International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 3, No. 4, October –December 2012, pp. 191-206

Boolean graph BG₃(G) of a graph G

T.N.Janakiraman¹, M.Bhanumathi² and S.Muthammai³

¹Department of Mathematics and Computer Applications National Institute of Technology, Tiruchirapalli-620 015, Tamilnadu, India. E-Mail: janaki@nitt.edu ^{2,3}Government Arts College for Women, Pudukkottai-622 001,Tamilnadu, India.

E-Mail: bhanu_ksp@yahoo.com, muthammai_s@yahoo.com

Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). B $_{Kp, INC, \overline{L}(G)}(G)$ is a graph with vertex set $V(G) \cup E(G)$ and two vertices are adjacent if and only if they correspond to a vertex and an edge incident to it in G or two non-adjacent edges of G. For simplicity, denote this graph by BG₃(G), Boolean graph of G-third kind. In this paper, some properties of BG₃(G) are studied.

Key words: Boolean graph BG₃(G).

1. Introduction

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [10], Buckley and Harary [7].

The girth of a graph G, denoted g(G), is the length of a shortest cycle (if any) in G; the *circumference* c(G) is the length of any longest cycle. The distance d(u, v) between two vertices u and v in G is the minimum length of a path joining them if any; otherwise $d(u, v) = \infty$. A shortest u-v path is called a *u-v geodesic*. A graph G is *geodetic*, if for every pair of vertices (u, v) there exists a unique shortest path connecting them in G.

Let G be a connected graph and u be a vertex of G. The *eccentricity* e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = \max \{d(u, v) : u \in V\}$. The *radius* r(G) is the minimum eccentricity of the vertices, whereas the *diameter* diam(G) is the maximum eccentricity. For any connected graph G, $r(G) \leq \text{diam}(G) \leq 2r(G)$. v is a central vertex if e(v) = r(G). The *center* C(G) is the set of all central vertices. The central subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a *peripheral vertex* if e(v) = diam(G). The *periphery* P(G) is the set of all such vertices. For a vertex v, each vertex at distance e(v) from v is an eccentric node of v.

A graph is *self-centered* if every vertex is in the center. Thus, in a self-centered graph G all nodes have the same eccentricity, so r(G) = diam(G).

An edge $uv \in E(G)$ is a *dominating edge* of G, if all the vertices of G other than u and v are adjacent to either u or v.

A vertex (point) and an edge are said to *cover* each other, if they are incident. A set of vertices, which cover all the edges of a graph G is called a (*vertex*) *point cover of* G,

Received: 19 May, 2012; Revised: 26 October, 2012; Accepted: 02 November, 2012

while a set of lines (edges), which covers all the vertices is a *line cover*. The smallest number of points in any point cover for G is called its *point covering number* and is denoted by $\alpha_o(G)$ or α_o . Similarly, $\alpha_1(G)$ or α_1 is the smallest number of lines in any line cover of G and is called its *line covering number*. Clearly, $\alpha_o(K_p) = p-1$ and $\alpha_1(K_p) = \lfloor (p+1)/2 \rfloor$. A point cover (line cover) is called *minimum*, if it contains α_o (respectively α_1) elements.

A set of points in G is *independent*, if no two of them are adjacent. The largest number of points in such a set is called the *point independence number* of G and is denoted by $\beta_0(G)$ or β_0 . Analogously, an independent set of lines (matching) of G has no two of its lines adjacent and the maximum cardinality of such a set is the *line independence number* $\beta_1(G)$ or β_1 , $\beta_0(K_p) = 1$ and $\beta_1(K_p) = \lfloor p/2 \rfloor$. A set of independent edges covering all the vertices of a graph G is called a *1-factor* or a *perfect matching* of G. A *coloring* of a graph is an assignment of colors to its vertices so that no two adjacent

vertices have the same color. The *chromatic number* $\chi(G)$ is defined to be the minimum n for which G has n coloring.

The minimum number of complete subgraphs of G needed to cover the vertices of G is known as the *clique cover number of G* and is denoted $\theta(G)$.

The maximum number of mutually adjacent vertices, that is the size of the largest complete subgraphs of G is known as the *clique number of G* and is denoted $\omega(G)$.

A graph G is *Berge* [11] if it does not contain odd cycles of length at least five or their respective complement as induced subgraphs. A graph is *perfect* if $\beta_0(H) = \theta(H)$ for every induced subgraph H of G. This implies that $\omega(H) = \chi(H)$ for every induced subgraph H. Clearly, every bipartite graph is perfect.

Theorem 1.1 (Gallai) [8]:

For any connected graph G, $\alpha_0 + \beta_0 = p = \alpha_1 + \beta_1$.

Theorem 1.2 [8]:

$$\beta_{o}(L(G)) = \beta_{1}(G), \ \alpha_{o}(L(G)) = q - \beta_{1}(G) \text{ and } \alpha_{1}(L(G)) = |q/2|.$$

Theorem 1.3 [10]:

 $\chi(G) \leq 1 + \Delta(G).$

Theorem 1.4 [8]:

For any simple graph G, $\chi(G) = \theta(\overline{G})$ and $\beta_0(G) = \omega(\overline{G})$.

