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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC,L(G)) of G is  a   graph  with    vertex   set   V(G)E(G)    
and    two  vertices  in B(Kp, NINC,L(G)) are adjacent if and only if they correspond to two 
nonadjacent edges of G or to a vertex and an edge not incident to it in G, where L(G) is the line graph 
of G. For brevity, this graph is denoted by B3(G). In this paper, various domination numbers of B3(G) 
are determined.  
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1. Introduction 

 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, 

let V(G) and E(G) denote its vertex set and edge set respectively. For a connected graph G, 
the eccentricity eG(v) of a vertex v in G is the distance to a vertex farthest from v. Thus, 

eG(v) = {dG(u, v) : uV(G)}, where dG(u, v) is the distance between u and v in G. We 
denote the eccentricity of vertex v in G as e(v) and the distance between two vertices u, v 
in G as d(u, v),.  The minimum and maximum eccentricities are the radius and diameter 
of G, denoted r(G) and diam(G) respectively. The neighborhood NG(v) of a vertex v is the 

set of all vertices adjacent to v in G. The set NG[v] = NG(v){v} is called the closed 
neighborhood of v. A set S of edges in a graph G is said to be independent, if no two of 
the edges in S are adjacent. A set of independent edges covering all the vertices of a graph 
G is called perfect matching. An edge e = (u, v) is a dominating edge in a graph G, if every 
vertex of G is adjacent to at least one of u and v.  

 The concept of domination in graphs was introduced by Ore [17]. A set              

D  V(G) is said to be a dominating set of G, if every vertex in V(G)D is adjacent to 

some vertex in D. D is said to be a minimal dominating set if D{u} is not a dominating 
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set, for any uD. The domination number (G) of G is the minimum cardinality of a 

dominating set. We call a set of vertices a -set, if it is a dominating set with cardinality 

(G). Different types of dominating sets have been studied by imposing conditions on the 
dominating sets. A dominating set D is called a connected (independent) dominating set, if 
the induced subgraph <D> is connected [21] (independent) . D is called a total 
dominating set, if every vertex in V(G) is adjacent to some vertex in D [1]. A dominating 
set D is called a cycle dominating set, if the subgraph <D> has a Hamiltonian cycle and is 

called a perfect dominating set, if every vertex in V(G)D is adjacent to exactly one vertex 

in D [2]. D is called a restrained dominating set, if every vertex in V(G)D is adjacent to 

another vertex in V(G)D [3]. By c, i, t, 0, p and r, we mean the minimum 
cardinality of a connected dominating set, independent dominating set, total dominating 
set, cycle dominating set, perfect dominating set and restrained dominating set 
respectively. 

Sampathkumar and Pushpalatha [20] introduced the concept of point-set 

domination number of a graph. A set D  V(G) is called a point-set dominating set (psd-

set), if  for every set T  V(G)D, there exists a vertex vD such that the subgraph 

<T{v}> induced by T{v} is connected. The point-set domination number ps(G) is the 
minimum cardinality of a psd-set of G. Kulli and Janakiram introduced the concept of 
split [15] and non-split [16] domination in graphs. A dominating set D of a connected 

graph G is a split (non-split) dominating set, if the induced subgraph <V(G)D> is 

disconnected (connected). The split (non-split) domination number s(G) (ns(G)) of G is 
the minimum cardinality of a split(non-split) dominating set.  
Sampathkumar[19] introduced the concept of global domination in graphs. Kulli and 
Janakiram [14] introduced the concept of total global domination in graphs. Pushpalatha 
[18] introduced the concept of global point-set domination in graphs. 
 A dominating set of G is a global dominating set [19], if it is a dominating set of 

both G and its complementG. 
 A total dominating set T of G is a total global dominating set [14] (t.g.d. set), if T 

is also a total dominating set ofG. For a co-connected graph G = (V, E), a set D  V is 

said to be a global point set dominating set [18], if it is a psd-set of both G andG. The 

global domination number g of G is defined as the minimum cardinality of a global 

dominating set. The total global dominating number tg(G) of G  and global  point set 

domination number pg of G is defined similarly. 
Using L(G), the line graph of G, G, incident and non-incident, complementary 

operations, complete and totally disconnected structures, one can get thirty-two graph 
operations. As already total graphs, semi-total edge graphs, semi-total vertex graphs and 
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quasi-total graphs and their complements (8 graphs) are defined and studied, 
Janakiraman, Muthammai and Bhanumathi [5 – 13] studied all other similar remaining 
graph operations and called as Boolean Function Graphs. 

