International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 3, No. 4, October – December 2012, pp. 185-190

Further Results on Eccentric domination in Graphs

M.Bhanumathi and S.Muthammai

Government Arts College for Women, Pudukkottai-622001, India.

Email: bhanu_ksp@yahoo.com, muthammai_s@yahoo.com

Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric dominating set if for every $v \in V$ -D, there exists at least one eccentric point of v in D. The minimum of the cardinalities of the eccentric dominating sets of G is called the eccentric domination number $\gamma_{ed}(G)$ of G. In this paper, some new bounds for eccentric domination number of a graph is studied.

Key words: Eccentric dominating set, Eccentric domination number.

1. Introduction

Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [4], Buckley and Harary [1].

Definition 1.1 Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = \max \{d(u, v) : u \in V\}$. The radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is the maximum eccentricity. For any connected graph G, $r(G) \leq \text{diam}(G) \leq 2r(G)$. v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a peripheral vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices.

For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex. Eccentric set of a vertex v is defined as $E(v) = \{u \in V(G) / d(u, v) = e(v)\}.$

Definition 1.2 [4, 9] A set $S \subseteq V$ is said to be a **dominating set** in G, if every vertex in V-S is adjacent to some vertex in S. A dominating set D is an **independent dominating** set, if no two vertices in D are adjacent that is D is an independent set. A dominating set

Received: 12 April, 2012; Revised: 28 August, 2012; Accepted: 22 October, 2012

D is a connected dominating set, if $\langle D \rangle$ is a connected subgraph of G. A set $D \subseteq V(G)$ is a global dominating set, if D is a dominating set in G and G.

The **domination number** γ of G is defined to be the minimum cardinality of a dominating set in G. Similarly, we can define the connected domination number γ_c , independent domination number γ_i and global domination number γ_g .

A dominating set with cardinality $\gamma(G)$ is known as a γ -dominating set or γ -set .

Definition 1.3 [6]: A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V - D$, there exists at least one eccentric point of v in D.

An eccentric dominating set D is a minimal eccentric dominating set if no proper subset $D'' \subseteq D$ is an eccentric dominating set.

Definition 1.4 [7]: The eccentric domination number $\gamma_{ed}(G)$ of a graph G equals the minimum cardinality of an eccentric dominating set. An eccentric dominating set with cardinality $\gamma_{ed}(G)$ is known as a γ_{ed} - set.

Definition 1.5 [7]:

Let $S \subseteq V(G)$. Then S is known as an eccentric point set of G if for every $v \in V$ -S, S has at least one vertex u such that $u \in E(v)$. An eccentric point set S of G is a **minimal eccentric point set** if no proper subset S' of S is an eccentric point set of G. S is known as a **minimum eccentric point set** if S is an eccentric point set with minimum cardinality. The minimum cardinality of an eccentric point set of G denoted as e(G) is known as eccentric number of G.

Theorem 1.1 [9]: If G is a connected graph and $n \ge 3$, then $\gamma_c(G) = n - \mathcal{E}_T(G)$, where $\mathcal{E}_T(G)$ is the maximum number of pendent edges in any spanning tree of G.

Theorem 1.2 [8]: If H is any self-centered unique eccentric point graph then every vertex of H is an eccentric vertex.

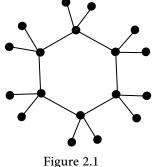
Theorem1.3[7]: If r(G) > 1, then γ_{ed} set of G is also a dominating set of $\overline{\mathbf{G}}$.

2. Bounds of $\gamma_{ed}(G)$ in terms of number of vertices of G

Following theorem gives the bound of $\gamma_{ed}(G)$ in terms of number of vertices of the graph G.

Theorem 2.1: If G is a connected graph with n vertices then $\gamma_{ed}(G) \leq \lfloor 2n/3 \rfloor$.

Proof: If D is a minimum eccentric dominating set, then for $v \in V-D$ there exists $u \in D$ and $w \in D$ such that u is adjacent to v in G and w is eccentric to v in G. Hence D contains atmost 2n/3 vertices. This proves the theorem.



Remark 2.1: This upper bound is sharp, since for $G = C_6 \circ 2K_1$ in Figure 2.1, $\gamma_{ed}(G) = 12 =$ 2n/3. Here H = C₆ is an unique eccentric point graph, but G is not an unique eccentric point Graph. Also, $\gamma_{ed}(G) = \gamma(G) + e(G)$.