Theorem 1.5 (Hayward) [17]:

If G is Berge and if it contains neither a cycle of length at least 6 nor its complement as an induced subgraph, then G is perfect.

Jin Akiyama and Kiyoshi Ando [3] characterized the graphs G, which are self-centered with diameter two such that \overline{G} is also self-centered with diameter 2.

Lemma 1.1 [3]:

Let both G and G be connected and v be a point of G. If $e_G(v) \ge 3$, then $e_{\overline{G}}(v) = e_G(v) = 2$.

Corollary 1.1:

If G is self-centered with diameter $d \ge 3$, then G is self-centered with diameter 2.

An edge $uv \in E(G)$ is a *dominating edge*) of G, if all the vertices of G other than u and v are adjacent to either u or v.

Theorem 1.6 [3]:

The following three statements are equivalent.

(1) Both G and G are self-centered with diameter two.

(2) G is self-centered with diameter two having no dominating edge.

(3) Neither G nor G contains a dominating edge.

Motivation: The Line graphs, Middle graphs, Total graphs and Quasi-total graphs are very much useful in computer networks. In analogous to line graph [6, 13], total graph [4], [5], middle graph [1, 2] and quasi-total graph [12], thirty-two graphs can be defined using different adjacency relations. Out of these operations, eight were already studied. Among the remaining twenty-four graph operations, two are defined and analyzed here. All the others have been defined and studied thoroughly and will be submitted elsewhere. This is illustrated below.

		Incident (INC)/	
G/ G/K _p / K _p	_	Non-incident (NINC)	$L(G)/L(G)/K_q/K_q$

Defining a new graph from a given graph by using the adjacency relation between two vertices or two edges and incident relationship between vertices and edges is known as Boolean operation. It defines new structure from the given graph and adds extra information of the original graph.

In Management and in social networks, the incident and non-incident relations of vertices and edges are used to define various networks. So these are very much applicable in socio-economical problems. In some cases, it is possible to retrieve the original graph from the Boolean graphs in polynomial time. So these graph operations may be used in graph coding or coding of some grouped signal. Also, it is possible to study the structure of original graphs through these Boolean graph operations. This motivates the study for the exploration of various Boolean operations and study of their structural properties.

Let G be a (p, q) graph with vertex set V(G) and edge set E(G). The Boolean graph B $\overline{_{Kp, INC, L(G)}}(G)$ is a graph with vertex set V(G) \cup E(G) and two vertices are adjacent if and only if they correspond to two non-adjacent edges of G or to a vertex and an edge incident to it in G. For simplicity, denote this graph by BG₃(G), Boolean graph of G-third kind. The vertices of BG₃(G), which are in V(G) are called point vertices and vertices in E(G) are called line vertices of BG₃(G). V(BG₃(G)) = V(G) \cup E(G) and E(BG₃(G)) = (E(T(G))-(E(G) \cup E(L(G))) \cup E($\overline{L}(G)$). BG₃(G) has p+q vertices, p-point vertices and q-line vertices. BG₃(G) is a spanning subgraph of BG₂(G). $\overline{K_p}$ and $\overline{L}(G)$ are induced subgraphs of BG₃(G).

2. Properties of $BG_3(G)$ and $BG_3(G)$

Let G be a (p, q) graph with vertices $v_1, v_2, ..., v_p$. Let d_i , i = 1, 2, ..., p denote the degree of the vertices $v_1, v_2, ..., v_p$ in G. Then it follows from the definition that BG₃(G) has $(q(q+5)/2)-(1/2)\Sigma d_i^2$ edges with degree of v_i in BG₃(G) = deg_G v_i = d_i and degree of a line vertex $e_{ij} = v_i v_j \in E(G)$ in BG₃(G) is $q-d_i-d_j+3$. Since it is easy to follow, the following proposition is stated without proof.

Proposition 2.1:

(1) $BG_3(G)$ has an isolated vertex if and only if G has an isolated vertex.

(2) $BG_3(G)$ has a pendant vertex if and only if G has a pendant vertex.

(3) BG₃(G) is regular if and only if G is regular of degree m = (q+3)/3. If G is regular of degree $m \neq (q+3)/3$, then BG₃(G) is bi-regular.

(4) $BG_3(G)$ is disconnected if and only if G has isolated vertices.

Remark 2.1:

 $BG_3(K_4) \cong P$, the Petersen graph.

Theorem 2.1:

Girth of $BG_3(G)$ is three if and only if G has at least three mutually non-adjacent edges.

Proof:

In $BG_3(G)$, no two point vertices are adjacent and line vertices which represent non-adjacent edges in G are adjacent in $BG_3(G)$. Therefore, girth of $BG_3(G)$ is three implies, there exists $e_1, e_2, e_3 \in E(G)$ such that e_1, e_2, e_3 form a cycle in BG₃(G). Hence by the definition of BG₃(G), the edges e_1, e_2, e_3 are mutually non-adjacent to each other in G.

Converse is obvious.

