
 
 

International Journal of Engineering Science, Advanced Computing and Bio-Technology 
Vol. 4, No. 1, January – March 2013, pp. 32 - 42

Eccentricity properties of the Boolean graphs  
BG2(G) and BG3(G)  

T.N.Janakiraman1, M.Bhanumathi2 and S.Muthammai2 

1 Department of Mathematics and Computer Applications 

National Institute of Technology, Tiruchirapalli-620 015, Tamilnadu, India. 

E-Mail: janaki@nitt.edu 

2Government Arts College for Women, Pudukkottai-622 001,Tamilnadu, India. 

E-Mail: bhanu_ksp@yahoo.com, muthammai_s@yahoo.com 

 
Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G).  BG, INC,L(G)(G) is a 
graph with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G, a vertex and an edge incident to it in G or two non-adjacent edges of G. For 
simplicity, denote this graph by BG2(G), Boolean graph of G-second kind.  BKp, INC,L(G)(G) is a graph 
with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to a vertex 
and an edge incident to it in G or two non-adjacent edges of G. For simplicity, denote this graph by 
BG3(G), Boolean graph of G-third kind. In this paper, eccentricity properties of BG2(G) and BG3(G) 
are studied. 
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1. Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge 
set E(G). For graph theoretic terminology refer to Harary [5], Buckley and Harary [4].  

The girth of a graph G, denoted g(G), is the length of a shortest cycle (if any) in 
G; the circumference c(G) is the length of any longest cycle. The distance d(u, v) between 
two vertices u and v in G is the minimum length of a path joining them if any; otherwise 

d(u, v) = . A shortest u-v path is called a u-v geodesic. A graph G is geodetic, if for every 
pair of vertices (u, v) there exists a unique shortest path connecting them in G.   

Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is the 

distance to a vertex farthest from v. Thus, e(v) = max {d(u, v) : u  V}. The radius r(G) is 
the minimum eccentricity of the vertices, whereas the diameter diam(G) is the maximum 

eccentricity. For any connected graph G, r(G)  diam(G)  2r(G). v is a central vertex if 
e(v) = r(G). The center C(G) is the set of all central vertices. The central subgraph             
< C(G) > of a graph G is the subgraph induced by the center. v is a peripheral vertex if   
e(v) = diam(G). The periphery P(G) is the set of all such vertices. For a vertex v, each 
vertex at distance e(v) from v is an eccentric node of v.  
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A graph is self-centered if every vertex is in the center. Thus, in a self-centered 
graph G all nodes have the same eccentricity, so r(G) = diam(G). 

An edge uv  E(G) is a dominating edge of G, if all the vertices of G other than u and v 
are adjacent to either u or v.  

Jin Akiyama and Kiyoshi Ando [3] characterized the graphs G, which are self-centered 

with diameter two such thatG is also self-centered with diameter 2. 

Lemma 1.1 [3] Let both G andG be connected and v be a point of G. If eG(v)  3, then 

eG(v) = eG(v) = 2. 

Corollary If G is self-centered with diameter d  3, thenG is self-centered with diameter 
2.   

An edge uv  E(G) is a dominating edge of G, if all the vertices of G other than u 
and v are adjacent to either u or v.  

Theorem 1.1 [3] The following three statements are equivalent.   

(1) Both G andG are self-centered with diameter two.  
(2) G is self-centered with diameter two having no dominating edge. 

(3) Neither G norG contains a dominating edge. 

Motivation: The Line graphs, Middle graphs, Total graphs and Quasi-total graphs are very 
much useful in computer networks. In analogous to line graph [6,15], total graph [4], [5], 
middle graph [1,2] and quasi-total graph [14], thirty-two graphs can be defined using 
different adjacency relations. Out of these operations, eight were already studied. Among 
the remaining twenty-four graph operations, two are defined and analyzed in [11] and 
[12]. All the others have been defined and studied thoroughly and will be submitted 
elsewhere. This is illustrated below. 

Defining a new graph from a given graph by using the adjacency relation between 
two vertices or two edges and incident relationship between vertices and edges is known as 
Boolean operation. It defines new structure from the given graph and adds extra 
information of the original graph. 

In Management and in social networks, the incident and non-incident relations of 
vertices and edges are used to define various networks. So these are very much applicable 
in socio-economical problems. In some cases, it is possible to retrieve the original graph 
from the Boolean graphs in polynomial time. So these graph operations may be used in 
graph coding or coding of some grouped signal. Also, it is possible to study the structure 

 

G/G/Kp/Kp 

       Incident (INC)/ 
Non-incident (NINC) 

  

L(G)/L(G)/Kq/Kq 
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of original graphs through these Boolean graph operations. This motivates the study for 
the exploration of various Boolean operations and study of their structural properties. 

