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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC,L(G)) of G is  a   graph  with    vertex   set   V(G)E(G)    
and    two  vertices  in B(Kp, NINC,L(G)) are adjacent if and only if they correspond to two 
nonadjacent edges of G or to a vertex and an edge not incident to it in G, where L(G) is the line graph 
of G. For brevity, this graph is denoted by B3(G). In this paper, structural properties of the 
complementB3(G) of B3(G) including traversability and eccentricity properties are studied. Also 
covering, independence and chromatic numbers and various domination numbers are determined. 
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1. Introduction 

 
Graphs discussed in this paper are undirected and simple graphs. For a graph G, 

let V(G) and E(G) denote its vertex set and edge set respectively. A graph with p vertices 

and q edges is denoted by G(p, q). Eccentricity of a vertex uV(G) is defined as         

eG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance between u and v in G. The 
minimum and maximum eccentricities are the radius and diameter of G, denoted r(G) 
and diam(G) respectively. When diam(G) = r(G), G is called a self-centered graph with 
radius r, equivalently G is r-self-centered. A vertex u is said to be an eccentric point of v in 
a graph G, if d(u, v) = e(v). In general, u is called an eccentric point, if it is an eccentric 
point of some vertex. A connected graph G is said to be geodetic, if a unique shortest path 
joins any two of its vertices.  

A vertex and an edge are said to cover each other, if they are incident. A set of 
vertices, which covers all the edges of a graph G is called a point cover for G. The smallest 
number of vertices in any point cover for G is called its point covering number and is 

denoted by 0(G) or 0. A set of vertices in G is independent, if no two of them are 
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adjacent. The largest number of vertices in such a set is called the point independence 

number of G and is denoted by 0(G) or 0.  
Sampathkumar and Neeralagi [19] introduced the concept of neighborhood sets 

in graphs. A  subset  S  of  V(G)  is  a  neighborhood  set  (n-set)  of  G, if                         

G = vS(<N[v]>), where <N[v]> is the subgraph of G induced by N[v]. The 
neighborhood number n0(G) of G is the minimum cardinality of an n-set of G.  

The concept of domination in graphs was introduced by Ore [15]. A set S  V is 

said to be a dominating set in G, if every vertex in V S is adjacent to some vertex in S. S 

is said to be a minimal dominating set, if S  {u} is not a dominating set, for any uS. 

The domination number (G) of G is the minimum cardinality of a dominating set. A 

dominating set with cardinality (G) is referred as a -set. A dominating set S of a 
connected graph G is called a connected dominating set of G, if the induced subgraph <S> 
is connected. The minimum cardinality of a connected dominating set of G is called the 

connected domination number of G and is denoted by c. A set S  V is a restrained 

dominating set, if every vertex in VS is adjacent to a vertex in S and another vertex in 

VS. The restrained domination number of G, denoted by r(G) is the minimum 
cardinality of a restrained dominating set of G.  

A dominating set S  V is a cycle dominating set, if the subgraph <S> induced by S 
has a Hamiltonian cycle; S is also called a dominating cycle. The cardinality of a smallest 

cycle dominating set in G is called the cycle domination number of G and is denoted by 0. 
Kulli and Janakiram [13, 14] introduced the concept of split and non split 

domination in graphs. A dominating set D of a connected graph G = (V, E) is a split 

dominating set, if the induced subgraph <VD> is disconnected and is a non split 

dominating set, if <VD> is connected. The split (non split) domination number s(G) 

(ns(G)) is the minimum cardinality of a split (non split) dominating set. 
Sampathkumar and Pushpalatha [17] introduced the concept of point set 

domination number of a graph. For any connected graph G, a set S  V is called a point 

set dominating set (psd-set), if for every set T  VS there exists a vertex vS such that 

the subgraph <T{v}> induced by T{v} is connected. The point set domination number 

ps(G)  of  G  is  defined as   the  minimum  cardinality  of  a psd-set of G. Note that every 
psd-set is a  dominating set.  
 