Theorem 2.2:

Girth of $BG_3(G) = 4$ if and only if G has $K_{1,2} \cup K_2$ as subgraph and G has no three mutually non-adjacent edges.

Proof: Assume girth of $BG_3(G) = 4$. Hence by the previous theorem, G has no three mutually non-adjacent edges. $BG_3(G)$ has an induced C_4 as subgraph.

Case 1: $v_1 e_1 v_2 e_2 v_1$ represents a C_4 in $BG_3(G)$.

This is not possible since both e_1 , e_2 are incident with same vertices v_1 and v_2 .

Case 2: $v_1 e_1 e_2 e_3 v_1$ represents a C_4 in $BG_3(G)$.

In G, v_1 is incident with e_1 and e_3 and e_2 is not adjacent with e_1 and e_2 . Therefore, G has

 $K_{1,2} \cup K_2$ as subgraph.

Other cases are not possible.

Corollary 2.2:

(1) If G is a connected graph with more than four vertices and $G \neq K_{1,n}$, girth of BG₃(G) is 3 or 4.

(2) If G is disconnected and has no isolated vertices, girth of BG₃(G) is 3 or 4.

Remark 2.2:

If $G = K_{1,n}$, $2K_2$, then $BG_3(G)$ is acyclic.

Theorem 2.3:

Girth of $BG_3(G) = 5$ if and only if p = 4 and G has P_4 as subgraph.

Proof:

Assume girth of BG₃(G) = 5. By the previous two Theorems, p is at most 4. When $p \le 3$, BG₃(G) has no cycle of length five. Therefore, p = 4. Also G $\ne K_{1,n}$. Hence, G must be any of P₄, C₄, K₄—e, K₄.

Conversely, if $G = P_4$, C_4 , K_4 —e or K_4 , that is p = 4 and G has P_4 as subgraph, girth of BG₃(G) is five.

Theorem 2.4:

Girth of $BG_3(G) = 6$ if and only if $G = K_3$.

Proof:

Girth of $BG_3(G) = 6$ implies p < 4. The only possibility is $G = K_3$.

Theorem 2.5:

 $BG_3(G)$ has a dominating edge if and only $G = K_2$ or $2K_2$.

Proof:

Case 1: uv, where u, $v \in V(G)$ is a dominating edge in BG₃(G).

This is not possible since, no two point vertices are adjacent in BG₃(G).

Case 2: e_1e_2 is a dominating edge in BG₃(G), where $e_1, e_2 \in E(G)$.

 e_1e_2 is an edge in BG₃(G) implies that e_1 , e_2 are non-adjacent edges in G. e_1e_2 is a dominating edge in BG₃(G) implies that all other edges in G are not adjacent to e_1 or e_2 or both. Therefore, there exists no edge adjacent to both e_1 and e_2 in G. Also, all point vertices are incident with e_1 or e_2 in G.

Hence G must be $2K_2$.

Case 3: ue is a dominating edge in BG₃(G), where $u \in V(G)$, $e \in E(G)$.

By the definition of $BG_3(G)$, e is incident with u in G. Also, all other point vertices are dominated by e in $BG_3(G)$. This implies that $G = K_2$.

Hence the theorem is proved.

Next, properties of $BG_3(G)$ can be seen. Following results are easy to follow from the definition.

(1) Degree of a point vertex v in $BG_3(G)$ is $p+q-1-deg_G v$.

(2) Degree of a line vertex e_{ij} in $BG_3(G)$ is $(p-4)+d_i+d_j$.

(3) Number of edges in $BG_3(G) = p(p-1)/2 + q(p-3) + (1/2)\Sigma di^2$.

(4) The induced subgraph formed by the point vertices is a complete graph and the induced subgraph formed by the line vertices is L(G) in $BG_3(G)$.

(5) Girth of BG₃(G) is always three for $p \ge 3$.

(6) $BG_3(G)$ is disconnected if $G = K_2$, otherwise $BG_3(G)$ is connected.

(7) BG₃(G) has a pendant vertex if and only if $G = K_2 \cup K_1$ or K_2 .

Theorem 2.6:

BG₃(G) has a dominating edge for all G, $G \neq K_n$, n > 3.

Proof:

Assume $BG_3(G)$ has a dominating edge.

Case 1: u_1u_2 is a dominating edge in BG₃(G), where $u_1, u_2 \in V(G)$.

 u_1u_2 is a dominating edge in BG₃(G) implies that every line vertex is adjacent to either u_1

or u_2 in BG₃(G). This gives, u_1 and u_2 are not adjacent in G. Hence, diam(G) ≥ 2 .

Case 2: e_1e_2 is a dominating edge in BG₃(G), where e_1 , e_2 are line vertices.

Since e_1e_2 is a dominating edge, e_1 and e_2 are adjacent edges in G. Hence, e_1 and e_2 are incident with a common vertex u in G. Therefore, this u is not dominated by e_1 or e_2 in $BG_3(G)$. Hence, this case is not possible.

Case 3: ue is a dominating edge, where $u \in V(G)$ and $e \in E(G)$.

