International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 4, No. 1, January – March 2013, pp. 1- 18

On the Complement of the Boolean Function Graph $B(\overline{K_p}, NINC, \overline{L(G)})$ of a Graph

T.N.Janakiraman¹, M.Bhanumathi² and S.Muthammai²

¹ Department of Mathematics National Institute of Technology, Tiruchirapalli-620 015, Tamilnadu, India. E-Mail: janaki@nitt.edu ²Government Arts College for Women, Pudukkottai-622 001,Tamilnadu, India.

E-Mail: bhanu_ksp@yahoo.com, muthammai_s@yahoo.com

Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The Boolean function graph $B(\overline{K}_p, NINC, \overline{L}(G))$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in $B(\overline{K}_p, NINC, \overline{L}(G))$ are adjacent if and only if they correspond to two nonadjacent edges of G or to a vertex and an edge not incident to it in G, where L(G) is the line graph of G. For brevity, this graph is denoted by $B_3(G)$. In this paper, structural properties of the complement $\overline{B}_3(G)$ of $B_3(G)$ including traversability and eccentricity properties are studied. Also covering, independence and chromatic numbers and various domination numbers are determined.

Keywords: Boolean Function Graph, Domination Number

1. Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by G(p, q). *Eccentricity* of a vertex $u \in V(G)$ is defined as $e_G(u) = \max \{ d_G(u, v) : v \in V(G) \}$, where $d_G(u, v)$ is the distance between u and v in G. The minimum and maximum eccentricities are the *radius* and *diameter* of G, denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is called a *self-centered* graph with radius r, equivalently G is r-self-centered. A vertex u is said to be an eccentric point of v in a graph G, if d(u, v) = e(v). In general, u is called an *eccentric point*, if it is an eccentric point of some vertex. A connected graph G is said to be *geodetic*, if a unique shortest path joins any two of its vertices.

A vertex and an edge are said to *cover* each other, if they are incident. A set of vertices, which covers all the edges of a graph G is called a *point cover* for G. The smallest number of vertices in any point cover for G is called its *point covering number* and is denoted by $\alpha_0(G)$ or α_0 . A set of vertices in G is *independent*, if no two of them are

Received: 24 March, 2012; Revised: 22 September, 2012; Accepted: 04 October, 2012

adjacent. The largest number of vertices in such a set is called the *point independence* number of G and is denoted by $\beta_0(G)$ or β_0 .

Sampathkumar and Neeralagi [19] introduced the concept of neighborhood sets in graphs. A subset S of V(G) is a *neighborhood set* (n-set) of G, if $G = \bigcup_{v \in S} (\langle N[v] \rangle)$, where $\langle N[v] \rangle$ is the subgraph of G induced by N[v]. The *neighborhood number* n₀(G) of G is the minimum cardinality of an n-set of G.

The concept of domination in graphs was introduced by Ore [15]. A set $S \subseteq V$ is said to be a *dominating set* in G, if every vertex in V-S is adjacent to some vertex in S. S is said to be a *minimal dominating set*, if $S - \{u\}$ is not a dominating set, for any $u \in S$. The *domination number* $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set with cardinality $\gamma(G)$ is referred as a γ -set. A dominating set S of a connected graph G is called a *connected dominating set* of G, if the induced subgraph $\langle S \rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the *connected domination number* of G and is denoted by γ_c . A set $S \subseteq V$ is a *restrained dominating set*, if every vertex in V-S is adjacent to a vertex in S and another vertex in V-S. The restrained domination number of G, denoted by $\gamma_r(G)$ is the minimum cardinality of a restrained dominating set of G.

A dominating set $S \subseteq V$ is a *cycle dominating set*, if the subgraph $\langle S \rangle$ induced by S has a Hamiltonian cycle; S is also called a dominating cycle. The cardinality of a smallest cycle dominating set in G is called the *cycle domination number* of G and is denoted by γ_0 .

Kulli and Janakiram [13, 14] introduced the concept of split and non split domination in graphs. A dominating set D of a connected graph G = (V, E) is a *split dominating set*, if the induced subgraph $\langle V-D \rangle$ is disconnected and is a *non split dominating set*, if $\langle V-D \rangle$ is connected. The split (non split) domination number $\gamma_s(G)$ ($\gamma_{ns}(G)$) is the minimum cardinality of a split (non split) dominating set.

Sampathkumar and Pushpalatha [17] introduced the concept of point set domination number of a graph. For any connected graph G, a set $S \subseteq V$ is called a *point* set dominating set (psd-set), if for every set $T \subseteq V$ -S there exists a vertex $v \in S$ such that the subgraph $\langle T \cup \{v\} \rangle$ induced by $T \cup \{v\}$ is connected. The *point set domination number* $\gamma_{ps}(G)$ of G is defined as the minimum cardinality of a psd-set of G. Note that every psd-set is a dominating set.

Theorem 1.1:[17]

Let G = (V, E) be a graph. A set $S \subseteq V$ is a point-set dominating set of G if and only

if for every independent set W in V–S, there exists a vertex u in S such that $W \subseteq N_G(u) \cap (V-S)$.

A set $F \subseteq E$ is an *edge dominating set*, if each edge in E is either in F or is adjacent to an edge in F. The *edge domination number* $\gamma'(G)$ is the smallest cardinality among all minimal edge dominating sets.