Theorem 1.1:[17] 

Let G = (V, E) be a graph. A set S  V is a point-set dominating set of G if and only 
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if for every independent set W in VS, there exists a vertex u in S such that                     

W  NG(u)(VS).  

A set F  E is an edge dominating set, if each edge in E is either in F or is 

adjacent to an edge in F. The edge domination number (G) is the smallest cardinality 
among all minimal edge dominating sets. 

The Boolean function graph B(Kp, NINC,L(G)) of G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC, L(G))  are adjacent if and only if they 
correspond to two nonadjacent edges of G or to a vertex and an edge not incident to it in 
G. For brevity, this graph is denoted by B3(G). In other words,                               

V(B3(G)) = V(G)V(L(G)); and E(B3(G)) = [E(T(G))(E(G)E(L(G)))]E(L(G), 

whereG, L(G) and T(G) denote the complement, the line graph and the total graph of G 
respectively. The vertices of G and L(G) in B3(G) are referred as point and line vertices 

respectively and the line vertex in B3(G) corresponding to an edge e in G is denoted by e.  
In this paper, we study structural properties of the complementB3(G) of B3(G) 

including traversability and eccentricity properties.  Also, covering, independence, 
chromatic and various domination numbers are determined. The definitions and details 
not furnished in this paper may found in [2]. 

 

2.  Main Results 
In this section, the complement of B(Kp, NINC,L(G)) is denoted byB3(G). 

The properties ofB3(G) including traversability and eccentricity properties are studied. 

Also decomposition ofB3(G), for some known graphs are given. 
 

Observation 2.1: 
2.1.1. If G has p vertices, then the complete graph on p vertices is an induced subgraph 

ofB3(G). Also L(G) is an induced subgraph.  

2.1.2. The degree of a point vertex v inB3(G) is p – 1 + degG(v) and the degree of a line 

vertex e is degL(G)(e) + 2 and hence (B3(G)) = p – 1 + (G) and (B3(G)) = 

(G)+2, where (G) = (L(G)). 

2.1.3. B3(G) is a connected graph, for any graph G. 

2.1.4. B3(G) is biregular if and only if G is a regular graph other than a complete graph 
and is regular if and only if G is  a complete graph. 

2.1.5. If G is a complete graph, thenB3(G)  T(G), where T(G) is the total graph of G. 

2.1.6. No vertex ofB3(G) is a cut-vertex. 
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2.1.7. Each vertex ofB3(G) lies on a triangle and hence girth ofB3(G) is 3. Also each 

edge ofB3(G) lies on a triangle and hence L(B3(G)) is Hamiltonian. 

2.1.8. If G contains K2K1 as a subgraph, thenB3(G) contains K4–e as an induced 

subgraph and hence not geodetic. Thus, B3(G) is geodetic if and only if G  nK1 or K2, 

where n  2. 

2.1.9. For a (p, q) graph G, B3(G) is Eulerian if and only if one of the following holds. 
(i).  p is odd and G or each of its components is Eulerian; and 
(ii). p is even and each vertex in G is of odd degree. 
 

In the following, hamiltonicity of B3(G) is discussed. 
 
Theorem 2.2:  

For any connected graph G,B3(G) is Hamiltonian. 
Proof:  

The subgraph ofB3(G) induced by all the point vertices is complete and L(G)  is an  

induced  subgraph  of B3(G).  Choose any vertex  v1  in  V(G).  Let e11, e12, …, e1t  be  the 

edges in  G  incident with v1 (t  1), vt be a vertex incident with e1t, and et1, et2, …, ets be 

the edges in G incident with vt (s  1), where etj  e1t, j = 1,2,…,s  and  so  on. Then       

v1, vt, …V(B3(G)). Let e1i, etj be the  line  vertices  inB3(G)  corresponding  to  the  

edges  e1i,  etj  (i = 1, 2, …, t; j = 1, 2, …, s) respectively. Then form a path v1 e11 e12…e1t vt 

et1 et2…ets vs… inB3(G) and then place the remaining point vertices (if any) in the 

above path so as to form a Hamiltonian cycle inB3(G). Hence, B3(G) is Hamiltonian. 
 