Since ue is a dominating edge in $BG_3(G)$, $e \in E(G)$, u is not incident with e in G. If u is isolated, then diam(G) > 2. If u is not isolated, there exists an edge e_1 incident with u, this must be dominated by e in $BG_3(G)$. Therefore, e must be adjacent to e_1 and not incident with u. If deg_G u is more than 2, then ue cannot be a dominating edge. Therefore, ue is a dominating edge only when deg_G u ≤ 2 .

Hence, by case1, $BG_3(G)$ has a dominating edge when diam(G) ≥ 2 . By case 3, when diam(G) = 1, $BG_3(G)$ has a dominating edge only when deg_G $u \leq 2$. That is when $G = K_3$. If $G = K_n$, n > 3, $BG_3(G)$ has no dominating edge. So, $BG_3(G)$ has a dominating edge for $G \neq K_n$, n > 3. (when n = 2, $BG_3(G)$ is disconnected).

Theorem 2.7:

Let G be a (p, q) graph (non-trivial) such that $BG_3(G)$ is connected. Then $BG_3(G)$ is geodetic if and only if $G = K_2 \cup K_1$. **Proof:**

 $BG_2(G)$ is a subgraph of $BG_3(G)$ and $BG_2(G)$ is geodetic if and only if $G = K_3$ or $K_2 \cup K_1$. But, $BG_3(K_3)$ is not geodetic. Hence the theorem is proved.

Theorem 2.8:

 $BG_3(G)$ has C_5 as induced subgraph if and only if G has P_4 as subgraph.

```
Proof:
```

Suppose $BG_3(C_5)$ has C_5 as induced subgraph.

Case 1: All the vertices of C_5 in $BG_3(G)$ are line vertices.

Let $e_1 e_2 e_3 e_4 e_5 e_1$ form an induced C_5 in $BG_3(G)$. Hence in G, e_1 is adjacent with e_3 , e_4 ; e_2 is adjacent with e_4 , e_5 ; e_3 is adjacent with e_1 , e_5 ; e_4 is adjacent with e_1 , e_2 ; e_5 is adjacent with e_2 , e_3 . Therefore, G contains C_5 as subgraph.

Case 2: C₅ in BG₃(G) contains four line vertices.

Let $v_1 e_1 e_2 e_3 e_4 v_1$ form an induced C_5 in BG₃(G). In this case, G has P₅ as subgraph.

Case 3: C_5 in BG₃(G) has three line vertices.

Let $v_1 e_1 v_2 e_2 e_3 v_1$, form an induced C_5 in BG₃(G). e_1 is incident with v_1 , v_2 in G;

 e_2 is incident with v_2 ; e_1 , e_2 are adjacent; e_3 is not adjacent to e_2 and adjacent to e_1 . Therefore, G contains P_4 as subgraph. Other cases are not possible.

Combining all these, it is seen that $BG_3(G)$ has C_5 as induced subgraph if and only if G has P_4 as subgraph.

Theorem 2.9:

 $BG_3(G) \text{ has no induced } C_5 \text{ if and only if the components of } G \text{ are } nK_1, \, nK_2, \, K_3 \text{ or}$ $K_{1,n}, \, n \geq 2.$

Theorem 2.10:

 $BG_3(G)$ has C_6 as induced subgraph if and only if G has C_3 or θ -graph as subgraph.

Remark 2.3:

 $BG_3(G)$ cannot have C_n , n > 7 as induced subgraph.

Theorem 2.11:

BG₃(G) has P₄ as induced subgraph whenever $G \neq K_2$, $K_2 \cup nK_1$.

Proof:

Assume $G \neq K_2 \cup nK_1$. Since G is non-trivial, G has atleast two edges.

Case 1: $e_1, e_2 \in E(G)$ are adjacent edges of G.

In G, e_1 , e_2 are incident at $v \in V(G)$. Hence, in BG₃(G), $v_1 e_1 v e_2$ is an induced P₄.

Case 2: $e_1, e_2 \in E(G)$ are non-adjacent edges of G.

Let $e_1 = u_1v_1 \in E(G)$, $e_2 = u_2v_2 \in E(G)$. In BG₃(G), $\{u_1 \ e_1 \ e_2 \ u_2\}$ forms an induced P₄. Hence the theorem is proved.

Theorem 2.12:

BG₃(G) has C₄ as induced subgraph, whenever $G \neq nK_2$ or $nK_2 \cup mK_1$.

Proof:

Let G is be a non-trivial graph and $G \neq nK_2$. Then $\Delta(G) \geq 2$. Hence, there exists at least two adjacent edges $e_1, e_2 \in E(G)$. Let $e_1 = vv_1, e_2 = vv_2$. In $BG_3(G)$, $\{v_1 \ e_1 \ e_2 \ v_2 \ v_1\}$ forms an induced C_4 . This proves the theorem.

Lemma 2.2:

 $B\mathrm{G}_3(G)$ contains C_5 as induced subgraph if and only if G contains P_4 as subgraph.

Proof:

Assume $BG_3(G)$ has C_5 as induced subgraph. C_5 cannot have more than two point vertices.