The Boolean function graph B(K_p , NINC, L(G)) of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices in B(K_p , NINC, L(G)) are adjacent if and only if they correspond to two nonadjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by $B_3(G)$. In other words, $V(B_3(G)) = V(G) \cup V(L(G))$; and $E(B_3(G)) = [E(T(G)) - (E(G) \cup E(L(G)))] \cup E(L(G))$, where G, L(G) and T(G) denote the complement, the line graph and the total graph of G respectively. The vertices of G and L(G) in $B_3(G)$ are referred as point and line vertices respectively and the line vertex in $B_3(G)$ corresponding to an edge e in G is denoted by e'.

In this paper, we study structural properties of the complement $B_3(G)$ of $B_3(G)$ including traversability and eccentricity properties. Also, covering, independence, chromatic and various domination numbers are determined. The definitions and details not furnished in this paper may found in [2].

2. Main Results

In this section, the complement of B($\overline{K_p}$, NINC, $\overline{L(G)}$) is denoted by $\overline{B_3(G)}$. The properties of $\overline{B_3(G)}$ including traversability and eccentricity properties are studied. Also decomposition of $\overline{B_3(G)}$, for some known graphs are given.

Observation 2.1:

2.1.1. If G has p vertices, then the complete graph on p vertices is an induced subgraph of $\overline{B_3(G)}$. Also L(G) is an induced subgraph.

2.1.2. The degree of a point vertex v in $B_3(G)$ is $p - 1 + \deg_G(v)$ and the degree of a line vertex e' is $\deg_{L(G)}(e') + 2$ and hence $\Delta(\overline{B_3}(G)) = p - 1 + \Delta(G)$ and $\delta(\overline{B_3}(G)) = \delta'(G) + 2$, where $\delta'(G) = \delta(L(G))$.

2.1.3. $B_3(G)$ is a connected graph, for any graph G.

2.1.4. $B_3(G)$ is biregular if and only if G is a regular graph other than a complete graph and is regular if and only if G is a complete graph.

2.1.5. If G is a complete graph, then $B_3(G) \cong T(G)$, where T(G) is the total graph of G. **2.1.6.** No vertex of $B_3(G)$ is a cut-vertex. **2.1.7.** Each vertex of $B_3(G)$ lies on a triangle and hence girth of $B_3(G)$ is 3. Also each edge of $B_3(G)$ lies on a triangle and hence L($B_3(G)$) is Hamiltonian.

2.1.8. If G contains $K_2 \cup K_1$ as a subgraph, then $B_3(G)$ contains K_4 -e as an induced subgraph and hence not geodetic. Thus, $B_3(G)$ is geodetic if and only if $G \cong nK_1$ or K_2 , where $n \ge 2$.

2.1.9. For a (p, q) graph G, B₃(G) is Eulerian if and only if one of the following holds.
(i). p is odd and G or each of its components is Eulerian; and

(ii). p is even and each vertex in G is of odd degree.

In the following, hamiltonicity of $B_3(G)$ is discussed.

Theorem 2.2:

For any connected graph G, $B_3(G)$ is Hamiltonian.

Proof:

The subgraph of $B_3(G)$ induced by all the point vertices is complete and L(G) is an induced subgraph of $B_3(G)$. Choose any vertex v_1 in V(G). Let $e_{11}, e_{12}, ..., e_{1t}$ be the edges in G incident with v_1 ($t \ge 1$), v_t be a vertex incident with e_{1t} , and $e_{t1}, e_{t2}, ..., e_{ts}$ be the edges in G incident with v_t ($s \ge 1$), where $e_{tj} \ne e_{1t}$, j = 1,2,...,s and so on. Then $v_1, v_t, ... \in V(B_3(G))$. Let e_{1i}', e_{tj}' be the line vertices in $B_3(G)$ corresponding to the edges e_{1i}, e_{tj} (i = 1, 2, ..., t; j = 1, 2, ..., s) respectively. Then form a path $v_1 e_{11}' e_{12}'...e_{1t}' v_t e_{t1}' e_{t2}'...e_{ts}' v_{s}...$ in $B_3(G)$ and then place the remaining point vertices (if any) in the above path so as to form a Hamiltonian cycle in $B_3(G)$. Hence, $B_3(G)$ is Hamiltonian.

Theorem 2.3:

If G is a disconnected graph, then also $B_3(G)$ is Hamiltonian.

Proof:

Form a Hamiltonian path in each $B_3(G_i)$, where G_i is a component of G, starting and ending with a point vertex. Since any two point vertices in $B_3(G)$ are adjacent, these Hamiltonian paths can be linked to form a Hamiltonian cycle in $B_3(G)$.

In the following, the eccentricity properties of $B_3(G)$ are discussed. A characterization of a graph G for which $B_3(G)$ is self-centered with radius 2 is obtained. For simplicity, the distance between two vertices u and v in $B_3(G)$ is denoted by $d_3'(u, v)$

-4

Theorem 2.4:

Let G be any graph with $\beta_1(G) \ge 2$. Then $B_3(G)$ is self-centered with radius 2 if and only if diameter of L(G) is two.