In [10] and [11], the Boolean graphs are defined as follows. 
Let G be a (p, q) simple, undirected graph with vertex set V(G) and edge set E(G). 

The Boolean graph BG, INC,L(G)(G) has vertex set V(G)  E(G) and two vertices in                

BG, INC,L(G)(G) are adjacent if and only if they correspond to two adjacent vertices of G or 
to a vertex and an edge incident to it in G or two non- adjacent edges of G. For simplicity, 
denote this graph by BG2(G), Boolean graph of G-second kind. The vertices of BG2(G), 
which are in V(G) are called point vertices and those in E(G) are called line vertices of 
BG2(G). 

 V(BG2(G)) = V(G)  E(G) and E(BG2(G)) = [E(T(G))E(L(G))]  E(L(G)). 
With an immediate consequence of the definition of BG2(G), if G is a (p, q) graph, whose 
vertices are v1, v2, ..., vp having degrees di, and edges eij, note that BG2(G) has p+q vertices 

and (q2+7q∑di
2)/2 edges with deg vi = 2di; deg eij = q+3(di+dj). Also, G andL(G) are 

induced subgraphs of BG2(G). 

BKp, INC,L(G)(G) is a graph with vertex set V(G)  E(G) and two vertices are 
adjacent if and only if they correspond to a vertex and an edge incident to it in G or two 
non-adjacent edges of G. For simplicity, denote this graph by BG3(G), Boolean graph of 
G-third kind. The vertices of BG3(G), which are in V(G) are called point vertices and 

vertices in E(G) are called line vertices of BG3(G). V(BG3(G)) = V(G)  E(G) and 

E(BG3(G)) = (E(T(G))(E(G)  E(L(G)))  E(L(G)). BG3(G) has p+q vertices, p-point 

vertices and q-line vertices. BG3(G) is a spanning subgraph of BG2(G).Kp andL(G) are 
induced subgraphs of BG3(G). Let G be a (p, q) graph with vertices v1, v2, ..., vp. Let          
di, i = 1, 2, ..., p denote the degree of the vertices v1, v2, ..., vp in G. Then it follows from the 

definition that BG3(G) has (q(q+5)/2)(1/2)∑di
2 edges with degree of vi in BG3(G) = degG 

vi = di and degree of a line vertex eij = vivj   E(G) in BG3(G) is qdidj+3. 

2.  Eccentricity properties of BG2(G) andBG2(G) 

In this section, eccentricity of vertices of BG2(G) are studied. Radius and diameter of 

BG2(G),BG2(G) are also found out. BG2(G) is disconnected, whenever G has an isolated 
vertex. Hence, to study the eccentricity of vertices of BG2(G), assume that G is a graph 
without isolated vertices. 

Proposition 2.1 Eccentricity of every line vertex is two in BG2(G) if G  K2. 
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Proof: Let e be a line vertex in BG2(G). In BG2(G), d(u, e) = 1 if u is a point vertex 
incident with e and d(v, e) = 2 if v is a point vertex not incident with e.  Since, if               

e = uu1  E(G) and v is adjacent to u or u1 in G, then e u v or e u1 v is a shortest path in 

BG2(G), where e = uu1 and v is not adjacent to u and u1. Also, there exists e1  E(G), 
incident with v such that e and e1 are not adjacent.  In this case, e e1 v is a shortest path in 
BG2(G). Also, d(e, e1) = 1 in BG2(G), if e1 is not adjacent to e in G and d(e, e1) = 2 if e1 is 
adjacent to e in G. Therefore, distance between a line vertex and other vertices is less than 

or equal to 2. Also, there exists at least one vertex at distance two since G  K2. Hence, 

eccentricity of a line vertex is two in BG2(G) if G  K2.   

Remark 2.1 If G = K2, eccentricity of line vertex in BG2(G) is one.   

Proposition 2.2 Eccentricity of any point vertex in BG2(G) is 1, 2 or 3. 

Proof: Let u be a point vertex of BG2(G). In BG2(G), d(u, e)  2 by the previous 
proposition, where e is any line vertex of BG2(G). Also d(u, v) = 1, if dG(u, v)=1;            

d(u, v) = 2, if dG(u, v) = 2 and d(u, v) = 3, if dG(u, v)  3, where v is any other point vertex 

of BG2(G). Since if dG(u, v)  3, there exist e, e1  E(G) such that e is incident with u, e1 is 
incident with u1 and so u e e1 v is a shortest path in BG2(G). Hence the proposition is 
proved. 