The Boolean function graph B(Kp, NINC,L(G))  G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC,L(G)) are adjacent if and only if they 
correspond to two nonadjacent edges of G or to a vertex and an edge not incident to it in 
G. For brevity, this graph is denoted by B3(G), where L(G) is the line graph of G. The 
vertices of G and L(G) in B3(G) are referred as point and line vertices respectively. The 

line vertex in B3(G) corresponding to an edge e in G is denoted by e. In this paper, we 
determine the various domination numbers for the graph B3(G). 

 

2. Prior Results 
In this section, we list some results with indicated references, which will be used 

in the subsequent main results. Let G be any (p, q) graph. 
Theorem 2.1 [20]: 

Let G = (V, E) be a graph. A set S  V is a point-set dominating set of G if and only 

if for every independent set W in VS, there exists a vertex u in S such that                    

W  NG(u)(VS).  
Theorem 2.2 [14]:  
 A total dominating set T of G is a total global dominating set if and only if for each 

vertex vV, there exists a vertex uT such that v is not adjacent to u.  
 
Theorem 2.3 [18]:  

  For a graph G, a set S  V(G) is a global point-set dominating set if and only if 
the following conditions are satisfied. 

(i).  For  every   independent   set  W   in  VS,  there  exists  u  in  S  such  that             

W  N(u)(VS) in G; and 

(ii). For every set D  VS such that <D> is complete in G, there exists v in S such that 

DN(v) =  in G. 
Observation 2.1 [13]: 

1. L(G) is an induced subgraph of B3(G) and subgraph of B3(G) induced by point 
vertices is totally disconnected. 

2.   If  di = degG(vi),  viV(G),  then  the  number  of  edges  in  B3(G)  is  

 (q/2)(2p + q - 3) – (1/2)1 i  pdi
2. 
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3.  The degree of a point vertex v in B3(G) is q - degG(v) and the degree of a line vertex e 
in B3(G) is degL(G)(e) + p - 2 = p + q - degL(G)(e) - 3 and hence  

 (B3(G)) = q - (G). 
4.  B3(G) contains isolated vertices if and only if G is one of the following  graphs.  K2, 

K1,n, n  2,  nK1,  K2nK1,  K1,mnK1,  where n  1 and m  2.  

5.  B3(G)  is  totally  disconnected  if  and  only  if  G  nK1 or K2, n  1. 

6.  B3(G) is disconnected if and only if G  nK1, K2mK1, C3mK1 and K1,nmK1, for  

m  0 and n  2. 
 

3. Main results 
Domination, Cycle, Connected and Total domination numbers in 
B3(G) 
 In the following, we find the graphs G for which the domination number  of 
B3(G) is 2 or 3. 
Proposition 3.1:  

  For any graph G having at least one edge, (B3(G))  2. 
Proof:  
 Since, there is no vertex of degree p + q – 1 in B3(G), the proposition follows. 
 
Lemma 3.2:  

Any 2-set of B3(G) containing either two point vertices or a point vertex and a 
line 

vertex is not a dominating set of B3(G). 
Proof:  Let D be a 2-set of B3(G). 
Case(i). D contains two point vertices. 