Proof:

Assume G is a graph with $\beta_1(G) \ge 2$ and $\overline{B_3}(G)$ is self- centered with radius 2. If diam $(L(G)) \ge 3$, then there exists two vertices e_1' , e_2' in L(G) with $d_{L(G)}(e_1', e_2') = m$, where $m \ge 3$. But $d_3'(e_1', e_2') = 3$, which is a contradiction. Therefore, diam(L(G)) = 2. Conversely, assume diam(L(G)) = 2. The distance between any two point vertices in $\overline{B_3}(G)$ is 1. Let v, e' be a point, line vertex in $\overline{B_3}(G)$ respectively and e be the edge in G corresponding to e'. Then,

$$d_{3}'(v, e') = 1, \quad \text{if } v \in e$$
$$= 2, \quad \text{if } v \notin e$$

Similarly, let e_1' , e_2' be two line vertices in $B_3(G)$ and e_1 , e_2 be the corresponding edges in G. If e_1 , e_2 are adjacent edges in G, then $d_3'(e_1', e_2') = 1$. If e_1 and e_2 are not adjacent, since diam(L(G)) = 2, then there exists an edge in G adjacent to both e_1 and e_2 . Therefore, $d_3'(e_1', e_2') = 2$. From the above argument, it follows that both point and line vertices in $\overline{B_3}(G)$ have eccentricity 2 and hence $\overline{B_3}(G)$ is self-centered with radius 2.

Remark 2.4.1:

Let $\beta_1 G$ = 1. If $G \cong C_3$, $B_3(G)$ is self-centered with radius 2 and if G is a star, then $B_3(G)$ is bi-eccentric with radius 1.

Now, a characterization of a graph G for which $B_3(G)$ is bi-eccentric with radius 2 is obtained.

Theorem 2.5:

 $B_3((G)$ is bi-eccentric with radius 2 if and only if diam(L(G)) \geq 3, where L(G) is the line graph of G..

Proof:

Assume $B_3(G)$ is bi-eccentric with radius 2. If $diam(L(G)) \leq 2$, then either G is self-centered with radius 2 or bi-eccentric with radius 1. Hence, $diam(L(G)) \geq 3$. Conversely, assume $diam(L(G)) \geq 3$. Then as in Theorem 6.4.4., eccentricity of a point vertex is 2. Since $diam(L(G)) \geq 3$, there exists two vertices e_1' , e_2' in L(G) with $d_{L(G)}(e_1', e_2') = m$, where $m \geq 3$. Therefore, $d_3'(e_1', e_2') = 3$. Also the distance between

International Journal of Engineering Science, Advanced Computing and Bio-Technology

any two line vertices in $B_3(G)$ is less than or equal to 3. Hence, $B_3(G)$ is bi-eccentric with radius 2.

In the following, the graphs G for which $B_3(G)$ contains C_n $(n \ge 4)$, as an induced subgraph are obtained, where G is any graph which is not totally disconnected.

Proposition 2.6:

 $B_3(G) \mbox{ contains } C_n \mbox{ (n} \geq 4) \mbox{ as an induced subgraph if and only if either G contains C_n or C_{n-1} as a subgraph.}$

Proof:

Assume $B_3(G)$ contains C_n $(n \ge 4)$ as an induced subgraph. If all the vertices of C_n in $B_3(G)$ are line vertices, then G contains C_n as a subgraph. If not, since any two point vertices in $B_3(G)$ are adjacent, any cycle in $B_3(G)$ contains exactly two adjacent point vertices and the other vertices are line vertices. Then G contains C_{n-1} as a subgraph. Converse can be proved easily.

In the following, the edge partitions of $B_3(G)$ for some known graphs G are given.

Theorem 2.7:

(1) The edge set of $B_3(P_n)$, for $n \ge 4$, can be partitioned into $((n-1)/2)C_n$, P_{n-1} and P_{2n-1} , if n is odd; and $((n-2)/2)C_n$, P_{n-1} , P_{2n-1} and $(n/2)K_2$, if n is even.

(2) The edge set of $B_3(C_n)$ ($n \ge 3$) can be partitioned into $((n+1)/2)C_n$, C_{2n} , if n is odd; and $((n-1)/2)C_n$, C_{2n} and $(n/2)K_2$, if n is even such that all the vertices of C_n are either point or line vertices.

(3) The edge set of $B_3(K_{n,n})$, for $n \ge 3$ can be partitioned into $((n-1)/2)C_{n+1}$, $((n-1)/2)C_n$, $((n+1)/2)K_2$ and nP_3 , if n is odd; and $(n/2)C_{n+1}$, $((n-1)/2)C_n$, $(n/2)K_2$ and nP_3 , if n is even.

(4) The edge set of $B_3(nK_2)$, for $n \ge 2$, can be partitioned into $((2n-1)/2)C_n$ and nP_3 , if n is odd and $((2n-3)/2)C_n$, nP_3 and nK_2 , if n is even.

Covering, independence, chromatic and neighborhood numbers in $B_3(G)$.