Theorem 2.2: If H is any self-centered unique eccentric point graph with m vertices and G = $H^{\circ}2K_1$ then $\gamma_{ed}(G) = 2n/3 = 2m$.

Proof: If H is any self-centered unique eccentric point graph, then every vertex of H is an eccentric vertex. Hence m is even and G has 3m vertices. Let v1, v2, v3, v4,..., vm represent the vertices of H, and $\{v'_i, v''_i\}$ for i = 1, 2, 3 ..., m be the vertices of m copies of $2K_1$. Then in G, v'_i , v''_i are adjacent to v_i and if v_j is the eccentric vertex of v_i in H, then v'_i , v''_i are $v_3, v_4, ..., v_m \} \cup \{v_1^{\,\prime}, v_2^{\,\prime}, v_3^{\,\prime}, v_4^{\,\prime}, ..., v_m^{\,\prime}\} \text{ and } \{v_1^{\,\prime}, v_2^{\,\prime}, v_3^{\,\prime}, v_4^{\,\prime}, ..., v_m^{\,\prime}\} \cup \{v_1^{\,\prime\prime\prime}, v_2^{\,\prime\prime}, v_3^{\,\prime\prime}, ..., v_m^{\,\prime}\} \cup \{v_1^{\,\prime\prime\prime}, v_2^{\,\prime\prime\prime}, v_3^{\,\prime\prime\prime}, ..., v_m^{\,\prime\prime}\} \cup \{v_1^{\,\prime\prime\prime}, v_2^{\,\prime\prime\prime}, v_3^{\,\prime\prime\prime}, ..., v_m^{\,\prime\prime}\} \cup \{v_1^{\,\prime\prime\prime}, v_2^{\,\prime\prime\prime}, v_3^{\,\prime\prime\prime}, ..., v_m^{\,\prime\prime}\}$ $v_4'', ..., v_m''$ are minimum eccentric dominating sets of G. Hence, $\gamma_{ed}(G) = 2n/3 = 2m$.

Remark 2.2: If H is self-centered but not a unique eccentric point graph then γ_{ed} of G = H°2K₁ need not be 2n/3. For example, when $G = C_5°2K_1$, $\gamma_{ed}(G) = 8 \le 2n/3 = 10$.

Bounds of $\gamma_{ed}(G)$ interms of number of vertices and eccentric number of G.

Let us assume that G be a graph on n vertices, with eccentric number e(G), Let G' be a graph on n+e(G) vertices obtained from G as follows:

Let $S = \{u_1, u_2, ..., u_{e(G)}\}$ be the minimum eccentric point set of G. Attach a new vertex x_1 to u_1 by an edge and x_2 to u_2 by an edge, ..., $x_{e(G)}$ to $u_{e(G)}$ by an edge. Denote the new graph obtained as G'. Then |V(G')| = n+e(G) = |V(G)|+e(G) and |E(G')| = |E(G)|+e(G). Since in G', degree of each x_i 's is one, there is a minimum dominating set D of G' containing the set S. This dominating set D is clearly an eccentric dominating set of G. Therefore, $\gamma_{ed}(G) \leq \gamma(G') \leq (n+e(G))/2$. Hence the following theorem.

Theorem: 2.3: For any connected graph G on n vertices, $\gamma_{ed}(G) \leq (n + e(G))/2$.

Theorem 2.4: If G is a caterpillar such that each non-pendent vertices is of degree three then $\gamma_{ed}(G) = n/2+1$.

Proof: Since degree of each non-pendent vertex is three, G is of the following form.

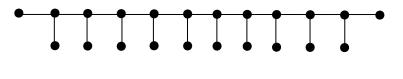


Figure 2.2

It is clear that, $\gamma_{ed}(G) = n/2+1$.

Theorem 2.5: If H is a connected graph with m vertices and eccentric number e(H), then eccentric domination number of $G = H^{\circ}kK_1$, k > 1 is not greater than m+e(H).

Proof: Since k > 1, vertices of H is a minimum dominating set and $\gamma(G) = m$. Let S be a minimum eccentric set of H. Then |S| = e(H). Let $S = \{v_1, v_2, v_3, ..., v_{e(H)}\}$. Consider $S' = \{v_1', v_2', v_3', ..., v_{e(H)}'\}$, where v_i' is a vertex of kK_1 which is adjacent to v_i in G. Then $V(H) \cup S'$ is a minimum eccentric dominating set of G. Hence $\gamma_{ed}(G) \leq m + e(H)$.