Let D = {v1, v2}, where v1, v2 are any two point vertices in B3(G). Then v1, v2V(G). If 
v1 and v2 are not adjacent in G, then since G contains at least one edge and the subgraph 
of B3(G) induced by point vertices is totally disconnected, D is not a dominating set of 
B3(G). If v1 and v2 are adjacent in G, then the line vertex in B3(G) corresponding to the 
edge joining v1 and v2 is not adjacent to any of the vertices in D. Hence, D is not a 
dominating set of B3(G).  
Case(ii): D contains one point and one line vertex. 

  Let e be the line vertex in D and e be the corresponding edge in G. Then the point 
vertex in B3(G) corresponding to at least one of the end vertices of e is not adjacent to any 
of the vertices in D and hence D is not a dominating set of B3(G). Hence, the lemma 
follows. 
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Theorem 3.3:  

  (B3(G)) = 2 if and only if there exists a set of two independent edges e1 and e2 in 
G such that no edge in G is adjacent to both e1 and e2. 
Proof: 

 Assume (B3(G)) = 2. Then there exists a minimal dominating set for B3(G) 
containing two vertices. By Lemma 3.2., if there is a dominating 2-set for B3(G), then that 
set contains only line vertices of B3(G), the edges in G corresponding to these line vertices 
are nonadjacent in G. If the edges are adjacent, then the point vertex in B3(G) 

corresponding to the common vertex is not dominated. Let D = {e1, e2} be a minimal 
dominating set for B3(G), where the edges e1, e2 in G corresponding to these line vertices 
are independent edges. If there exists an edge e in G adjacent to both e1 and e2, then the 
line vertex in B3(G) corresponding to the edge e will not be adjacent to any of the vertices 

e1, e2 in D, which is a contradiction. Hence, there exists no edge in G adjacent to both e1 
and e2. Converse follows easily. 
 
Remark 3.4:  
 The set D is also a connected (total) dominating set of B3(G). 
 
Proposition 3.5:  

 If G is not totally disconnected, then (B3(G))  3. 
Proof: 
  Since G is not totally disconnected, there exists an edge e = (u, v) in G, where u, 

vV(G). Let e be the line vertex in B3(G) corresponding to the edge e. Then                  

D = {u, v, e)  V(B3(G)) is a dominating set of B3(G). Hence, ( B3(G))  3. 
 
Remark 3.6: 
 (i) The set D is also an independent dominating set of B3(G) and hence    

i(B3(G))  3. Also any 2-set containing independent vertices in B3(G) is not a dominating 

set of B3(G) and i(B3(G))  3. Thus, i(B3(G)) = 3 if and only if G is not totally 
disconnected.  

 (ii) By Theorem 3.3. and Proposition 3.5., it follows that (B3(G)) = 2 or 3. 
 

 Next, the cycle domination number 0 of B3(G) is determined. Here, the graphs G 
such that B3(G) is connected and contain cycles are considered. 
Proposition 3.7:   

 For   any   (p, q)   graph  G   with   p  5  and  1(G)  2, 0(B3(G)) = 3. 
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Proof: 
 Let e1, e2 be any two independent edges in G and v be a vertex in G not incident 

with both e1 and e2. If e1 and e2 are the line vertices in B3(G) corresponding to the edges 

e1 and e2 respectively, then D = {v, e1, e2}  V(B3(G)) is a 3-cycle dominating set of 

B3(G) and hence 0(B3(G)) = 3. 
 
Note :  

 If 1(G) = 1, then B3(G) is disconnected 
 
Proposition 3.8:  

 If p = 4 and 1(G) = 2, then 0(B3(G)) = 5. 
Proof:  

 Since B3(G) is connected, p = 4 and 1(G) = 2, G contains P4 as a sub graph. 
Then the set D of line vertices in B3(G) corresponding to the edges in P4 together  with  
the  end  vertices  in  P4  is  a  cycle  dominating set of B3(G) and  

<D>  C5 in B3(G). Thus, 0(B3(G))  5. Also, B3(G) contains neither C3 nor C4, when     

p = 4. Hence, 0(B3(G)) = 5. 
 
Remark 3.9: 

1. From Proposition 3.8., it follows that, if G is any (p, q) graph with p  5 and          

1(G)  2, 

 then c(B3(G))  3. This bound is attained, if G is a cycle on five vertices. 