Theorem 2.8:

 $\beta_0(B_3(G)) = \beta_1(G) \text{ or } \beta_1(G) + 1.$

Proof:

Any two point vertices in $B_3(G)$ are adjacent and L(G) is an induced subgraph of $B_3(G)$. Therefore, any independent set in $B_3(G)$ contains either all line vertices or one point vertex and line vertices. If there exists a perfect matching in G, then $\beta_0(\overline{B_3}(G)) \ge \beta_1(G)$ and there is no independent set in $\overline{B_3}(G)$ having more than $\beta_1(G)$ vertices. Hence, $\beta_0(\overline{B_3}(G)) = \beta_1(G)$. Let there exist no perfect matching in G and let $D = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ with $|D| = \beta_1(G)$ be the set of independent edges in G where n < [p/2]. Let v be a vertex in G not incident with any of the edges in D. If D' is the set of line vertices in $\overline{B_3}(G)$ corresponding to the edges in D, then $D' \cup \{v\}$ is a set of independent vertices in $\overline{B_3}(G)$. Hence, $\beta_0(\overline{B_3}(G)) \ge \beta_1(G) + 1$. Since there exists no independent set in $\overline{B_3}(G)$ having more than $\beta_1(G) + 1$ vertices, then $\beta_0(\overline{B_3}(G)) = \beta_1(G) + 1$.

Remark 2.8.1:

Using the relation, $\alpha_0(\overrightarrow{B_3(G)}) + \beta_0(\overrightarrow{B_3(G)}) = p + q$, it follows that $\alpha_0(\overrightarrow{B_3(G)}) = q + \alpha_1(G)$ or $q + \alpha_1(G) - 1$.

Proposition 2.9:

If G is any (p, q) graph, then $\alpha_1(\overline{B}_3(G)) = \{(p+q)/2\}$ and $\beta_1(\overline{B}_3(G)) = [(p+q)/2]$. **Proof:**

Since $\alpha_1(L(G)) = \{q/2\}$ and $B_3(G) \cong L(G + K_1)$, by Theorem 6.3.3., it follows that $\alpha_1(\overline{B_3}(G)) = \alpha_1(L(G + K_1)) = \{(p + q)/2\}$. Also, $\alpha_1(\overline{B_3}(G)) + \beta_1(\overline{B_3}(G)) = p + q$ implies that $\beta_1(\overline{B_3}(G)) = [(p + q)/2]$.

Proposition 2.10:

 $\chi(B_3(G)) = p \text{ or } p + 1.$ **Proof:**

 $\chi(B_3(G)) = \chi(L(G + K_1)) = \chi'(G + K_1) = \Delta(G + K_1)$ or $\Delta(G + K_1) + 1 = p$ or p + 1.

Note 2.10.1:

$$\chi(B_3(K_n)) = \chi'(K_{n+1}) = n, \text{ if n is even; and}$$
$$= n + 1, \text{ if n is odd.}$$

In the following, the neighborhood number n_0 of $B_3(G)$ is obtained.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Observation 2.11:

2.11.1. $n_0(B_3(G)) = 1$ if and only if $G \cong nK_1$, $n \ge 2$ or $K_{1,n} \cup mK_1$, where $n \ge 1$ and $m \ge 0$. **2.11.2.** $n_0(B_3(G)) \le \alpha_0(G) + n_0(L(G))$.

In the following, a necessary and sufficient condition that an n-set of L(G) to be an n-set of $B_3(G)$ is obtained.

Theorem 2.12:

Let G be any graph having no isolated vertices. Then $n_0(B_3(G) \le n_0(L(G))$ if and only if there exists an neighborhood set (n-set) S of L(G) with $|S| = n_0(G)$ such that each vertex in G is incident with at least one of the edges in G corresponding to the vertices in S.

Proof:

Assume $n_0(\overline{B_3(G)}) \leq n_0(L(G))$. Let S be an n-set of L(G) with $|S| = n_0(G)$. Then S is also an n-set of $\overline{B_3(G)}$. Let S' be the set of edges in G corresponding to the vertices in S and $v \in V(G)$ be such that v is not incident with any of the edges in S'. Let $e \in E(G)$ be such that e is incident with v and e' be the corresponding line vertex in $\overline{B_3(G)}$. Then the edge $(v, e') \in E(\overline{B_3(G)})$ does not belong to $\bigcup_{w \in s} E(\langle N[w] \rangle)$, which is a contradiction. Converse follows easily.

This bound is attained, if $G \cong C_n$, $n \ge 4$.

Corollary 2.12.1:

 $n_0(B_3(G)) \le n_0(L(G)) + k$, where k is the number of vertices in G not incident with the edges in G corresponding to the vertices in the n-set S of L(G), where $|S| = n_0(L(G))$. For example, $n_0(B_3(P_5)) = n_0(L(P_5)) + 1$.

Example 2.13:

 $\begin{array}{lll} (i). & n_0(& B_3(P_n)) & = \{n/2\}, \mbox{ if } n \geq 4. \\ (ii). & n_0(& B_3(C_n)) & = \{n/2\}, \mbox{ if } n \geq 4. \\ (iii). & n_0(& B_3(K_n)) & = n - 1, \mbox{ if } n \geq 4. \\ (iv). & n_0(& B_3(nK_2)) & = n, & \mbox{ if } n \geq 2. \end{array}$

Domination Numbers and other parameters for the complement of B(K_p, NINC, L(G))

In the following, domination number of $B_3(G)$ is determined **Proposition 2.13**:

 $\gamma(B_3(G)) = 1$ if and only if $G \cong K_{1,n}$ or mK_1 , where $n \ge 1$ and $m \ge 2$. **Proof:**

r(G) = 1 if and only if $G \cong K_{1,n}$ or mK_1 , where $n \ge 1$ and $m \ge 2$.

Theorem 2.14:

Let G be a graph other than a star. Then $\gamma(B_3(G)) = 2$ if and only if one of the following holds.

