} U {f(x) - 1} ... (**)
Hence, the total number adjacent vertex labels is,
q—2 4 +2

+2
2 2

(From (*)]
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q—2 q+t2
or ——+2—1+1 = —— [From (**)]
2 2
Therefore, if f(x) = 2 (mod 4) then the total number of adjacent vertex labels of
qt2
x is

2
Subcase (iv): f(x) = 3 (mod 4)
Any number f(x) € {3, 7, 11, ...} will have the adjacent vertex labels as {0, 2, 4, ...,

q} ... (*) or from the set {1, 3, 5, ..., ¢ - 1} - {f(x)} U {f(x) - 1} U {g} ... (*)
Hence, the total number of possible adjacent vertex labels is,

+2
941 =272 (From (%)
2 2
—2 +2
or 1 +2 = 1 [From (**)]
2 2

Therefore, if f(x) = 3 (mod 4) then the total number of adjacent vertex labels of
q+2

X is
2

Corollary 2.1.3:
If G = (p, q) is a mean graph with g is odd then the maximum possible adjacent

vertex labels for any vertex x with label flx) € {0, 1, 2, ..., q} is

q+1
1. if flx)=0.
2
q+3
2. if fx) >0, f{x) =0 (mod 4)
2
q+1
3. if flx) =1, 3 (mod 4)
2
q+3
4, if flx) =2 (mod 4)
2
Proof:

Proof follows from Theorem 2.1.2.

Corollary 2.1.4:

+3
If G = (p, q) is a mean graph with g is odd then A@G) < q—
2

Proof:
+3

From Corollary 2.1.2, the maximum degree corresponds to a vertex x with

label f(x) =0, 2 (mod 4).
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Corollary 2.1.5:

If G = (p, q) is a mean graph with g is even then the maximum possible adjacent

vertex labels for any vertex x with label f(x) € {0, 1, 2, ..., q} is

T i f =0
2
q+2
if flx)>0,f(x)=0,1,2,3 (mod 4)
2
Proof:

Proof follows from Theorem 2.1.2.

Corollary 2.1.6:

+2
If G = (p, q) is a mean graph with g is even then A(G) < q—.
2

Proof:
q+2
From Corollary 2.1.4., the maximum degree ——  corresponds to a vertex x with
2

label f{lx)=0, 1, 2, 3 (mod 4).

Corollary 2.1.7:
If G = (p, q) is a mean graph then
q+3

— g4isodd
A(g) <) 2
qt+2 .
—— giseven
2

Proof:

Proof follows from Corollary 2.1.4 and Corollary 2.1.6.

Corollary 2.1.8:
If G = (p, q) is a mean tree then
pt2

p iseven
A(G) L) 2
+1 .
— pisodd
2
Proof:
By replacing g by p - 1 in Corollary 2.1.7, the result follows.
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