2. If p = 4 and 1(G) = 2, then c(B3(G))   = 3, if G  P4 or K1,3 + e. 
                                                             = 4, otherwise. 
3. Let G be any graph such that for every pair of independent edges e1 and e2 in G, there 

exist at least one edge adjacent to both e1 and e2. Then c(B3(G)) = 3 if and  only if  G 

contains  2K2K1 as  a sub graph, G is a path on four vertices or G  K1,3 + e. 

 In the following, the total domination number t of B3(G) is obtained. The 
following propositions are stated without proof, since the proofs are similar to above 
theorems. 
 
Proposition 3.10:  

 t(B3(G)) = 2 if and only if there exists two independent edges e1 and e2 in G such 
that no edge in G is adjacent to both e1 and e2. 
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Proposition 3.11:  

 t(B3(G)) = 3 if and only if either G contains 2K2K1 as a sub graph or G 

contains three edges e1, e2 and e3 such that <{e1, e2, e3}>  K1,3.  
 
Proposition 3.12:  
 Let G  be  any  graph  having a perfect matching containing at least three edges. 
Then the set of all line vertices in B3(G) corresponding to the edges in the perfect 
matching is a total dominating set of B3(G). 
 
Proposition 3.13:  
 Let G be a graph that is neither a star nor a cycle on three vertices and let D be a 

line cover for G with D= 1(G). Then the set of all line vertices in B3(G) 
corresponding to the edges in D is a total dominating set of B3(G). 
 

Perfect, Point set and Restrained domination numbers in B3(G) 
 In the following, the graphs G for which the perfect domination number p of 
B3(G) is 2 or 3 are obtained. 
 
Theorem 3.14: 
  Let G be any graph such that there exists a pair of independent edges in G such 

that no edge in G is adjacent to both of these independent edges. Then p(B3(G)) = 2 if 

and only if G  2K2. 
Proof:  

 Assume p(B3(G)) = 2. Then there exists a perfect dominating set D of B3(G) 
containing two vertices. Since D is a dominating set of B3(G), D contains line vertices only 
such that the corresponding edges, say e1 and e2 in G are independent  and  there  exists  
no  edge  in  G  adjacent  to  both e1 and e2. Let  

e1, e2 be the line vertices in B3(G) corresponding to e1 and e2. Then D = {e1, e2} is a 
dominating set of B3(G). If there exists a vertex in G adjacent to at least one of the end 

vertices of e1 and e2, then the corresponding point vertex is adjacent to both e1  and e2.  
Thus,  D is  not  a  perfect  dominating set of B3(G) and hence G  2K2. Converse follows 
easily. 
 
Theorem 3.15: 

 Let G be any graph, not totally disconnected. Then  p(B3(G)) = 3 if and only if 
one of the following holds. 
(i).  G is a graph on three vertices. 
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(ii). There exists an edge e in G such that all the edges of G are adjacent to e. That is, 
r(L(G)) = 1. 
(iii). There exists two independent edges e1 and e2 and a vertex v incident with one of e1 
and e2, say e1 such that the edges of G incident with v are not adjacent to e2 and the edges 
not incident with v are adjacent to both e1 and e2. 

(iv). G contains 2K2K1 as a sub graph such that all the edges of G are incident with the 
vertex in K1 and adjacent to one of the edges of 2K2. 

(v). G is G1K1, where G1 is a graph on four vertices with 1(G1)  2. 
Proof:  

 Assume p(B3(G)) = 3. Then there exists a perfect dominating set D of B3(G) 
having three vertices. 
Case(i). All the vertices of D are point vertices. 