(i). There exists a point cover for G containing two vertices;

- (ii). There exists a vertex $v \in V(G)$ and an edge $e \in E(G)$ such that e is not incident with v and the edges of G are either adjacent to e or incident with v or both;
- (iii). r(L(G)) = 1; and
- (iv). There exists a line cover for G containing two edges.

Proof:

Let D be a minimal dominating set of $B_3(G)$ containing two elements.

(i) Let $D = \{v_1, v_2\} \subseteq V(B_3(G)), v_1, v_2 \in V(G)$. D dominates all line vertices of $B_3(G)$, which implies that each edge in G is incident with v_1 , v_2 or both. That is, D is a point cover for G.

- (ii) Let $D = \{v, e\}$, where $v \in V(G)$ and $e \in E(G)$.
 - (a) Let $e \in E(G)$ be incident with $v \in V(G)$. Then, edges of G must be adjacent to e.
 - (b) Let e be not incident with v∈V(G). Since, D dominates all line vertices of B₃(G), all the edges of G are either adjacent to e or incident with v.
- (iii) Let $D = \{e_1, e_2\}$, where $e_1, e_2 \in E(G)$. D is dominating set of $B_3(G)$ implies that D is a line cover for G.

Proposition 2.15:

If G is any graph having no isolated vertices, then

$$\gamma(B_3(G)) \le \min\{\alpha_0(G), \alpha_1(G), \beta_1(G) + 1\}.$$

Proof:

(i) Let D be a point cover for G such that $|D| = \alpha_0(G)$. Since any two point vertices in $B_3(G)$ are adjacent, D dominates all point vertices in $B_3(G)$. By the construction

of $B_3(G)$, D dominates all the line vertices in $B_3(G)$. Hence, D is a dominating set of $B_3(G)$ and therefore, $\gamma(B_3(G)) \leq \alpha_0(G)$.

(ii) Let D be a line cover for G. The line vertices corresponding to the edges in D dominates all point vertices of $B_3(G)$. Since L(G) is an induced subgraph of $B_3(G)$, D dominates all the line vertices of $B_3(G)$. Hence, $\gamma(\overline{B}_3(G)) \leq \alpha_1(G)$.

(iii) Since L(G) is an induced subgraph of $B_3(G)$ and any two point vertices are adjacent, $\gamma(B_3(G)) \leq \gamma(L(G)) + 1 = \gamma'(G) + 1 \leq \beta_1(G) + 1$.

From (i), (ii) and (iii), $\gamma(B_3(G)) \le \min\{\alpha_0(G), \alpha_1(G), \beta_1(G) + 1\}$.

Proposition 2.16:

Let G be any graph having no isolated vertices. Then $\gamma(B_3(G)) \leq \gamma(G)$ if and only if $\gamma(G) = \alpha_0(G)$.

Proof:

Assume $\gamma(G) = \alpha_0(G)$. Let d be a minimal dominating set of G such that $|D| = \gamma(G)$. then d is a point cover for G. Therefore, D is a dominating set of $B_3(G)$ and hence $\gamma(\overline{B_3(G)}) \leq \gamma(G)$.

Conversely, let $D \subseteq V(G)$ be a minimal dominating set of G such that D is a dominating set of $B_3(G)$. then D is appoint cover for G. That is, $\alpha_0(G) \leq \gamma(G)$. But, $\gamma(G) \leq \alpha_0(G)$. Hence, $\gamma(G) = \alpha_0(G)$.

Proposition 2.17:

Let G be any graph having no isolated vertices with $\gamma(G) \neq \alpha_0(G)$ and D be a minimal dominating set of G with $|D| = \gamma(G)$. Then $\gamma(\overline{B}_3(G)) \leq \gamma(G) + 1$, if either

- (i) $\langle V(G)-D \rangle$ is a star or
- (ii) There exists an edge e in G such that e is adjacent to all the edges in <V(G)-D>.

Proof:

Let D be a minimal dominating set of G such that $|D| = \gamma(G)$. If (i) is true, then $D \cup \{u\}$ is a dominating set of $B_3(G)$, where u is the center vertex of the star. If (ii) holds, then $D \cup \{e\}$ is a dominating set of $B_3(G)$.

Theorem 2.18:

 $\gamma(B_3(G)) \leq \gamma'(G)$ or $\gamma'(G) + 1$, where $\gamma'(G)$ is the edge domination number of G.

Proof:

Let D be a minimal dominating set of L(G) with $|D| = \gamma(L(G)) = \gamma'(G)$. If the set of edges in G corresponding to the vertices in D is a perfect matching or a line cover for G, then that set is a dominating set of $B_3(G)$. Let D' \subseteq D be such that $|D'| = \gamma'(G)$ -1.

(i). Let V(L(G))-N[D'] = M. If the edges in G corresponding to the vertices in M are the edges of a star in G, then D' together with the center vertex of the star is a dominating set of $\overline{B}_3(G)$;

(ii). Let N be the set of edges in G corresponding to the vertices in D'. If D'' is the set of vertices in G incident with the edges in N and if $\langle V(G)-D'' \rangle \cong K_{1,n}$, $n \ge 1$, then $D' \cup \{\text{center vertex of } K_{1,n}\}$ is a dominating set of $B_3(G)$.

If (i) or (ii) holds, then
$$\gamma(B_3(G)) \leq \gamma'(G)$$
.