Remark 2.2 If BG2(G) is connected, then diameter of BG2(G) is at most 3. 

Theorem 2.1 (1) Radius of BG2(G) is one if and only if G = K1,n, n  1.          

(2) BG2(G) is self-centered with radius two if and only if G  K1,n and diam(G)  2.      

(3) BG2(G) is bi-eccentric with diameter three if and only if diam(G)  3. 

Proof of (1): Assume r(BG2(G)) = 1. This implies that there exists a vertex x  V(BG2(G)) 

such that e(x) = 1 in BG2(G). Suppose G  K2, x is not a line vertex.  Therefore, when      

G  K2, there exists a point vertex, which is adjacent to every other vertices in BG2(G). 
That is, every edge in G is incident with x and every other point vertices are adjacent to x 
in G, that is G = K1,n. Converse is obvious. 

Proof of (2): Since G  K1,n, eccentricity of every line vertex in BG2(G) is two.       

diam(G)  2 implies, eccentricity of every point vertex in BG2(G) is also two.  Hence, 
BG2(G) is self-centered with diameter two. On the other hand, BG2(G) is self-centered 
with radius two implies that eccentricity of every vertex in BG2(G) is two. Therefore,       

G  K1,n. Eccentricity of every point vertex is two implies that dG(u, v)  2 for all             

u, v  V(G). This implies that diam(G)  2, where G  K1,n. 
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Proof of (3): diam(G)  3 if and only if e(u)  3 for some u  V(G) in G. This is true if 
and only if d(u, v) = 3 in BG2(G), where v is an eccentric point of u in G.  That is e(u) = 3 

in BG2(G).Also, eccentricity of every line vertex is two in BG2(G). Thus, diam(G)  3 if 
and only if BG2(G) is bi-eccentric with diameter three.   

Remark 2.3 Eccentricity of each point vertex is three and eccentricity of each line vertex is 
two if and only if radius of G is at least 3. 

Next, eccentricity properties ofBG2(G) are studied for a graph G. 

Proposition 2.3 Eccentricity of a point vertex u inBG2(G) is at most 3. 

Proof: Consider a point vertex u inBG2(G). 

Case1: If u is an isolated vertex of G. In this case, inBG2(G), u is adjacent to all other 

vertices. Hence, e(u) inBG2(G) =1. 
Case 2: If u is not an isolated vertex of G.   
To find distance between u and other point vertices: 

Let v  V(G) such that v is not adjacent to u in G. Then d(u, v) = 1 inBG2(G).  Let       

w  V(G) such that w is adjacent to u in G. If there exists an edge e  E(G), such that e 

is not incident with both u and w, then d(u, w) = 2 inBG2(G). If there exists a point 

vertex x, which is not adjacent to both u and w in G, then also d(u, w) = 2 inBG2(G). If 
all the edges are like that they are incident to u or to w in G and G has no vertex, which is 

not adjacent to both u and w, then  d(u, w) = 3 inBG2(G). Therefore, distance between u 
and any other point vertices is 1, 2 or 3. 
Distance between u and line vertices: 

Let e  E(G) be a line vertex, which is incident with u in G. InBG2(G), e and u are not 
adjacent. (a) If there exists an edge e1, adjacent to e but not incident to u, then u e1 e is a 

shortest path inBG2(G). Therefore, d(u, e) = 2 inBG2(G).     
(b) If there does not exist an edge adjacent to e and not incident with u, then let e = uv, e1 

= uv1. Suppose there exists another vertex v2 such that it is not adjacent to u, then e v2 u is 

a path inBG2(G). Therefore, d(u, e) = 2 inBG2(G). If there does not exist such a vertex, 

then G = K3 or K1,n. If G = K1,n, u is isolated inBG2(G). If G = K3, d(u, e) = 2 and          

d(u, v) = 3 inBG2(G). Now, let e be an edge in G, which is not incident with u in G. 

Then d(u, e) = 1 inBG2(G). Therefore, distance between u and any other line vertices is 

1, 2 or 3. Hence, eccentricity of any point vertex is at most 3 inBG2(G). 