Case 1: C_5 in BG₃(G) has only one point vertex.

Let $v_1 e_1 e_2 e_3 e_4 v_1$ be a C_5 in BG₃(G). In G, v_1 is not incident with e_1 , e_4 and e_2 , e_3 are incident with v_1 . Also, e_1 is adjacent to e_2 and e_2 is adjacent to e_3 ; e_3 is adjacent to e_4 . Therefore, G has induced P_5 as subgraph.

Case 2: C_5 in BG₃(G) has only two point vertices.

Let $v_1 v_2 e_1 e_2 e_3 v_1$ be a C_5 in BG₃(G). In G, e_2 is incident with $v_1, v_2; e_1$ is incident with $v_1; e_3$ incident with $v_1; e_1, e_3$ cannot be adjacent. Hence, P_4 is a subgraph of G. Other cases are not possible

Case 3: C_5 in BG₃(G) contains no point vertex.

 $e_1 e_2 e_3 e_4 e_5 e_1$ form a C_5 in BG₃(G). In this case, G contains a C_5 as subgraph. Combining all these cases, BG₃(G) has C_5 as induced subgraph if and only G has P_4 as subgraph.

Remark 2.4:

If G is connected and has more than three vertices and $G \neq K_{1,n}$, then G has P₄ as subgraph.

Theorem 2.13:

 $BG_3(G)$ has no induced C_5 if and only if $G = K_{1,n}$, K_3 , $K_{1,2}$, K_2 .

Theorem 2.14:

 $BG_3(G) \text{ has } C_n, \, n \geq 6 \text{ as induced subgraph if and only if } G \text{ has } C_n, \, n \geq 6 \text{ as subgraph.}$

Theorem 2.15:

BG₃(G) is perfect if and only if the components of G are nK_1 , nK_2 , K_3 or $K_{1,n}$,

$n \ge 2$.

Theorem 2.16:

 $BG_3(G)$ has C_5 as induced subgraph if and only if G has P_4 as subgraph.

Proof:

Suppose $BG_3(C_5)$ has C_5 as induced subgraph.

Case 1: All the vertices of C_5 in $BG_3(G)$ are line vertices.

Let $e_1 e_2 e_3 e_4 e_5 e_1$ form an induced C_5 in $BG_3(G)$. Hence in G, e_1 is adjacent with e_3 , e_4 ; e_2 is adjacent with e_4 , e_5 ; e_3 is adjacent with e_1 , e_5 ; e_4 is adjacent with e_1 , e_2 ; e_5 is adjacent with e_2 , e_3 . Therefore, G contains C_5 as subgraph.

Case 2: C₅ in BG₃(G) contains four line vertices.

Let $v_1 e_1 e_2 e_3 e_4 v_1$ form an induced C_5 in $BG_3(G)$. In this case, G has P_5 as subgraph. **Case 3:** C_5 in $BG_3(G)$ has three line vertices.

Let $v_1 e_1 v_2 e_2 e_3 v_1$, form an induced C_5 in BG₃(G). e_1 is incident with v_1 , v_2 in G;

 e_2 is incident with v_2 ; e_1 , e_2 are adjacent; e_3 is not adjacent to e_2 and adjacent to e_1 . Therefore, G contains P_4 as subgraph. Other cases are not possible.

Combining all these, it is seen that $BG_3(G)$ has C_5 as induced subgraph if and only if G has P_4 as subgraph.

Theorem 2.17:

 $BG_3(G) \text{ has no induced } C_5 \text{ if and only if the components of } G \text{ are } nK_1, \, nK_2, \, K_3 \text{ or}$ $K_{1,n}, \, n \geq 2.$

Theorem 2.18:

 $BG_3(G)$ has $C_6\,$ as induced subgraph if and only if G has C_3 or $\theta\mbox{-graph}$ as subgraph.

Remark 2.5:

BG₃(G) cannot have C_n , n > 7 as induced subgraph.

Theorem 2.19:

BG₃(G) has P₄ as induced subgraph whenever $G \neq K_2$, $K_2 \cup nK_1$.

Proof:

Assume $G \neq K_2 \cup nK_1$. Since G is non-trivial, G has at-least two edges.

Case 1: $e_1, e_2 \in E(G)$ are adjacent edges of G.

In G, e_1 , e_2 are incident at $v \in V(G)$. Hence, in BG₃(G), $v_1 e_1 v e_2$ is an induced P₄.

Case 2: $e_1, e_2 \in E(G)$ are non-adjacent edges of G.

Let $e_1 = u_1v_1 \in E(G)$, $e_2 = u_2v_2 \in E(G)$. In BG₃(G), $\{u_1 \ e_1 \ e_2 \ u_2\}$ forms an induced P₄. Hence the theorem is proved.

Theorem 2.20:

BG₃(G) has C₄ as induced subgraph, whenever $G \neq nK_2$ or $nK_2 \cup mK_1$.