Theorem 2.3:  

If G is a disconnected graph, then alsoB3(G) is Hamiltonian. 
Proof: 

Form a Hamiltonian path in eachB3(Gi), where Gi is a component of G, starting and 

ending with a point vertex. Since any two point vertices inB3(G) are adjacent, these 

Hamiltonian paths can be linked to form a Hamiltonian cycle inB3(G). 
 

In the following, the eccentricity properties ofB3(G) are discussed. A 

characterization of a graph G for whichB3(G) is self-centered with radius 2 is obtained. 

For simplicity, the distance between two vertices u and v inB3(G) is denoted by d3(u, v) 
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Theorem 2.4:   

Let G be any graph with 1(G)  2. ThenB3(G) is self-centered with radius 2 if and 
only if diameter of L(G) is two.  
Proof: 

Assume G is a graph with 1(G)  2 andB3(G) is self- centered with radius 2. If 

diam(L(G))  3, then there exists two vertices  e1,  e2  in  L(G)  with  dL(G)(e1, e2) =  m, 

where m  3.  But d3(e1, e2) = 3, which is a contradiction. Therefore, diam(L(G)) = 2. 
Conversely, assume diam(L(G)) = 2. The distance between any two point vertices 

inB3(G) is 1. Let v, e be a point, line vertex inB3(G) respectively and e be the edge in G 

corresponding to e. Then, 

    d3(v, e)   = 1,  if ve 

                   = 2,  if ve 

Similarly, let e1, e2 be two line vertices inB3(G) and e1, e2 be the corresponding edges in 

G. If e1, e2 are adjacent edges in G, then d3(e1, e2) = 1. If e1 and e2 are not adjacent, since 
diam(L(G)) = 2, then there exists an edge in G adjacent to both e1 and e2. Therefore, 

d3(e1, e2) = 2. From the above argument, it follows that both point and line vertices 

inB3(G) have eccentricity 2 and henceB3(G) is self-centered with radius 2. 
 
Remark 2.4.1: 

Let 1G) = 1. If G  C3, B3(G) is self-centered with radius 2 and if G is a star, 

thenB3(G) is bi-eccentric with radius 1. 
 

Now, a characterization of a graph G for whichB3(G) is bi-eccentric with radius 
2 is obtained. 
 
Theorem 2.5: 

 B3((G)  is  bi-eccentric  with  radius  2  if  and  only  if   diam(L(G))  3, where 
L(G) is the line graph of G..  
Proof:  

AssumeB3(G) is bi-eccentric with radius 2. If diam(L(G))   2, then either G  is   

self-centered  with  radius  2  or  bi-eccentric  with  radius  1.  Hence, diam(L(G))  3. 

Conversely, assume diam(L(G))  3. Then as in Theorem 6.4.4., eccentricity of a point 

vertex is 2. Since diam(L(G))  3,  there   exists   two  vertices  e1,  e2   in   L(G)   with  

dL(G)(e1, e2)  = m,   where  m  3.  Therefore, d3(e1, e2) = 3. Also the distance between 
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any two line vertices inB3(G) is less than or equal to 3. Hence, B3(G) is bi-eccentric 
with radius 2. 
 

In the following, the graphs G for whichB3(G) contains Cn (n  4), as an 
induced subgraph are obtained, where G is any graph which is not totally disconnected. 
 
Proposition 2.6: 

 B3(G) contains Cn (n  4) as an induced subgraph if and only if either G contains 
Cn or Cn-1 as a subgraph. 
Proof:  

AssumeB3(G) contains Cn (n  4) as an induced subgraph. If all the vertices of Cn 

inB3(G) are line vertices, then G contains Cn as a subgraph. If not, since any two point 

vertices inB3(G) are adjacent, any cycle inB3(G) contains exactly two adjacent point 
vertices and the other  vertices  are  line vertices. Then G contains Cn-1 as a subgraph. 
Converse can be proved easily. 

 

In the following, the edge partitions ofB3(G) for some known graphs G are 
given. 
 