Proposition 2.4 Eccentricity of a line vertex inBG2(G) is 2 or 3. 
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Proof: Let e  V(BG2(G)) be a line vertex ofBG2(G). Then e  E(G). Therefore,         

e = uv, where u, v  V(G). Distance between e and u or e and v inBG2(G) is 2 or 3 and 

distance between e and any other point vertex is one inBG2(G). 

 Now, let e1  V(BG2(G)) be any other line vertex. 
(a) If e and e1 are adjacent in G, d(e, e1) = 1. 
(b) If e and e1 are not adjacent in G: If there exists a point vertex, not incident with both e 

and e1, then d(e, e1) = 2 inBG2(G). If G contains only two non- adjacent edges e and e1 

and no other point vertices not incident with both e and e1 then d(e, e1) = 3 inBG2(G)    

(e = uv, e1 = wx; e w u e1 is a path inBG2(G)). If G contains another edge e2, adjacent to e 

and e1, then d(e, e1) = 2 inBG2(G). Thus, distance between two line vertices is 1, 2 or 3.  
Hence, eccentricity of a line vertex is 2 or 3. 

Theorem 2.2 Radius ofBG2(G) = 1 if and only if G has an isolated vertex. 

Proof: Suppose G has an isolated vertex u  V(G).  By the definition ofBG2(G), u is 

adjacent to every other vertices ofBG2(G). Hence, r(BG2(G)) =1. 

On the other hand, let r(BG2(G)) = 1. Therefore, there exists a vertex inBG2(G) with 
eccentricity one. This vertex can not be a line vertex, since eccentricity of a line vertex is 

two or three inBG2(G). Therefore, e(u) = 1 inBG2(G), u  V(G). This implies e is 

adjacent to every other point vertices inBG2(G). This implies that e is an isolated vertex 
in G. Hence the theorem is proved. 

Theorem 2.3BG2(G) is bi-eccentric with diameter three if and only if G satisfies any one 

of the following: (1) G = 2K2. (2) G (K2) has a dominating edge e = uv such that every 
other edge is adjacent to this edge. 

Proof: Assume thatBG2(G) is bi-eccentric with diameter three. Then there exists a vertex 

u inBG2(G) with eccentricity three. 

Case 1: If x is a point vertex u inBG2(G).    

From the proof of Proposition 2.3, one see that eccentricity of u inBG2(G) is three only 

when there exists an edge e = uw, w  V(G) and all other edges of G are such that they 
are incident with either u or w or G = K3. This implies that G has a dominating edge, such 
that all other edges are adjacent to this edge.  

Case 2: If x is a line vertex e inBG2(G). 
From Proposition 2.4, one see that eccentricity of a line vertex is three only when G 
contains only two non-adjacent edges, that is G = 2K2.  This proves the theorem. 
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Theorem 2.4BG2(G) is self-centered with diameter two if and only if (1) G has no 

isolated vertices. (2) G  nK2, n = 1, 2. (3) G has no dominating edge, adjacent to all other 
edges.   
Proof: Proof follows from Theorems 2.3 and 2.4.  

3. Eccentricity Properties of BG3(G) andBG3(G) 

Let G be a graph without isolated vertices. In this section, eccentricity properties of 

BG3(G) andBG3(G) are studied. Characterization of graphs for which BG3(G) is          
self-centered of diameter two and three are studied. 

Proposition 3.1 Radius of BG3(G) = 1 if and only if G = K2. 
Proof: Assume that r(BG3(G)) = 1. Eccentricity of a point vertex in BG3(G) cannot be one, 
since any two point vertices are not adjacent in BG3(G). Therefore, r(BG3(G)) = 1 implies 

that there exists a line vertex with eccentricity one. Let e  E(G) such that e(e) = 1 in 
BG3(G). e(e) = 1 implies that e is adjacent to every point vertices and line vertices. This 
implies that e is incident to all point vertices.  Hence, G = K2. 
 On the other hand, G = K2 implies, r(BG3(G)) = 1. 

Theorem 3.1 Eccentricity of every point vertices of BG3(G) is two if and only if G = K2. 

Proof: Let v  V(G) be a point vertex of G and let e(v) = 2 in BG3(G). Hence, distance of 
any other vertex from v is one or two. Thus, all point vertices are adjacent to v in G and 
all line vertices are incident to v in G. Suppose there are more than one point vertex 
adjacent to v in G, then the distance between that two vertices (adjacent to v in G) in 
BG3(G) is greater than two. Thus, the eccentricity of that point vertex cannot be two. 
Hence, G must be K2. 
 On the other hand, if G = K2, eccentricity of line vertex is one and eccentricity of 
the point vertices is two. Hence the theorem is proved. 