 Since the set of point vertices in B3(G) is independent, V(B3(G))D does not 
contain any point vertex. Also, D is a perfect dominating set implies that the end vertices 
of the edges of G must be one of the three vertices in D. Hence, G is any graph on three 
vertices. 
Case(ii). D contains two point vertices and one line vertex. 
 Let v1, v2 be the vertices and e be the edge in G corresponding to two point 
vertices and one line vertex in D respectively. If v1 and v2 are adjacent in G, then the 
corresponding edge must be e, otherwise D cannot be a dominating set of B3(G). Also 
since D is perfect dominating set, all the edges of G must be adjacent to e. Thus (ii) holds. 

Assume v1 and v2 are not adjacent and e = (u, v), where u, vV(G). Then u, 

vV(B3(G))D are adjacent to none of the vertices in D, which is a contradiction. 
Case(iii). D contains two line vertices and one point vertex. 
 Let e1 and e2 be the edges and v be a vertex in G corresponding to the two line 
vertices and one point vertex in D respectively. If e1 and e2 are adjacent, then v must be 
the common vertex, otherwise D cannot be a dominating set of B3(G). Since D is a perfect 

dominating set, G   C3 or P3. Assume e1 and e2 are nonadjacent. 
  
Subcase(i). v is incident with at least one of e1 and e2, say e1.  
 Then since D is a perfect dominating set of B3(G), the edges of G incident with v 
are not adjacent to e2 and the edges not incident with v are adjacent to both e1 and e2. 
Hence, (iii) holds. 
Subcase(ii). v is not incident with both e1 and e2.  
 Then either the edges of G are incident with v and adjacent to one of e1 and e2 or 

G  G1K1, where G1 is a graph on four vertices with 1(G1)  2. Thus, (iv) and (v) 
hold. 
Case(iv). All the vertices of D are line vertices. 
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 If the sub graph of G induced by the edges corresponding to the line vertices in D 

is C3, then G  C3.  
The other cases are not possible since D is a perfect dominating set of B3(G). Converse can 
be proved easily. 
 
Remark 3.16:  
(i).  Let G be a graph having at least four vertices. Then the set of all point vertices in 
B3(G) is not a perfect dominating set of B3(G). 
(ii).  Let G be a graph other than a star. If the set D of line vertices in B3(G) such that 
at least three of the corresponding edges are independent in G, then D is not a perfect 
dominating set of B3(G). 
 

 In the following, the point set domination number ps of B3(G) is obtained by 
using Theorem 2.1. Here, the graphs G for which B3(G) is connected are considered. 
 
Theorem 3.17: 
 The set of all point vertices in B3(G) is a point set dominating set (psd-set) of 

B3(G) if and only if 1 < r(G)  . 
Proof: 

 Assume 1< r(G)  . 
Case(i). G is connected with r(G) > 1. 
 Let D be the set of all point vertices in B3(G). Then D = V(G) and            
V(B3(G))–D = V(L(G)). If W is an independent set in V(B3(G))–D, then W contains line 
vertices in B3(G) such that the edges corresponding to these line vertices are mutually 

adjacent   in   G.   Since   r(G) > 1,   there   exists   a   vertex   vD   such   that   

W  N(v)(V(B3(G))–D). 
Case(ii). G is disconnected. 
 Then G contains at least two components. If W is an independent set in 
V(B3(G))–D, then the edges corresponding to the line vertices in W belong to the same 

component of G. Hence, there exists a vertex uD, where u is one of the vertices in the 

remaining components of G such that W  N(u)(V(B3(G))–D. Thus, D is a psd-set of 
B3(G).  
Conversely, assume r(G) = 1  and the set D of all point vertices in B3(G) is a psd-set  of  

B3(G).  Since  r(G) = 1,  there  exists  a  vertex  v1V(G)  such  that  eG(v1) = 1. Then the 
set W of all line vertices in V(B3(G))–D corresponding to the edges incident with v1 is an 
independent set in V(B3(G))–D and there exists no vertex in  D  adjacent  to  all  the  line  

vertices  in W, which is a contradiction. Hence, 1< r(G)  . 
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Proposition 3.18:  
 A sub set of B3(G) containing line vertices only is not a psd-set of B3(G). 
Proof: 

 Let D  V(B3(G)) contain only line vertices and  

W = {vV(G) . v is an end vertex of the edge corresponding to a line vertex in D}. Then 
W is an independent set in V(B3(G))–D and there exists no vertex in D such that            

W  N(u)(V(B3(G))–D, which is a contradiction. Hence, the proposition follows. 
 