Proof:

Let G is be a non-trivial graph and $G \neq nK_2$. Then $\Delta(G) \ge 2$. Hence, there exists at least two adjacent edges $e_1, e_2 \in E(G)$. Let $e_1 = vv_1, e_2 = vv_2$. In BG3(G), $\{v_1 \ e_1 \ e_2 \ v_2 \ v_1\}$ forms an induced C₄. This proves the theorem.

Lemma 2.2:

 $B\mathrm{G}_3(G)$ contains C_5 as induced subgraph if and only if G contains P_4 as subgraph.

Proof:

Assume $BG_3(G)$ has C_5 as induced subgraph. C_5 cannot have more than two point vertices.

Case 1: C_5 in BG₃(G) has only one point vertex.

Let $v_1 e_1 e_2 e_3 e_4 v_1$ be a C_5 in BG₃(G). In G, v_1 is not incident with e_1 , e_4 and e_2 , e_3 are incident with v_1 . Also, e_1 is adjacent to e_2 and e_2 is adjacent to e_3 ; e_3 is adjacent to e_4 . Therefore, G has induced P_5 as subgraph.

Case 2: C_5 in BG₃(G) has only two point vertices.

Let $v_1 v_2 e_1 e_2 e_3 v_1$ be a C_5 in BG₃(G). In G, e_2 is incident with $v_1, v_2; e_1$ is incident with $v_1; e_3$ incident with v1; e1, e3 cannot be adjacent. Hence, P_4 is a subgraph of G. Other cases are not possible

Case 3: C₅ in BG₃(G) contains no point vertex.

 $e_1 e_2 e_3 e_4 e_5 e_1$ form a C_5 in BG₃(G). In this case, G contains a C_5 as subgraph. Combining all these cases, BG₃(G) has C_5 as induced subgraph if and only G has P_4 as subgraph.

Remark 2.6:

If G is connected and has more than three vertices and $G \neq K_{1,n}$, then G has P₄ as subgraph.

The following theorems can be easily proved as in the previous theorem.

Theorem 2.21:

 $BG_3(G)$ has no induced C_5 if and only if $G = K_{1,n}$, K_3 , $K_{1,2}$, K_2 .

Theorem 2.22:

 $BG_3(G) \text{ has } C_n \text{, } n \geq 6 \text{ as induced subgraph if and only if } G \text{ has } C_n \text{, } n \geq 6 \text{ as subgraph.}$

Theorem 2.23:

 $BG_3(G) \mbox{ is perfect if and only if the components of G are nK_1, nK_2, K_3 or $K_{1,n}$, $n \geq 2$.}$

Covering numbers of BG₃(G) and BG₃(G)

Proposition 2.1:

$$\chi(BG_3(G)) = \chi(L(G)) + 1 \text{ or } \chi(L(G))$$

Proof:

In $BG_3(G)$, each line vertex is adjacent to exactly two point vertices and no other vertex is adjacent to exactly these two point vertices. Also, the induced subgraph formed by the set of all point vertices is totally disconnected.

Therefore, $\chi(BG_3(G)) = \chi(-L(G))+1$ or $\chi(-L(G))$.

Proposition 2.2:

$$\omega(BG_3(G)) = \omega(\overrightarrow{L}(G)) = \begin{cases} \beta_1(G) & \text{if } \beta_1(G) \ge 2; \\ 2 & \text{otherwise.} \end{cases}$$

Proof:

The induced subgraph formed by the set of all point vertices is totally disconnected and if any two line vertices are adjacent in BG₃(G), there is no point vertex which is adjacent to these line vertices. Therefore, $\omega(BG_3(G)) = \omega(-L(G))$ if $\beta_1(G) \ge 2, 2$ otherwise.

Proposition 2.3:

 $\theta(BG_3(G)) \ge p.$

Proof:

(1) If $p \ge q$._Consider an edge joining a point vertex and a line vertex. In this way, there are qK_2 's and (p-q) remaining K_1 's. Therefore, $\theta(BG_3(G)) = p$.

(2) If $q > p_As$ in the previous case, there are pK_2 's. Consider the remaining q-p line vertices.

Let $k = \min \{\theta(G_1): G_1 \subseteq L(G)\}$ containing q-p vertices. Hence, $\theta(BG_3(G)) = p+k$. G₁

Thus, $\theta(BG_3(G)) \ge p$.

Proposition 2.4:

 $\beta_{o}(BG_{3}(G)) = p.$

Proof:

Obvious, since V(G) is independent in $BG_3(G)$, which is a maximum independent set and each line vertex is adjacent to its incident point vertices.

Remark 2.7:

 $\alpha_{0}(BG_{3}(G)) = q \text{ (since } \alpha_{0}(BG_{3}(G)) + \beta_{0}(BG_{3}(G)) = p+q).$

Proposition 2.5:

(1) $\alpha_1(BG_3(G)) \ge p$ and

(2)
$$\beta_1(BG_3(G)) \leq q$$
.

Proof of (1):

Case 1: $p \ge q$: To cover all the vertices of BG₃(G), take q edges joining a point vertex to a line vertex (distinct). To cover the remaining p-q point vertices, consider the p-q edges incident with the p-q point vertices. Totally these q+(p-q) = p edges covers the vertices of BG₃(G). Therefore, $\alpha_1(BG_3(G)) = p$.