Theorem 3.2 BG3(G) is self-centered with diameter three if and only if G = K3. 
Proof: If G = K3, BG3(G) = C6, which is self-centered with diameter three. Now assume, 
BG3(G) is self-centered with diameter three. Hence, eccentricity of each vertex is three. 

Consider a point vertex v. Distance from v to v1  V(G) is 2 in BG3(G) if v1 is adjacent to 
v in G. d(v, v1) = 3 or 4, if v and v1 are not adjacent in G. Also, d(v, e) = 1, if e is incident 
with v in G; d(v, e) = 2, if e is not adjacent to an edge incident with v in G; and d(v, e) = 3, 
if e is adjacent to an edge incident with v in G. Also, d(e, e1) = 1 or 2. Hence, eccentricity 
of each vertex is three implies, for every edge e there exists a point v such that e and an 
edge e1 incident with v are adjacent and there exist no e11 incident with v, which is not 
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adjacent to e. (Otherwise, d(e,  v) = 2,  (e e1 v is a path). Hence, G must be K3. This proves 
the theorem. 

Theorem 3.3 In BG3(G), eccentricity of point vertex is three and eccentricity of line vertex 
is two if and only if G satisfies the following conditions. 
(1) r(G) > 1.  

(2) For u, v  V(G) either uv  E(G) or there exists non-adjacent edges     eu and ev  such 
that eu is  incident with u and ev is incident with v.  

(3) Each e  E(G) is not adjacent with at least one edge in G, incident with other vertices. 
Proof: Assume in BG3(G), eccentricity of every point vertex is 3 and eccentricity of every 
line vertex is two. Let u be a point vertex of G. 

 e(u) = 3 for all u  V(G) and e(e)  = 2 in BG3(G), where e  E(G). Hence, 

eccentric point of u must be another point vertex. Therefore, there exists v  V(G) such 

that d(u, v) = 3 in BG3(G). For u  V(G), in BG3(G), d(u, e) = 1, if u and e are incident in 
G; d(u, e) = 2, if e is not adjacent with an edge incident with u in G; d(u, v) = 2, if u and v 
are not adjacent in G; d(u, v) = 3, if u and v are not adjacent and there exists edges e and 
e1 such that e is incident with u, e1 is incident with v and e and e1 are not adjacent in G; 

d(e, e1) = 1, if e and e1 are non-adjacent in G; d(e, e1) = 2, if there exits u  V(G), such 
that e and e1 are incident with u (or there exists an edge not adjacent to both e and e1). 

Therefore, G must satisfy: (1) r(G) > 1. (2) for u, v  V(G) either uv  E(G) or there 
exists non-adjacent edges eu and ev such that eu is incident with u and ev is incident with v. 

(3) Each e  E(G) is not adjacent with at least one edge incident with other vertices 
(otherwise, d(u, e) = 3. Hence, eccentricity of e is also 3). This proves the theorem. 

Theorem 3.4 Radius of BG3(G) is 2 and diameter of BG3(G) is 4 if and only if r(G) =1 and 
G has at least two pendant vertices. 
Proof: Distance from a line vertex to other vertices is always less than or equal to 3. 

Therefore, diam(BG3(G)) = 4 implies that there exist u, v  E(G) such that d(u, v) = 4 in 
BG3(G). Hence, u and v are not adjacent in G and there exists no pair e1, e2 such that e1 is 
incident with u, e2 is incident with v such that e1 and e2 are not adjacent in G. Therefore, 
all the edges incident with u are adjacent to edges incident with v. This is possible only 
when dG(u, v) = 2. This implies that diam(G) = 2. 
Claim: r(G)  = 1. 
Since diam(G) = 2, r(G) = 1 or 2. Suppose r(G) = 2. Then, there exists vertices u and v at 
distance two such that there exists edges eu and ev incident with u and v respectively such 
that eu and ev are not adjacent in G, which is a contradiction. Therefore, r(G) must be one. 
Claim: G has at least two pendant vertices. 
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Suppose not, then in BG3(G), eccentricity of every point vertex is at most 3. Hence, 
diam(BG3(G)) is not four. Thus the claim is proved. This proves the theorem. 

Theorem 3.5 Radius of BG3(G) is 2, diameter of BG3(G)) is 4 and eccentricity of every line 
vertex is three if and only if G = K1,n. 