Theorem 2.7:  

(1) The edge set  of B3(Pn),  for n  4,   can   be   partitioned   into ((n-1)/2)Cn, Pn-1 

and P2n-1, if n is odd; and ((n-2)/2)Cn, Pn-1, P2n-1 and (n/2)K2, if n is even.  

(2) The edge set ofB3(Cn) (n  3) can be partitioned into  ((n+1)/2)Cn, C2n, if n is 
odd; and ((n-1)/2)Cn, C2n and (n/2)K2, if n is even  such that all the vertices of Cn are 
either point or line vertices. 

(3) The  edge   set  ofB3(Kn,n),  for n  3   can be partitioned into ((n-1)/2)Cn+1,   
((n-1)/2)Cn,  ((n+1)/2)K2  and  nP3,  if  n  is odd;  and  (n/2)Cn+1, ((n-1)/2)Cn, (n/2)K2 
and nP3, if n is even. 

(4) The  edge  set  ofB3(nK2), for n  2,  can  be  partitioned  into ((2n-1)/2)Cn and 
nP3, if n is odd and ((2n-3)/2)Cn, nP3 and nK2, if n is even. 
 

Covering, independence, chromatic and neighborhood numbers 

inB3(G). 
 
Theorem 2.8:  

0(B3(G)) = 1(G) or 1(G) + 1. 
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Proof:   

Any two point vertices inB3(G) are adjacent and L(G) is an induced subgraph 

ofB3(G). Therefore, any independent set inB3(G) contains either all line vertices or one 
point vertex and line vertices. If there exists a perfect matching in G, then           

0(B3(G))  1(G) and there is no independent set inB3(G) having more than 1(G) 

vertices. Hence, 0(B3(G)) = 1(G). Let there exist no perfect matching in G and let      

D = {e1, e2, …, en}  E(G)  with |D| = 1(G) be the set of independent edges in G where   

n < [p/2]. Let v be a vertex in G not incident with any of the edges in D. If D is the set of 

line vertices inB3(G) corresponding to the edges in D, then D{v} is a set of 

independent  vertices inB3(G). Hence, 0(B3(G))  1(G) + 1. Since there exists no 

independent set inB3(G) having more than 1(G) + 1 vertices, then                  

0(B3(G)) = 1(G) + 1. 
 

Remark 2.8.1: 

Using the relation, 0(B3(G)) + 0(B3(G)) = p + q, it follows that  

   0(B3(G)) = q + 1(G) or q + 1(G) - 1. 
 

Proposition 2.9:  

If G is any (p, q) graph, then 1(B3(G)) = {(p + q)/2} and 1(B3(G)) = [(p + q)/2]. 
Proof:  

Since 1(L(G)) = {q/2} andB3(G)  L(G + K1), by Theorem 6.3.3., it follows that 

1(B3(G)) = 1(L(G + K1)) = {(p + q)/2}. Also, 1(B3(G)) + 1(B3(G)) = p + q 

implies that 1(B3(G)) = [(p + q)/2]. 
 
Proposition 2.10:  

(B3(G)) = p or p + 1. 
Proof:  

(B3(G)) =  (L(G + K1)) =  (G + K1) =  (G + K1)  or  (G + K1) + 1 =  p or    
p + 1. 

 
Note 2.10.1:  

(B3(Kn)) = (Kn+1)  = n,  if n is even; and 
                 = n + 1, if n is odd. 
 

In the following, the neighborhood number n0 ofB3(G) is obtained. 
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Observation 2.11: 

2.11.1. n0(B3(G)) = 1 if and only if G  nK1, n  2 or K1,nmK1, where n  1  

and m  0. 

2.11.2. n0(B3(G))  0(G)  + n0(L(G)). 
 

In the following, a necessary and sufficient condition that an n-set of L(G) to be 

an n-set ofB3(G) is obtained. 
 