Theorem 3.19: 

 Let G be a disconnected graph but not totally disconnected. Then ps(B3(G)) = 3 if 
and only if G contains K2 as one of its components. 
Proof:  

 By Theorem 3.3., (B3(G)) = 2 if and only if there exists two independent edges e1 
and e2 in G such that no edge in G is adjacent to both e1 and e2. Also, by Proposition 3.18., 
any subset of V(B3(G)) containing line vertices only is not a psd-set of B3(G). Hence, 

ps(B3(G))  3. Let G contain K2 as one of its components. Then the set of vertices of 
B3(G) corresponding to the vertices and the edge in K2 is a psd-set of B3(G). Thus, 

ps(B3(G)) = 3. Conversely, assume ps(B3(G)) = 3. Then there exists a point set 
dominating set D of B3(G) containing three vertices. 
Case(i). All the vertices of D are point vertices. 
 Since no two point vertices in B3(G) are adjacent, D = V(G) and r(G) >1. Also, D 

is a psd-set of B3(G) implies that G  K2K1. 
Case(ii). D contains two point vertices and one line vertex. 
 Then D is a psd-set of B3(G) implies that G contains K2 as one of its components, 
since G is disconnected.  
 In the remaining two cases, D is not a psd-set of B3(G). Thus, the theorem 
follows. 
 
Remark 3.20:  
 If G is connected, then there exists no psd-set in B3(G) containing 3 vertices.  
 
Theorem 3.21:    

 Let   G  contain  2K2  as  an  induced  sub graph.  Then ps(B3(G))  4, if for 

every v in V(G)–V(2K2), N(v)V(2K2)  {end vertices of exactly one of the edges in 2K2} 
Proof: 

 Let e12 = (v1, v2), e34 = (v3, v4) be the edges in 2K2, where v1, v2, v3, v4V(2K2)   

and  e12, e34  be   the corresponding   line  vertices  in  B3(G).  Then                                
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D = {v1, v2, e12, e34}  V(B3(G)) is a dominating set of B3(G). Let W be an independent 
set in V(B3(G))–D. Let NB3(G)(v) denote the neighborhood of a vertex v in B3(G). 

(i). Let W  V(G)–{v1, v2}, then W  NB3(G)(e12)(V(B3(G))–D). 
(ii). If W contains both point and line vertices in B3(G), then by the given conditions,      

W  NB3(G)(e)(V(B3(G))–D), where e =  e12 or e34, since 2K2 is an induced sub graph 
of G. 

(iii). If  W  contains  line  vertices  only,  then  W  NB3(G)(v)(V(B3(G))–D),  where      

v = v1 or v2. Thus, D is a psd- set of B3(G) and ps(B3(G))  4. 

 This bound is attained, if G  Cn, for n  8. 
 
 Similarly, the following theorem can be proved. 
 
Theorem 3.22:  

 ps(B3(G))  5, if G contains P3 as a sub graph such that 
(i). The degree of the center vertex of P3 is 2; and  
(ii). Any vertex in V(G)–V(P3) is either nonadjacent or adjacent to exactly one of the  end  

vertices  of  P3  or  N(v)V(P3)  {exactly one of the end vertices of P3},  

for all vN(G)–V(P3) . 
Proof: 
 Assume G contains P3 as a subgraph satisfying conditions (i) and (ii). Then the 
subset of V(B3(G)) containing the vertices of P3 and the line vertices in B3(G) 

corresponding to the edges in P3, is a psd-set of B3(G). Hence, ps(B3(G))  5 

 This bound is attained, if G  Cn, for n = 5, 6. 
 