Proof: As in the previous theorem, it can be proved that r(G) = 1. Now, suppose G  K1,n. 
Let u be a vertex of G with eccentricity one. Since diam(BG3(G)) = 4, there exists at least 

two pendant vertices in G. Let e  E(G) be such that e is not incident with u. Then 
eccentricity of e in BG3(G) is two, which is a contradiction to the hypothesis. Hence, G 
must be K1,n. Converse is obvious. 

Remark 3.1 Eccentricity of all point vertices is two and eccentricity of all line vertices is 3 
in BG3(G) is not possible. 

Theorem 3.6 BG3(G) is self-centered with diameter two if and only if G = Kn, n > 3. 
Proof: Eccentricity of every point vertex is two in BG3(G), implies point vertices are 
adjacent in G. That is, G = Kn. Eccentricity of each line vertex is also two in BG3(G). 
Hence, d(e, u) = 2 in BG3(G), if e is not incident with u. Hence, for every u, there exists an 

edge incident with u but not adjacent to e in G. Hence, n  4. This proves the theorem. 

Theorem 3.7 BG3(G) is bi-eccentric with diameter three if and only if G satisfies any one 
of the following: (1) r(G) = 1, diam(G) = 2, G has at most one pendant vertex.                 

(2) diam(G)  2.      
Proof:  Follows from the previous Theorems 3.4., 3.5 and 3.6. 

Theorem 3.8 Radius ofBG3(G) is one if and only if G has an isolated vertex. 

Proof: Assume r(BG3(G)) = 1. Therefore, there exists a vertex with eccentricity one 

inBG3(G). This cannot be a line vertex, since by definition, it cannot be adjacent to its 
incident vertices. Hence, the vertex must be a point vertex and is adjacent to every line 

vertex also inBG3(G). This implies that it is not incident with any edge in G. That is, it is 
an isolated vertex. 

 On the other hand, if v is an isolated vertex in G, then inBG3(G), e(v) = 1. 
Hence the theorem is proved. 

Lemma 3.1 If G has no isolated vertex and G  K2, then eccentricity of every point vertex 

is two inBG3(G). 

Proof: Let v be a point vertex ofBG3(G). (i) By definition, d(v, v1) = 1 for v1  V(G) 

inBG3(G). (ii) If e is not incident with v in G, then d(e, v) = 1 inBG3(G). (iii) If e is 
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incident with v in G and if p  3, then e is adjacent to some other point vertex inBG3(G) 

and hence d(e, v) = 2. Hence, eccentricity of a point vertex is two inBG3(G), if G  K2. 

Remark 3.2 If G = K2, thenBG3(G) is disconnected. 

Lemma 3.2 Eccentricity of every line vertex inBG3(G) is two if G  K2, 2K2. 

Proof: If G = K2,BG3(G) is disconnected. Consider a line vertex e. InBG3(G), d(e, v) = 1 

or 2 for v  V(G), e  E(G). Also, inBG3(G), d(e, e1) = 1 if e and e1 are adjacent in G. 
d(e, e1) = 2 if e and e1 are not adjacent in G and there is another edge in G adjacent to 
both e and e1 or there exists another vertex not incident with both e and e1 and d(e, v) = 2, 
if e is not incident with v in G. Hence, if p > 5, eccentricity of line vertex is always two. 

When p  4, distance from a line vertex to other point vertices are at most 2 and distance 
from a line vertex e to other vertex e1 is three only when e and e1 are the non-adjacent 
edges and have no common non-incident vertex. This is true only when G = 2K2. This 
proves the lemma. 

Theorem 3.9 If G is a non-trivial graph having no isolated vertices and G  K2, 2K2, 

thenBG3(G) is self-centered with diameter two. 
Proof: Follows from the previous Lemmas 3.1 and 3.2.   

Corollary 3.9 If G is a non-trivial connected graph having more than two vertices, 

thenBG3(G) is self-centered with diameter two. 

Theorem 3.10BG3(G) is bi-eccentric with diameter three if and only if G = 2K2. 

Proof: Assume that diam(BG3(G)) = 3. Therefore, there exists a vertex in V(BG3(G)) 
whose eccentricity is three. This cannot be a point vertex, since eccentricity of a point 

vertex is either 1 or 2. Therefore, there exists a line vertex e1  V(BG3(G)) such that 

e(e1) = 3 inBG3(G). This implies, there exists e2 such that d(e1, e2) inBG3(G) = 3. Hence, 
e(e2) = 3. Hence, the edges e1, e2 are not adjacent in G and there exist no other vertex (not 
incident with e1 and e2) or edge in G. 
 Hence, G = 2K2. Converse is obvious. 
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