Otherwise, $D \cup \{v\}$ is a dominating set of $B_3(G)$, where $v \in V(G)$. Thus, $\gamma(B_3(G)) \leq \gamma'(G)$ or $\gamma'(G) + 1$.

Note 2.18.1:

(i). If $G \cong 2P_3$, then $\gamma(\begin{array}{c} B_3(G)) = \Omega_0(G) = \gamma(G) = 2$. (ii). If $G \cong K_n$, then $\gamma(\begin{array}{c} B_3(G)) = \gamma'(G) + 1$, if n is odd; and $= \gamma'(G)$, if n is even. (ii). If diam(L(G)) = 2, then $\gamma(\begin{array}{c} B_3(G)) \le \delta(L(G)) + 1$. (iv). If diam($\overline{L}(G)) \ge 3$, then $\gamma(\begin{array}{c} B_3(G)) \le 3$, where $\overline{L}(G)$ has no isolated vertices.

Example 2.19:

Independent, connected, cycle, restrained and point set domination $\overline{B_3(G)}$.

The following propositions are stated without proof.

Proposition 2.20:

If G is any graph having no isolated vertices and has a perfect matching, then $\gamma_i(\overline{B_3}(G)) \leq p/2$, where γ_i is the independent domination number.

Proposition 2.21:

 $\gamma_{i}(\overline{B}_{3}(G)) \leq \min\{\beta_{1}(G) + 1, \gamma_{i}(L(G)) + 1\}.$

Proposition 2.22:

 $\gamma_i(B_3(G)) = 2$ if and only if either there exists a vertex $v \in V(G)$ and an edge $e \in E(G)$ such that e is not incident with v and all the edges of G are either adjacent to e or incident with v or there exists a line cover for G having two vertices.

Note 2.22.1:

(i). If $G \cong C_6$, then $\gamma_i(B_3(G)) = \beta_1(G) = 3$.

(ii). Any independent dominating set of $B_3(G)$ contains at most one point vertex.

In the following, connected domination number γ_c , cycle domination number γ_0 and the restrained domination number γ_r of $B_3(G)$ are determined. The following propositions are stated without proof.

Proposition 2.23:

Let G be a graph other than a star. Then $\gamma_c(B_3(G)) = 2$ if and only if either there exists a point cover for G containing two vertices or radius of L(G) is 1, where γ_c is the connected domination number.

Proposition 2.24:

 $\gamma_c(B_3(G)) \leq \gamma_c(L(G)) + 1.$

Proposition 2.25:

 $\gamma_0(B_3(G)) \leq \gamma_0(L(G)) + 1$, where γ_0 is the cycle domination number.

Proposition 2.26:

Let G be any graph having no isolated vertices. Then $\gamma_0(B_3(G)) = 3$ if and only if one of the following holds.

(i). There exists a point cover D for G with |D| = 3;

(ii). There exists a connected point cover for G containing at least two vertices; and

(iii). $\gamma_c(L(G)) \leq 2$.

Proposition 2.27:

If G is a connected graph, then $\gamma_r(B_3(G)) \leq \alpha_0(G)$, where γ_r is the restrained domination number.

Proposition 2.28:

If G is a graph having no isolated vertices, then $\gamma_r(B_3(G)) \leq \min\{\alpha_1(G), \gamma'(G) + 1, \gamma_r(L(G)) + 1\}.$

Proposition 2.29:

If G is a connected graph, then any dominating set of $B_3(G)$ containing point vertices only is a restrained dominating set of $B_3(G)$.

Next, point set domination number γ_{ps} of $B_3(G)$ is determined.

Proposition 2.30:

 $\gamma_{ps}(B_3(G)) = 1$ if and only if $G \cong K_{1,n}$, where $n \ge 2$.

Theorem 2.31:

 $\gamma_{ps}(B_3(G)) = \alpha_0(G)$ if and only if $G \cong K_{1,n}$ or C_3 , where $n \ge 2$. **Proof:**

Assume $\gamma_{ps}(\overline{B_3}(G)) = \alpha_0(G)$. The there exists a point cover D for G which is also a point set dominating set (psd-set) of $\overline{B_3}(G)$. If $\beta_1(G) \ge 2$, then there exists at least two independent edges, say e_1 and e_2 in G. Let e_1' and e_2' be the corresponding line vertices in $\overline{B_3}(G)$. Then $\{e_1', e_2'\} \subseteq \langle V(\overline{B_3}(G))-D \rangle$ is an independent set in $\langle V(\overline{B_3}(G))-D \rangle$ and there exists no vertex in D adjacent to both e_1' and e_2' , which is a contradiction. Hence, $\beta_1(G) = 1$ and $G \cong K_{1,n}$ or C_3 , where $n \ge 2$. Converse follows easily.

Theorem 2.32:

 $\gamma_{ps}(B_3(G)) \leq q+1 - \Delta(G).$

Proof:

For any graph G, $\gamma_{ps}(G) \leq p - \Delta(G)$. Hence, $\gamma_{ps}(\overline{B_3(G)}) \leq p + q - \Delta(\overline{B_3(G)})$ = $p + q - (p - 1 + \Delta(G)) = q + 1 - \Delta(G)$.

This bound is attained, if $G \cong K_{1,n}$, for $n \ge 2$ and C_3 .

In the following theorem, for simplicity, the neighborhood of a vertex v in $B_3(G)$ is denoted by $N_3(v)$.