Theorem 2.12:  

Let G be any graph having no isolated vertices. Then n0(B3(G)  n0(L(G)) if and 
only if there exists an neighborhood set (n-set) S of L(G) with |S| = n0(G) such that each 
vertex in G is incident with at least one of the edges in G corresponding to the vertices in 
S. 
Proof:  

Assume n0(B3(G))  n0(L(G)). Let S be an n-set of L(G) with |S| = n0(G). Then S is 

also an n-set ofB3(G). Let S be the set of edges in G corresponding to the vertices in S 

and vV(G) be such that v is not incident with any of the edges in S. Let eE(G) be 

such that e is incident with v and e be the corresponding line vertex inB3(G). Then the 

edge (v, e)E(B3(G)) does not belong to  wsE(<N[w]>), which is a contradiction. 
Converse follows easily.  

This bound is attained, if G  Cn, n  4. 
 

Corollary 2.12.1:  

n0(B3(G))  n0(L(G)) + k, where k is the number of vertices in G not incident with 
the edges in G corresponding to the vertices in the n-set S of L(G), where |S| = n0(L(G)). 

For example, n0(B3(P5)) = n0(L(P5)) + 1. 
 

Example 2.13:  

(i).   n0(B3(Pn))    = {n/2}, if n  4. 

(ii).  n0(B3(Cn))    = {n/2}, if n  4. 

(iii). n0(B3(Kn))    = n - 1,  if n  4. 

(iv).  n0(B3(nK2))  = n,      if n  2.       
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Domination Numbers  and other parameters for the complement of 

B(Kp, NINC,L(G)) 
In the following, domination number ofB3(G) is determined 

Proposition 2.13: 

 (B3(G)) = 1 if and only if G  K1,n or mK1, where n  1 and m  2. 
Proof:  

r(G) = 1 if and only if G  K1,n or mK1, where n  1 and m  2. 
 
Theorem 2.14:  

Let G be a graph other than a star. Then (B3(G)) = 2 if and only if one of the 
following holds. 
(i).   There exists a point cover for G containing two vertices; 

(ii).  There exists a vertex vV(G) and an edge eE(G) such that e is not incident 
with v and the edges of G are either adjacent to e or incident with v or both; 

(iii).  r(L(G)) = 1; and 
(iv).  There exists a line cover for G containing two edges.  
Proof: 

 Let D be a minimal dominating set ofB3(G) containing two elements. 

(i) Let D = {v1, v2}  V(B3(G)), v1, v2V(G). D dominates all line vertices ofB3(G), 
which implies that each edge in G is incident with v1, v2 or both. That is, D is a point 
cover for G. 

(ii) Let D = {v, e}, where vV(G) and eE(G). 

(a) Let eE(G) be incident with vV(G). Then, edges of G must be adjacent to e. 

(b) Let e be not incident with vV(G). Since, D dominates all line vertices ofB3(G), 
all the edges of G are either adjacent to e or incident with v. 

(iii) Let D = {e1, e2}, where e1, e2E(G).  D is dominating set ofB3(G) implies that D is a 
line cover for G. 

 
Proposition 2.15:   

If  G is  any  graph  having  no  isolated  vertices,  then   

(B3(G))  min{0(G), 1(G), 1(G) + 1}. 
Proof: 

(i) Let D be a point cover for G such that |D| = 0(G). Since any two point vertices 

in B3(G) are adjacent, D dominates all point vertices inB3(G). By the construction 
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ofB3(G), D dominates all the line vertices in B3(G). Hence, D is a dominating set 

ofB3(G) and therefore, (B3(G))  0(G). 
(ii) Let D be a line cover for G. The line vertices corresponding to the edges in D 

dominates all point vertices ofB3(G). Since L(G) is an induced subgraph of B3(G), D 

dominates all the line vertices ofB3(G). Hence, (B3(G))  1(G). 

(iii) Since L(G) is an induced subgraph ofB3(G) and any two point vertices are 

adjacent, (B3(G))  (L(G)) + 1 = (G) + 1  1(G) + 1. 

From (i), (ii) and (iii), (B3(G))  min{0(G), 1(G), 1(G) + 1}. 
 

Proposition 2.16: 

 Let G be any graph having no isolated vertices. Then (B3(G))  (G) if and only if 

(G) = 0(G). 
Proof: 

 Assume (G) = 0(G). Let d be a minimal dominating set of G such that |D| = (G). 

then d is a point cover for G. Therefore, D is a dominating set ofB3(G) and hence 

(B3(G))  (G). 

