Properties of 2-Balanced Graphs

N. Veerapandiyan¹ and T.N. Janakiraman²

¹ Department of Mathematics

Khadir Mohideen College, Adirampattinam, Thanjavur District, Tamil Nadu – India.

² Department of Mathematics

National Institute of Technology, Tiruchirappalli, Tamil Nadu – India.

E-Mail: janaki@nitt.edu

Abstract: For any graph G with p vertices, $p \ge 3$, and q edges, define $d_2(G) = 2q/(p-2)$. G is 2-balanced if $d_2(H) \le d_2(G)$ for every subgraph H of G and G is strictly 2-balanced if $d_2(H) < d_2(G)$ for every proper subgraph H of G. In this paper we study few structural properties of 2-balanced graphs.

Keywords: Balanced graphs, strongly balanced graphs, 2-balanced graphs and n-component.

1. Introduction

In this paper we follow the notations of Harary [1]. All the graphs considered here are simple, finite, non-trivial and undirected. Further p = p(G) = |V(G)| and q = q(G) = |E(G)| respectively denote the number of vertices (or points) and number of edges (or lines). By a (p, q) graph or G(p, q) we mean a graph with p vertices and q edges.

As usual, for a set $S \subseteq V(G)$, $\langle S \rangle$ or $G \langle S \rangle$ denote the subgraph of G induced by S. A cut vertex of a graph G is a vertex of G whose removal increases the number of components of G. A non-separable graph is a connected nor-trivial graph that has no cut vertices.

The connectivity k = k(G) of a graph G is the minimum number of vertices whose removal results in a disconnected or a trivial graph and the connectivity of disconnected is zero.

A graph G is n-connected if $k(G) \ge n$. A 1-connected graph is a connected graph. A 2-connected graph is a block.

An n-component of a graph is a maximal n-connected subgraph. In particular, the 1-components of G are the non-trivial components of G. The 2-components of G are the blocks of G with at least three vertices. Moreover two distinct n-components of a graph G will have at most (n-1) vertices in common.

2. Prior Results

For a (p, q) graph G, define the average degree d(G) by d(G) = 2q/p. G is called balanced if $d(H) \le d(G)$ for every subgraph H of G, and G is called strictly balanced if d(H) < d(G) for every proper subgraph H of G.

Similarly, for a (p, q) graph G with p > 1, define the strong average degree $d_1(G)$ by $d_1(G) = 2q/(p-1)$. G is called strongly balanced or 1-balanced if $d_1(H) \le d_1(G)$ for every subgraph H of G, and G is called strictly strongly balanced if $d_1(H) < d_1(G)$ for every proper subgraph H of G.

The relevance of average degree and strong average degree were first identified by Erdos and Renyi [2] and Rucinski and Vince [3], respectively. Later, their structural properties were studied by Veerapandiyan et al in [4] and [5]. We shall use some of the properties here.

Theorem 2.1: [5] Every 1-balanced graph is connected.

3. 2-Balanced Graphs

For any graph G with p vertices, $p \ge 3$, and q edges, define $d_2(G) = 2q/(p-2)$. G is defined to be 2-balanced if $d_2(H) \le d_2(G)$ for all subgraphs H of G and G is strictly 2-balanced if $d_2(H) < d_2(G)$ for every proper subgraph H of G.

Examples: 2-regular, 2-connected, 2-balanced graphs

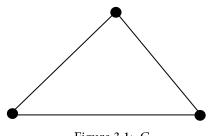


Figure 3.1: C₃



Figure 3.2: C₄

Observations:

- 1. K_n is 2-balanced for all $n \ge 3$.
- 2. K_n is strictly 2-balanced only if $n \ge 5$.
- 3. Trees are not 2-balanced.
- 4. Unicyclic graphs with pendant vertices are not 2-balanced.
- 5. If *G* is 2-balanced, then $d_2(G) \ge 4$
- 6.If G is a 2-balanced graph and contains a copy of K_3 , then $d_2(G) \ge 6$.
- 7. C_n , cycles on n vertices are not 2-balanced for n > 4.

Theorem 3.1: Every 2-balanced graph is strictly 1-balanced.

Proof: Let *G* be any 2-balanced graph.

Let H(n, m) be a proper connected induced subgraph of G.

Since *G* is 2-balanced, $d_2(H) \le d_2(G)$.

$$\implies \frac{2m}{n-2} \le \frac{2q}{p-2} \implies m(p-2) \le q(n-2)$$

 $d_1(H) < d_1(G)$. Thus G is strictly 1-balanced.