Theorem 2.33:

Let G be any graph having no isolated vertices and D be a line cover for G with $\beta_1(\langle E(G)-D \rangle) = 1$. Then the set D' of line vertices in $B_3(G)$ corresponding to the edges in D is a point set dominating set of $B_3(G)$, if for every pair of vertices v, e' in $V(\overline{B_3}(G))-D$, where the edge e in G corresponding to the line vertex e' is not incident with $v \in V(G)$, $|\overline{N_3}(v) \cap \overline{N_3}(e') \cap D'| = 1$ or 2 in $\overline{B_3}(G)$. **Proof:**

Let D be a line cover for G with $\beta_1(\langle E(G)-D \rangle) = 1$ and D' be the set of line vertices in $\overline{B_3}(G)$ corresponding to the edges in D. Let W \subseteq V($\overline{B_3}(G)$)-D be independent. Then W contains exactly two vertices, namely one point vertex and one line vertex, since $\beta_1(\langle E(G)-D \rangle) = 1$ and any two point vertices in $\overline{B_3}(G)$ are adjacent. By the hypothesis, there exists a vertex in D' adjacent to all the two vertices in W. Hence, D' is a psd-set of $\overline{B_3}(G)$.

Theorem 2.34:

Let G be any (p, q) graph having no isolated vertices and D be a line cover for G with $\beta_1(\langle E(G)-D \rangle) = 2$. Then the set D' of all line vertices in $B_3(G)$ corresponding to the edges in D is a psd-set of $B_3(G)$ if $G \cong C_4$. **Proof:**

Assume D' is a psd-set of $B_3(G)$. Since $\beta_1(\langle E(G)-D \rangle) = 2$, any independent set in $V(B_3(G))-D$ contains at most two line vertices.

(i). Let W = $\{e_1', e_2'\} \subseteq V(B_3(G)) - D'$ be independent, where the edges e_1 and e_2 in G corresponding to the vertices e_1' and e_2 are independent in G. Then there exists a vertex in D' adjacent to both e_1' and e_2' .

(ii). Let W = {v, e_1' , e_2' } \subseteq V($B_3(G)$)-D' be independent. Then e_1 and e_2 are independent edges in G and $v \in V(G)$ is not incident with both e_1 and e_2 . But there exists no vertex in D adjacent to the vertices v, e_1' and e_2' , which is a contradiction. Hence, p < 5 and W = {v, e'}, where the edge in G corresponding to the line vertex e' is not incident with v. Then there exists a vertex in D' adjacent to both v and e'. Since D is a line cover for G, $\beta_1(\langle E(G)-D \rangle) = 2$ and

p = 4, it follows that $G \cong C_4$.

Remark 2.34.1:

(i). Let D be a line cover for G with $\beta_1(\langle E(G)-D \rangle) \geq 3$. Then the set of line vertices in $\overline{B_3(G)}$ corresponding to the edges in D is not a psd-set of $\overline{B_3(G)}$.

(ii). If $\beta_1(G) \ge 2$, then any dominating set of $B_3(G)$ containing point vertices only is not a psd-set of $B_3(G)$.

Split and Nonsplit domination numbers in B₃(G).

Theorem 2.35:

 $\gamma_s(B_3(G)) \leq q - \alpha_1(G) + 2$, if there exists a line cover D for G with $|D| = \alpha_1(G)$ containing at least two independent edges, where γ_s is the split domination number. **Proof:**

Let D be a line cover for G with $|D| = \alpha_1(G)$ containing at least two independent edges, say e_1 and e_2 . Let $e_1 = (u_1, v_1) \in E(G)$, where $u_1, v_1 \in V(G)$. Then $u_1, v_1 \in V(\overline{B_3}(G))$. If D' is the set of line vertices corresponding to the edges in E(G)-D, then $D'' = D' \cup \{u_1, v_1\}$ is a split dominating set of $\overline{B_3}(G)$, since the line vertex e_1' in $\overline{B_3}(G)$ corresponding to the edge e_1 is isolated in $\langle V(\overline{B_3}(G)) - D'' \rangle$. Hence, $\gamma_s(\overline{B_3}(G)) \leq |D''| = q - \alpha_1(G) + 2$.

This bound is attained, if $G \cong C_n$, for $n \ge 4$.

In the following, an upper bound of $\gamma_s(-B_3(G))$ is given in terms of the minimum degree of G.

Theorem 2.36:

 $\gamma_{s}(B_{3}(G)) \leq p + \delta(G) - 1.$

Proof:

Let v be a vertex of minimum degree in G. If D' is the set of line vertices in $B_3(G)$ corresponding to the edges in G incident with v, then $D = D' \cup (V(G)-v)$ is a split dominating set of $B_3(G)$ and $\gamma_s(\overline{B_3(G)}) \leq p + \delta(G) - 1$.

This bound is attained, if $G \cong C_3$.

Theorem 2.37:

$$\begin{split} \text{If } \dim(G) &\geq 3, \text{ then } \gamma_s(-B_3(G)) \leq p+q-k-1, \\ \text{where } k &= \max\{ \deg_G(u) + \deg_G(v) : d_G(u,v) \geq 3 \}, \text{ where } u, v \in V(G). \end{split}$$

Proof:

Let u and v be any two vertices in G with $d_G(u, v) \ge 3$ and $deg_G(u) + deg_G(v)$ is maximum and $k = deg_G(u) + deg_G(v)$. If D' is the set of line vertices corresponding to the edges in G not incident with u and v, then $D = D' \cup (V(G)-u)$ is a split dominating set of $\overline{B_3}(G)$, since $\langle V(\overline{B_3}(G))-D \rangle \cong K_n \cup K_m$, where m, $n \ge 2$ and $|D| = p - 1 + q - (deg_G(u) + deg_G(v)) = p + q - (k + 1)$. Thus, $\gamma_s(\overline{B_3}(G)) \le p + q - k - 1$.