 Conversely, let D  V(G) be a minimal dominating set of G such that D is a 

dominating set ofB3(G). then D is appoint cover for G. That is, 0(G)  (G). But,  

(G)  0(G). Hence, (G) = 0(G). 
 
Proposition 2.17:   

Let  G  be  any  graph  having  no  isolated  vertices  with (G)  0(G)  and  D be  a  

minimal dominating set  of  G  with |D| = (G).  Then (B3(G))  ( G) + 1, if either  
(i) <V(G)–D> is a star or  
(ii) There exists an edge e in G such that e is adjacent to all the edges in    

<V(G)–D>. 
Proof: 

 Let D be a minimal dominating set of G such that |D| = (G). If (i) is true, then 

D{u} is a dominating set ofB3(G), where u is the center vertex of the star. If (ii) holds, 

then D{e}is a dominating set ofB3(G).  
 
Theorem 2.18: 

 (B3(G))   (G) or (G) + 1, where (G) is the edge domination number of G. 
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Proof:  

Let D be a minimal dominating set of L(G) with |D| = (L(G)) = (G). If the set of 
edges in G corresponding to the vertices in D is a perfect matching or a line cover for G, 

then that set is a dominating set ofB3(G). Let D  D be such that |D|= (G)-1. 

(i). Let V(L(G))–N[D] = M. If the edges in G corresponding to the vertices in M are the 

edges of a star in G, then D together with the center vertex of the star is a dominating set 

ofB3(G); 

(ii). Let N be the set of edges in G corresponding to the vertices in D. If D is the  set  of  

vertices  in  G  incident with the edges in N and if <V(G)D>  K1,n, n  1, then 

D{center vertex of K1,n} is a dominating set ofB3(G). 

If (i) or (ii) holds, then (B3(G))  (G). 

Otherwise,   D{v}   is   a   dominating   set   of B3(G),   where   vV(G).  Thus,  

(B3(G))  (G) or (G) + 1. 
 
Note 2.18.1: 

(i).   If G  2P3, then (B3(G)) = 0(G) = (G) = 2. 

(ii).  If G  Kn, then (B3(G))  = (G) + 1, if n is odd; and 

                                             = (G),        if n is even. 

(ii).  If diam(L(G)) = 2, then (B3(G))  (L(G)) + 1. 

(iv). If diam(L(G))  3, then (B3(G))  3, whereL(G) has no isolated vertices. 
 
Example 2.19: 

(i).   (B3(Pn))  = [n/2],  if n  3. 

(ii).  (B3(Cn))  = [n/2],  if n  3. 

(iii). (B3(Kn))  = {n/2},  if n  4. 

(iv).  (B3(nK2)) =  n,       if n  2. 
 

Independent, connected, cycle, restrained and point set domination 

numbers inB3(G). 
 
The following propositions are stated without proof. 

Proposition 2.20:  
If G is any graph having no isolated vertices and has a perfect matching, then 

i(B3(G))  p/2, where i  is the independent domination number. 



 
 

 

12 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Proposition 2.21:  

i(B3(G))  min{ 1(G) + 1, i(L(G)) + 1}. 
 
Proposition 2.22: 

i(B3(G)) = 2 if and only if either there exists a vertex vV(G) and an edge eE(G) 
such that e is not incident with v and all the edges of G are either adjacent to e or incident 
with v or there exists a line cover for G having two vertices. 
 
Note 2.22.1: 

(i). If G  C6, then i(B3(G)) = 1(G) = 3. 

(ii). Any independent dominating set ofB3(G) contains at most one point vertex.  
 

 In the following, connected domination number c, cycle domination number 0 and 

the restrained domination number r ofB3(G) are determined. The following 
propositions are stated without proof. 
 
Proposition 2.23:  

Let G be a graph other than a star. Then c(B3(G)) = 2 if and only if either there 

exists a point cover for G containing two vertices or radius of L(G) is 1, where c is the 
connected domination number. 
 