Graphs with $\gamma_{ed}(G) = \lfloor n/2 \rfloor + 1$:

1. Let G_1 be the collection of graphs C_5 , C_5 +e, P_5 and K_1 + K_1 + K_1 + $2K_1$.

2. Let G_2 be collection of caterpillars such that each non-pendent vertices is of degree three.

3. For any connected self-centered unique eccentric point graph H, let G_3 denote the collection of connected graphs G, each of which can be formed from $H^{\circ}K_1$ by adding a new vertex x and edges joining x to one or more of vertices of H such that eccentricities of vertices of $H^{\circ}K_1$ are not affected.

4. For any connected graph H, consider $G = H^{\circ}K_{1}$. Let u_{1} , v_{1} be vertices of G which are at distance = diameter G to each other and let u, v be their support vertices respectively. Join a new vertex x to u and a new vertex y to v by edges. Let G_{4} denote the collection of such new graphs.

5. Let $X \in G_1$ and $Y \in G_2$. Let G(X, Y) be a connected graph which may be formed from X and Y by joining each vertex of $U \subseteq V(X)$ to one or more non-pendent vertices of Y such that no set with fewer than $\gamma(X)$ vertices of X dominate V(X)-U. Let G_5 be collection of such graphs.

Theorem 2.6: For the graphs in G_1 , G_2 , G_3 , G_4 and $G_5 \gamma_{ed}(G) = \lfloor n/2 \rfloor + 1$. **Proof:** It can be easily verified that $\gamma_{ed}(G) = \lfloor n/2 \rfloor + 1$.

Theorem 2.7: If r(G) > 2, then γ_{ed} -set of G is also an eccentric dominating set of **G Proof:** Let D be a γ_{ed} -set of G. Then any $v \in V-D$ has an adjacent vertex $u \in D$ and an eccentric vertex $w \in D$. Since $r(G) \ge 3$, $\overline{\mathbf{G}}$ is self-centered of diameter two and in $\overline{\mathbf{G}}$ for $v \in V-D$, $w \in D$ is adjacent to v and $u \in D$ is eccentric to v. Hence D is an eccentric dominating set of $\overline{\mathbf{G}}$ also.

Theorem 2.8: For any positive integer m there exists a graph G with $\gamma(G) = 1$ and $\gamma_{ed}(G) = m$.

Proof: Consider $H = K_{2m} - 1$ factor. $G = H + K_1$. Then $\gamma(G) = 1$ and $\gamma_{ed}(G) = m$.

Theorem 2.9: For any positive integer m there exists a graph G with $\gamma(G) = 2$ and $\gamma_{ed}(G) = m$.

Proof: Consider G = $K_{2m} - 1$ factor. Then $\gamma(G) = 2$ and $\gamma_{ed}(G) = m$.

Here we list some problems related to $\gamma_{ed}(G)$

Problem 1: If G is a connected graph with $\delta(G) \ge 2$, then $\gamma_{ed}(G) \le \lfloor n/2 \rfloor + 1$.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Problem 2: If G is a connected graph with $\delta(G) \ge 2$, then $\gamma_{ed}(G) = \lfloor n/2 \rfloor + 1$ if and only if G is C₅ or C₅+e.

Problem 3: If $\gamma_{ed}(G) = 2n/3 = 2m$, then $G = H \circ 2K_1$, where H is any self-centered unique eccentric point graph with m vertices.

Acknowledgement: The authors are grateful to U.G.C, India for the financial support. (MRP-2799/09 (MRP/UGC-SERO) dated Feb. 2009).

References:

- [1] Buckley. F, Harary. F, Distance in graphs, Addison-Wesley, Publishing company (1990).
- [2] Bhanumathi M and Muthammai S, Eccentric domatic number of a Graph, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 1, No. 3, pp 118-128, 2010.
- [3] Bhanumathi M and Muthammai S, Eccentric domination in Trees, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 2, No. 1, pp 38-46, 2011.
- [4] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Net works, 7: 247-261.1977
- [5] Harary, F., Graph theory, Addition Wesley Publishing Company Reading, Mass (1972).
- [6] Janakiraman, T.N., (1991), On some Eccentricity properties of the graphs. Thesis, Madras University, Tamil Nadu, India.
- [7] Janakiraman T.N., Bhanumathi M and Muthammai S, Eccentric domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 1, No. 2, pp 55-70, 2010.
- [8] Parthasarathy, K.R. and Nandakumar, R., Unique eccentric point graphs, Discrete Math. 46, pp. 69-74, 1983.
- [9] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc. 1998.

190