Corollary 3.2: Every 2-balanced graph is connected.

Proof: Since every 2-balanced graph is 1-balanced, by Theorem 2.1 every 2-balanced graph is connected.

Theorem 3.3: Every 2-balanced graph is 2-connected.

Proof: Let G(p, q) be a 2-balanced graph.

By Corollary 3.2, G is 1-connected.

It is enough if we prove that *G* has no cut vertex.

If possible, let u be a cut vertex of G.

Then *G*-u is disconnected and so *G*-u has at least two components.

Let the vertex set of one of the component is V_1 and V_2 be the union of the vertex sets of the remaining components.

Let $H_1 = H_1(n_1, m_1)$ and $H_2 = H_2(n_2, m_2)$ are respectively the subgraphs induced by $V_1 \cup \{u\}$ and $V_2 \cup \{u\}$.

Then
$$p = n_1 + n_2 - 1$$
, $q = m_1 + m_2$ and $d_2(G) = \frac{m_1 + m_2}{n_1 + n_2 - 3}$...(1)

Suppose both
$$d_2(H_1) \le d_2(G)$$
 and $d_2(H_2) \le d_2(G)$ are true. ...(2)

Then
$$\frac{m_1}{n_1-2} \le \frac{q}{p-2}$$
 and $\frac{m_2}{n_2-2} \le \frac{q}{p-2}$

which implies
$$\frac{m_1 + m_2}{n_1 + n_2 - 4} \le \frac{q}{p - 2}$$
 ...(3)

(1) and (3) implies
$$\frac{q}{p-2} = \frac{m_1 + m_2}{n_1 + n_2 - 3} < \frac{m_1 + m_2}{n_1 + n_2 - 4} = \frac{q}{p-2}$$
 which is a contradiction.

Thus (2) cannot be true. i.e. either $d_2(H_1) > d_2(G)$ or $d_2(H_2) > d_2(G)$ implying G is not 2-balanced. Hence G cannot have a cut vertex and so G is 2-connected.

Theorem 3.4: If p > 4, G(p, q) is connected (p - 2)-regular, then G is 2-balanced.

Proof:
$$d_2(G) = \frac{2q}{p-2} = \frac{p(p-2)}{p-2} = p$$

Let H(n, m) be a connected proper subgraph of G. Then n < p.

$$\begin{split} & \text{If } n = p-1, \ d_2(H) = \frac{p(p-2)-2(p-2)}{p-3} = \ \frac{p^2-3p-p+4}{p-3} \\ & = \frac{p(p-3)}{p-3} - \frac{p-4}{p-3} = p - \frac{p-4}{p-3}$$

$$d_2(H) < d_2(G) = p$$
.

If
$$n = p - 2$$
, $d_2(H) = \frac{p(p-2) - 4(p-2) + 2}{p-4} = p - 2 \cdot \frac{p-5}{p-4} < p$.

 $d_2(H) < d_2(G)$.

If
$$n \le p-3$$
, $d_2(K_{p-3}) < p-1$

$$\implies d_2(H)$$

: *G* is strictly 2-balanced.

Theorem 3.5: Let G(p, q) be a 2-connected 2-balanced graph and $S = \{u, v\}$ be 2-vertex cut of G. Then $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{K_2}$.

Proof: Suppose $\langle u,v \rangle = K_2$. Let $G_1(p_1,q_1)$ be one of the 3-component of G-S and $G_1(p_2, q_2)$ be the union of the remaining 3-components of G - S.

Then $P = P_1 + P_2 - 2$ and $Q = Q_1 + Q_2 - 2$

G 2-balanced $\Longrightarrow d_2(G_1) \le d_2(G)$ and $d_2(G_2) \le d_2(G)$

$$\Rightarrow \frac{q_1}{p_1-2} \le \frac{q}{p-2} \text{ and } \frac{q_2}{p_2-2} \le \frac{q}{p-2} \Rightarrow \frac{q_1+q_2}{p_1+p_2-2-2} \le \frac{q}{p-2}$$
$$\Rightarrow \frac{q+1}{p-2} \le \frac{q}{p-2} \Rightarrow q+1 \le q, \text{ which is a contradiction.}$$

$$\Rightarrow \frac{q+1}{p-2} \le \frac{q}{p-2} \Rightarrow q+1 \le q$$
, which is a contradiction.

Therefore $\langle u, v \rangle = \overline{K_2}$

Theorem 3.6: Let G(p, q) a 2-balanced graph. Then for any 3-component G_1 of G, $d_2(G_1) = d_2(G)$.