Proposition 2.24:  

c(B3(G))  c(L(G)) + 1. 
 
Proposition 2.25:  

0(B3(G))   0(L(G)) + 1, where 0 is the cycle domination number. 
 
Proposition 2.26:  

Let G be any graph having no isolated vertices. Then 0(B3(G)) = 3 if and only if one 
of the following holds. 
(i). There exists a point cover D for G with |D| = 3; 
(ii). There exists a connected point cover for G containing at least two vertices; and 

(iii). c(L(G))  2. 
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Proposition 2.27:  

If G is a connected graph, then r(B3(G))  0(G), where r is the restrained 
domination number. 
 
Proposition 2.28:   

If  G  is   a   graph   having   no  isolated  vertices,  then r(B3(G))   min{ 1(G), 

(G) + 1, r(L(G)) + 1}. 
 
Proposition 2.29: 

  If G is a connected graph, then any dominating set ofB3(G) containing point vertices 

only is a restrained dominating set ofB3(G).  
 

Next, point set domination number ps ofB3(G) is determined. 
 
Proposition 2.30:  

ps(B3(G)) = 1  if  and  only  if  G  K1,n, where n  2. 
 

Theorem 2.31:  

ps(B3(G)) = 0(G)  if and only if G  K1,n or C3, where n  2. 
Proof:  

Assume ps(B3(G)) = 0(G). The there exists a point cover D for G which is also a 

point set dominating set (psd-set) ofB3(G). If 1(G)  2, then there exists at least two 

independent edges, say e1 and e2 in G. Let e1 and e2 be the corresponding line vertices 

inB3(G). Then {e1, e2}  <V(B3(G))–D> is an independent set in <V(B3(G))–D>  

and there exists no vertex in D adjacent to both e1 and e2, which is a contradiction. 

Hence, 1(G) = 1 and G  K1,n or C3, where n  2. Converse follows easily. 
 
Theorem 2.32:  

ps(B3(G))  q + 1 - (G). 
Proof:  

For   any   graph   G,   ps(G)  p - (G).   Hence, ps(B3(G))  p + q - (B3(G)) 

= p + q - (p – 1 + (G)) = q + 1 - (G).   

This bound is attained, if G  K1,n, for n  2 and C3. 
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  In the following theorem, for simplicity, the neighborhood of a vertex v in B3(G) is 

denoted byN3(v). 
 
Theorem 2.33: 

 Let G be any graph having no isolated vertices and D be a line cover for G with 

1(<E(G)D>) = 1. Then the set D of line vertices inB3(G) corresponding to the edges 

in D is a point set dominating set ofB3(G), if for every pair of vertices v, e in 

V(B3(G))–D, where the edge e in G corresponding to the line vertex e is not incident 

with vV(G), |N3(v)N3(e)D| = 1 or 2 inB3(G) . 
Proof:  

Let D be a line cover for G with 1(<E(G)–D>) =  1 and D be the set of line vertices 

inB3(G) corresponding to the edges in D. Let W  V(B3(G))–D be independent. Then 
W contains exactly two vertices, namely one point vertex and one line vertex, since 

1(<E(G)–D>) = 1 and any two point vertices inB3(G) are adjacent. By the hypothesis, 

there exists a vertex in D adjacent to all the two vertices in W. Hence, D is a psd-set 

ofB3(G). 
 
Theorem 2.34: 

Let G be any (p, q) graph having no isolated vertices and D be a line cover for G with 

1(<E(G)–D>) = 2. Then the set D of all line vertices inB3(G) corresponding to the 

edges in D is a psd-set ofB3(G) if G  C4. 
Proof:  

Assume D is a psd-set ofB3(G). Since 1(<E(G)–D>) = 2, any independent set in 

V(B3(G))D contains at most two line vertices. 