Case 2: $q > p_{-}Take p$ edges joining a point vertex to a line vertex (distinct). To cover the remaining q-p line vertices, consider a line cover for G_1 , where G_1 is the induced subgraph formed by these q-p vertices. Thus, $\alpha_1(BG_3(G)) \ge p$. Proof of (2) is similar.

Proposition 2.6:

 $\chi(BG_3(G)) \ge p.$

Proof:

Case1: If $p \ge q$. Take a line vertex e and a point vertex u, incident with e. {u, e} form an independent set. Similarly form q independent sets each containing a line vertex and a point vertex incident with it in G. The remaining p-q point vertices form a K_{p-q} . Therefore, $\chi(BG_3(G)) \leq q+(p-q) = p$.

Case 2: If p < q. As in the previous case, form p independent sets. There are q-premaining line vertices. Hence, $\chi(BG_3(G)) \ge p$.

Proposition 2.7:

(1) $(\Omega)(BG_3(G)) = p.$ (2) $\theta(BG_3(G)) = \theta(L(G))$ or $1 + \theta(L(G))$

Proof of (1):

 $\Theta(G) = \beta_o(G), \text{ by Theorem 1.4. Therefore, } \Theta(BG_3(G)) = \beta_o(BG_3(G)) = p$ (proved). Hence, $\omega(BG_3(G)) = p$. Proof of (2):

Since K_p is an induced subgraph, the minimum number of complete subgraphs needed to cover the vertices of $BG_3(G)$ is at most $1+\theta(L(G))$.

If the point vertices are divided into V_1 , V_2 , ..., V_k such that they form complete subgraphs with E_1 , E_2 , ..., E_m , $m = \theta(L(G))$. Then $\theta(BG_3(G)) = \theta(L(G))$, otherwise $\theta(L(G))+1$. Therefore, $\theta(BG_3(G)) = \theta(L(G))$ or $\theta(L(G))+1$.

Example 2.1:

204

Consider G = P₇. Let v_1 , v_2 , ..., v_7 denote the vertices of G and $e_{ij} = v_i v_j$. In BG₃(G), consider $(v_1, v_2, v_3, e_{56}, e_{67})$, $(v_4, v_5, v_6, v_7, e_{12}, e_{23})$, (e_{34}, e_{45}) . The induced subgraph formed by these vertices are complete and cover the vertices of $BG_3(G)$. Therefore, $\theta(BG_3(G)) =$ $3 = \theta(L(G)).$

Proposition 2.8:

(1)
$$\alpha_{o}(BG_{3}(G)) = p + \alpha_{o}(L(G)) = p + q - \beta_{o}(L(G))$$

$$= \begin{cases} p + q - \beta_{1}(G) & \text{if } G \neq K_{1,n}, K_{3} \\ p + q - 2 & \text{if } G = K_{1,n} \text{ or } K_{3} \end{cases}$$
(2) $\beta_{o}(BG_{3}(G)) = \beta_{o}(L(G)) = \begin{cases} \beta_{1}(G) & \text{if } \beta_{1}(G) \geq 2, \text{ that is } G \neq K_{1,n}, K_{3} \\ 2, & \text{if } G = K_{1,n} \text{ or } K_{3}. \end{cases}$

Proof of (1):

Proof of (1):

The p point vertices covers all the edges in K_p and edges incident with a point vertex and line vertex. $\Omega_0(L(G))$ line vertices covers all the edges in L(G) if $G \neq K_{1,n}, K_3$. Hence, $\alpha_{o}(BG_{3}(G)) = p + \alpha_{o}(L(G)) = p + q - \beta_{1}(G)$ if $G \neq K_{1,n}, K_{3}$. If $G = K_3$, $\alpha_o(BG_3(G)) = 4 = p+q-2$ and If $G = K_{1,n}$, then $\alpha_o(BG_3(G)) = n+n-1 = 2n-2$ 1 = p+q-2 = p+(p-1)-2 = 2p-3.**Proof of (2):** $\beta_0(BG_3(G)) = p+q-\alpha_0(BG_3(G)) = \beta_1(G)$ or 2.

Remark 2.8:

Set of all point vertices form a complete subgraph of $BG_3(G)$. If $e = uv \in E(G)$, then {u, e}, {v, e} are independent in $BG_3(G)$. Therefore, the maximum number of mutually non-adjacent vertices of BG₃(G) is the maximum number of mutually nonadjacent edges of G if $\beta_1(G) \ge 2$.

. . .