Proof: If *G* does not contain 2-vertex cut, then there is nothing to prove.

Therefore assume that there is a 2-vertex cut {u, v}.

Let $G = G_1(p_1, q_1) \cup G_2(p_2, q_2)$ where $G_1(p_1, q_1)$ is any 3-component and $G_2(p_2, q_2)$ be the union of remaining 3-components.

By Theorem 3.5, $\langle u, v \rangle = \overline{K_2}$. Therefore, $p = p_1 + p_2 - 2$ and $q = q_1 + q_2$.

Since G is 2-balanced, $d_2(G_1) \le d_2(G)$. Suppose $d_2(G_1) < d_2(G)$.

Then
$$\frac{q_1}{p_1-2} < \frac{q}{p-2}$$
. Further G is 2-balanced $\implies \frac{q_2}{p_2-2} \le \frac{q}{p-2}$

$$\Rightarrow \frac{q_1+q_2}{p_1+p_2-2-2} < \frac{q}{p-2} \Rightarrow \frac{q}{p-2} < \frac{q}{p-2} \text{ , which is absurd.}$$

$$: d_2(G_1) \neq d_2(G) \Rightarrow d_2(G_1) = d_2(G).$$

The results that are discussed in Theorems 3.5 and 3.6 are illustrated in the following example.

Consider the following graph (Figure 3.3) with a unique 2-vertex cut, say S. There are three 3-components having same $d_2()$ value 7. Further, $\langle S \rangle$ is empty.

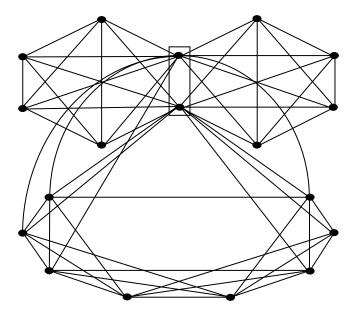


Figure 3.3: A 2-balanced graph with three 3-components.

Corollary 3.7: A graph G is 2-balanced if and only if it is 2-connected and for every 3component *H* of *G*, *H* is 2-balanced and $d_2(H) = d_2(G)$.

Planarity versus 2-balanced graphs

Theorem 3.8: Let $G(p, q), p \ge 3$ be a maximal planar graph. Then G is 2-balanced. If p > 3, then G is not strictly 2-balanced.

Proof: Let G(p, q), $p \ge 3$ be a maximal planar graph. Then each face of G is a triangle and q = 3p - 6 = 3(p - 2) which implies $d_2(G) = 6$.

Let $H(p_1, q_1)$ be a connected induced subgraph of G with $p_1 < p$.

Since H is also planar, $q_1 \le 3p_1 - 6$ and so $d_2(H) \le 6$. Thus $d_2(H) \le d_2(G)$ implying that G is 2-balanced.

In particular, when p > 3, since K_3 is a subgraph of G and $d_2(K_3) = 6$, $d_2(K_3) = d_2(G)$ and so *G* is not strictly balanced.

Theorem 3.9: Let G(p, q), $p \ge 4$, be a planar graph in which each face is an n-cycle. Then for n = 3 and 4 G is 2-balanced but not strictly whereas for $n \ge 5 G$ is not at all 2-balanced. **Proof:** For n = 3, G become a maximal planar graph and the result is nothing but Theorem 3.8.

For n = 4, the proof is similar to the proof of Theorem 3.8.

For $n \ge 5$, the proof is as follows:

Since each face is an n-cycle, $q = \frac{n(p-2)}{n-2}$

$$\implies$$
 $d_2(G) = 2 + \frac{4}{n-2} < 3.5 \text{ (because n $\geq 5\text{)}}$$

Now the path on three vertices P_3 is a subgraph of G and $d_2(P_3) = 4$, which is greater than $d_2(G)$. Therefore G is not 2-balanced.

References:

- F. Harary, Graph Theory, Reading Mass (1972).
- P.Erdos and A.Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61.
- [3] A.Rucinski and A.Vince, Strongly balanced graphs and random graphs, J. Graph Theory, 10(2) (1986) 251-264.
- [4] N.Veerapandiyan and S.Arumugam, On balanced graphs, **ARS** COMBINATORICA, 32 (1991) 221-223.
- [5] N.Veerapandiyan and P.N.Ramachandran, On strongly balanced graphs, Indian J. Pure Appl. Math., 22(1) (1991) 41-44.