(i). Let W = {e1, e2}  V(B3(G))D be independent, where the edges e1 and e2 in G 

corresponding to the vertices e1 and e2 are independent in G. Then there exists a vertex in 

D adjacent to both e1and e2. 
(ii). Let W = {v, e1, e2}  V(B3(G))D be independent. Then e1 and e2 are 

independent edges in G and vV(G) is not incident with both e1 and e2. But there exists 

no vertex in D adjacent to the vertices v, e1 and e2, which is a contradiction. Hence, p < 5 

and W = {v, e}, where the edge in G corresponding to the line vertex e is not incident 

with v. Then there exists a vertex in D adjacent to  both  v  and  e. Since D is a line cover 

for G, 1(<E(G)–D>) = 2 and  

p = 4, it follows that G  C4. 
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Remark 2.34.1:  

(i). Let D be a line cover for G with 1(<E(G)–D>)  3. Then the set of line vertices 

inB3(G) corresponding to the edges in D is not a psd-set ofB3(G). 

(ii). If 1(G)  2, then any dominating set ofB3(G) containing point vertices only is not 

a psd-set ofB3(G). 
 

Split and Nonsplit domination numbers inB3(G). 
 
Theorem 2.35: 

 s(B3(G))  q - 1(G) + 2, if there exists a line cover D for G with |D| = 1(G) 

containing at least two independent edges, where s is the split domination number. 
Proof:  

Let D be a line cover for G with |D| = 1(G) containing at least two independent 

edges, say e1 and e2. Let e1 = (u1, v1)E(G), where u1, v1V(G). Then u1, v1V(B3(G)). 

If D is the set of line vertices corresponding to the edges in E(G)D, then  

D = D{u1, v1} is a split dominating set ofB3(G), since the line vertex e1 inB3(G) 

corresponding to the edge e1 is isolated in <V(B3(G))D>.  

Hence, s(B3(G)) |D| = q  - 1(G) + 2.  

This bound is attained, if G  Cn, for n  4. 
 

In the following, an upper bound of s(B3(G)) is given in terms of the minimum 
degree of G. 
 
Theorem 2.36:  

s(B3(G))  p + (G) - 1. 
Proof:  

Let v be a vertex of minimum degree in G. If D is the set of line vertices inB3(G) 

corresponding to the edges in G incident with v, then D = D(V(G)v) is a split 

dominating set ofB3(G) and s(B3(G))  p + (G) - 1. 

This bound is attained, if G  C3. 
 

Theorem 2.37:   

If   diam(G)  3,   then    s(B3(G))   p + q – k - 1,  

where  k = max{ degG(u) + degG(v) : dG(u, v)  3},  where  u, vV(G). 
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Proof:  

Let  u  and  v  be  any  two  vertices   in   G  with  dG(u, v)  3  and degG(u) + degG(v) 

is maximum  and k = degG(u) + degG(v). If D is the set of line vertices  corresponding  to  

the edges  in  G  not  incident  with  u  and  v,  then D = D(V(G)u) is a split 

dominating set ofB3(G), since <V(B3(G))–D>  KnKm, where m, n  2 and  

|D| = p – 1 + q - (degG(u) + degG(v)) = p + q - (k + 1). Thus, s(B3(G))  p + q – k - 1. 
 

The following propositions are stated without Proof: 
 
Proposition 2.38:  

If G is a connected graph and if (G) is the connectivity of L(G), then  

s(B3(G))  p – 1 + (G). 
 
Proposition 2.39: 

s(B3(G))  p + q  - (G) - 1. 
 
Proposition 2.40: 

If G is a disconnected graph, then s(B3(G))  p - 1. 
 

Proposition 2.41:  

ns(B3(G))  min{0(G), 1(G), 1(G) + 1}, for any graph G having no isolated 

vertices where ns is the non split domination number.  
 

Example 2.42: 

(i).   s(B3(Pn))   = n - 1,   if n  4. 

(ii).  s(B3(K1,n)) = n + 1,   if n  2. 

(iii). s(B3(Kn))   = 2n - 2, if n  3. 
 

Conclusion: 
 We have established structural properties of the complementB3(G) of B3(G) 
including traversability and eccentricity properties Also covering, independence and 
chromatic and neighborhood numbers are found. Moreover, domination,  Independent, 
connected, cycle and restrained, point set, split and nonsplit  domination numbers 

ofB3(G) are determined.. 
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