The following propositions are stated without Proof:

Proposition 2.38:

If G is a connected graph and if $\mathcal{K}'(G)$ is the connectivity of L(G), then $\gamma_s(B_3(G)) \leq p - 1 + \mathcal{K}'(G).$

Proposition 2.39:

 $\gamma_{s}(\overline{B}_{3}(G)) \leq p + q - \Delta(G) - 1.$

Proposition 2.40:

If G is a disconnected graph, then $\gamma_s(B_3(G)) \leq p - 1$.

Proposition 2.41:

 $\gamma_{ns}(B_3(G)) \leq \min\{\alpha_0(G), \alpha_1(G), \beta_1(G) + 1\}$, for any graph G having no isolated vertices where γ_{ns} is the non split domination number.

Example 2.42:

 $\begin{array}{lll} (i). & \gamma_s(& \underline{B}_3(P_n)) &= n-1, & \mbox{if } n \geq 4. \\ (ii). & \gamma_s(& \overline{B}_3(K_{1,n})) &= n+1, & \mbox{if } n \geq 2. \\ (iii). & \gamma_s(& \overline{B}_3(K_n)) &= 2n-2, \mbox{if } n \geq 3. \end{array}$

Conclusion:

We have established structural properties of the complement $B_3(G)$ of $B_3(G)$ including traversability and eccentricity properties Also covering, independence and chromatic and neighborhood numbers are found. Moreover, domination, Independent, connected, cycle and restrained, point set, split and nonsplit domination numbers of $B_3(G)$ are determined.

References:

- G. S. Domke, J. H. Hattingh, S.T. Hedetniemi, R. Laskar and L.R. Markus, Restrained domination in graph, Discrete Math., 203 (1999), 61-69.
- [2] F. Harary, Graph Theory, Addision-Wesley, Reading Mass., (1972).
- [3] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, "On the Boolean Function Graph of a Graph and on its Complement", Mathematica Bohemica, 130(2005), No.2, pp. 113-134.
- [4] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, "Domination Numbers on the Boolean Function Graph of a Graph", Mathematica Bohemica, 130(2005), No.2, 135-151.
- [5] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, "Domination Numbers on the Complement of the Boolean Function Graph of a Graph", Mathematica Bohemica, 130(2005), No.3, pp. 247-263.
- [6] T. N. Janakiraman, S. Muthammai, M. Bhanumathi, "Global Domination and Neighborhood numbers in Boolean Function Graph of a Graph", Mathematica Bohemica, 130(2005), No.3, pp. 231-246.
- T.N. Janakiraman, M. Bhanumathi, S. Muthammai, "Edge Partition of the Boolean graph BG₁(G)", Journal of Physical Sciences, Vol.12, 2008, pp 97-107.
- [8] T.N. Janakiraman, S. Muthammai, M. Bhanumathi, "On the Complement of the Boolean function graph B(\overline{Kp} , NINC, L(G)) of a graph", Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 1, No.2, pp. 45-51, 2010.
- [9] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, "Domination Numbers on the Boolean Function Graph B(\overline{Kp} , NINC, L(G)) of a graph", Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.1, pp. 11-24, 2011.
- [10] T. N. Janakiraman, S. Muthammai and M. Bhanumathi, "Domination Numbers on the Complement of the Boolean Function Graph B(\overline{Kp} , NINC, L(G)) of a Graph", Int. J. of Engineering Science, Advanced Computing and Bio-Technology, Vol. 2, No.2, pp. 66-76, 2011.
- [11] T.N. Janakiraman, M. Bhanumathi and S. Muthammai, "On The Boolean function Graph B(K_p , NINC, L(G)) of a Graph", Vol.3, No.3, pp. 142 151.
- [12] T.N. Janakiraman, M. Bhanumathi and S. Muthammai, "Domination Numbers on the Boolean Function graph B($\overline{K_p}$, NINC, $\overline{L(G)}$) of a Graph", Vol.3, No.4, pp. 163–184.
- [13] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York, XXXII, New York, Academy of Sciences, pp. 16-19, 1997.

18 International Journal of Engineering Science, Advanced Computing and Bio-Technology

- [14] V. R. Kulli and B. Janakiram, The non split domination number of a graph, Indian J. pure appl. Math., 31 (5): 545-550, May 2000.
- O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, (1962). [15]
- L. Pushpalatha, The Global point-set domination number of a graph, Indian J. pure. Appl. [16] Math., 20 (1): 1997, 47-51.
- graph, Indian J. [17] E. Sampathkumar and L. Pushpalatha, Point-set domination number of a pure appl. Math., 24 (4): (1993), 225-229.
- [18] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, Math.Phys. Sci., 13 (6), (1979), 607-613.
- [19] E. Sampathkumar and Prabha S. Neeralagi, The neighborhood number of a graph, Indian J. pure appl. Math., 16 (2): 126-132, Feb 1985.