Proposition 2.9:

$$(1) \ \alpha_{1}(BG_{3}(G)) \leq \begin{cases} \min \{q + \lfloor (p-q+1)/2 \rfloor\}, \lfloor (p+1)/2 \rfloor + \alpha_{1}(L(G))\}, \text{ if } p \geq q \\ \min \{p+k, \lfloor (p+1)/2 \rfloor + \alpha_{1}(L(G))\}, \text{ if } p < q. \end{cases}$$

$$(2) \ \beta_{1}(BG_{3}(G)) \geq \begin{cases} \max \{q+(p-q)/2, (p/2)+\beta_{1}(L(G))\}, \text{ if } p \geq q. \\ \max \{p+k_{1}, (p/2)+\beta_{1}(L(G))\}, \text{ if } p < q. \end{cases}$$

Proof of (1):

Case 1: $p \ge q$. Consider the set D_1 of q edges each joining a line vertex to a point vertex (distinct). Consider the set of p-q point vertices. Consider a line cover D_2 for K_{p-q} . $D = D_1 \cup D_2$ is a line cover for $\overline{BG_3}(G)$ and $|D| = q+\lfloor (p-q+1)/2 \rfloor$. Hence, $\alpha_1(\overline{BG_3}(G)) \le q+\lfloor (p-q+1)/2 \rfloor$. Consider the set of point vertices. Since they form a complete subgraph, $\lfloor (p+1)/2 \rfloor$ edges cover all the point vertices and $\alpha_1(L(G))$ edges cover all the line vertices.

Hence, $\alpha_1(BG_3(G)) < \lfloor (p+1)/2 \rfloor + \alpha_1(L(G)).$

Hence, result (1) follows if $p \ge q$.

Case 2: p < q. Consider the set D_1 of p edges each joining a line vertex to a point vertex (distinct). Consider the remaining q—p line vertices.

Let $k = \min \alpha_1(G_1)$, where G_1 is the subgraph induced by these q-p line vertices.

 G_1

Therefore, $\alpha_1(\ BG_3(G)) \le \min\{(p+k), \lfloor (p+1)/2 \rfloor + \alpha_1(L(G)\}\}$. **Proof of (2):** Follows from (1).

Conclusion: Other properties such as traversability, connectivity, edge partition and domination parameters are studied and submitted elsewhere.

References:

- Jin Akiyama, Takashi Hamada and Izumi Yoshimura, Miscellaneous properties of middle graphs, TRU, Mathematics, 10 (1974), 41-53.
- [2] Jin Akiyama, Takashi Hamada and Izumi Yoshimura, On characterizations of the middle graphs, pp. 35-39.
- [3] Jin Akiyama and Ando, K., Equi-eccentric graphs with equi-eccentric complements, TRU Math., Vol. 17(1981), pp 113-115.
- [4] Behzad, M., and Chartrand, G., Total graphs and Traversability. Proc. Edinburgh Math. Soc. 15 (1966), 117-120.
- [5] Behzad, M., A criterion for the planarity of a total graph, Proc. Cambridge Philos. Soc. 63 (1967), 679-681.
- [6] Beineke, L.W., Characterization of derived graphs, J. Combinatorial Theory. Ser. 89 (1970), 129-135.
- [7] Buckley, F., and Harary, F., Distance in graphs, Addison-Wesley Publishing company (1990).
- [8] Gupta, R.P., Independence and covering numbers of line graphs and Total graphs, in : F. Harary, ed., Proof Techniques in graph Theory (Academic Press, Newyork, 1969), 61-62.

- ²⁰⁶ International Journal of Engineering Science, Advanced Computing and Bio-Technology
 - [9] Harant, J., Schiermeyer, I., Note on the independence number of a graph in terms of order and size. Discrete Mathematics 232 (2001) 131-138.
 - [10] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
 - [11] Janakiraman, T.N., Muthammai, S., Bhanumathi, M., On the Boolean function graph of a graph and on its complement. Math Bohem.130 (2005), 113-134.
 - [12] Janakiraman, T.N., Muthammai, S., Bhanumathi, M., Domination numbers of the Boolean function graph of a graph. Math Bohem. 130 (2005), 135-151.
 - [13] Janakiraman, T.N., Muthammai, S., Bhanumathi, M., Global Domination and neighborhood numbers in the Boolean function graph of a graph. Math Bohem. 130 (2005), 231-246.
 - [14] Janakiraman, T.N., Muthammai, S., Bhanumathi, M., Domination numbers on the Complement of the Boolean function graph of a graph. Math Bohem. 130 (2005), 247-263.
 - [15] Janakiraman,T.N., Bhanumathi,M., Muthammai, S., Point-set domination of the Boolean graph BG₂(G), Proceedings of the National Conference on Mathematical techniques and Applications Jan 5&6, 2007, SRM University, Chennai.-pages 191-206, 2008.
 - [16] Janakiraman T.N., Bhanumathi M and Muthammai S, On the Boolean graph BG₂(G) of a graph G, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 3, No. 2, pp 93-107, 2012.
 - [17] Ravindra, G., Perfect graphs proceedings of the National workshop in graph Theory and its Applications. Manonmaniam Sundaranar University. Tirunelveli, Feb. 21-27, 1996, pp. 145-171.
 - [18] Sastry, D.V.S., and Syam Prasad Raju, B., Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs, Discrete Mathematics 48 (1984) 113-119.
 - [19] Whitney, H., Congruent graphs and the connectivity of graphs. Amer. J. Math. 54(1932), 150-168.