Remark 3.23:  
 In Theorem 3.22., either if the degree of the center vertex of P3 is at least three or 
if there exists a vertex in V(G)–V(P3) adjacent to both the end vertices of P3, then D 
cannot be a psd-set of B3(G).  
 Similarly, the following theorem can be proved. 
 
Theorem 3.24:  

 ps(B3(G))  6, if G contains 2K2 as a sub graph such that                           

(NG(v)–V(2K2))   {end vertices of exactly one of the edges in 2K2},  for  all         

vV(G)–V(2K2). This bound is attained, if G  K4. 
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Proposition 3.25:  

 Let G be a graph and v be a vertex of minimum degree (G) in G, where        

(G)  2. If radius of the sub graph<N(v)>of G induced by N(v) is at least 2, then 

ps(B3(G))   (G) + 3. 
Proof:  

 Let v be a vertex of minimum degree (G) in G and v1 and v2 be any two vertices 
in N(v). Let D be a set of line vertices in B3(G) corresponding to the edges in G adjacent 

to v. Then D{v, v1, v2}  V(B3(G)) is a psd-set of B3(G) and hence                    

ps(B3(G))   (G) + 3. 
 
Remark 3.26:  

 If (G) = 1, then ps(B3(G))  s(G) + 3, where s(G) is the second minimum 
degree of G such that the radius of the subgraph of G induced by the vertices in the 

second neighborhood of v is at least 2, where degG(v) = s(G), vV(G). 
 
Proposition 3.27:  

 ps(B3(G))  q + 2. 
Proof:  

 Since D = V(L(G)){v1, v2} is a psd-set of B3(G), where v1 and v2 are any two 

adjacent vertices in G,  ps(B3(G))  q + 2. 
 
Proposition 3.28:  
 Let G contain a triangle such that the edges of this triangle do not lie on any C3 in 

G. Then ps(B3(G))  6. 
Proof: 
 The line and point vertices corresponding to edges and vertices of C3 respectively 
is a psd-set of B3(G). 
 

 In the following, the restrained domination number r of B3(G) is obtained. 
 
Theorem 3.29: 

 r(B3(G)) = 2 if and only if there exists two independent edges e1 and e2 in G such 

that no edge in G is adjacent to both e1 and e2 in G and for each vV(G) there exists at 
least one edge  in G – {e1, e2} not incident with v. 
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Proof:  

 Assume r(B3(G)) = 2. Then there exists a restrained dominating set D of B3(G) 
containing two vertices. Since D is a dominating set of B3(G), the vertices of D must be 
line vertices and the corresponding edges in G are independent and  no  edge  in  G  is  
adjacent  to  both  of  these  edges.  If  all  the  edges in  

<G{e1, e2}> are incident with vV(G), then vV(B3(G)) is not adjacent to any of the 
vertices in V(B3(G))–D, which is a contradiction. Converse follows easily. 
 
 The following propositions are stated without proof. 
 
Proposition 3.30:   

 Let  G  be any  graph  having  at least  five  vertices  and e12 = (v1,v2)E(G), 

where v1, v2V(G). If e12 is the corresponding line vertex in B3(G), then {v1, v2, e12} is a 
restrained dominating set of B3(G) if and only if for every  vertex   v   in   V(G)–{v1, v2}   

there   exists   at least   one   edge   in E(<V(G)–{v1, v2}>) {eE(G) . e is incident with 

v1 or v2, e  e12}, not  incident with v in G. 
 
Proposition 3.31:  
 Let G be a graph having at least five vertices and e1 and e2 be any two 

independent edges in G and v be vertex in G not incident with both e1 and e2. If e1, e2 be 

the line vertices in B3(G)  corresponding  to  e1  and  e2, then {v, e1, e2} is a restrained 

dominating set of B3(G) if and only if for each  vertex uV(G)–v there   exists   at least   

one  edge  e,  different  from  e1  and  e2  in E(<V(G)–v>){eE(G) : e is incident with 
v}, not incident with v in G. 

 

Proposition 3.32:  

 r(B3(G))  0(G) + 1, if there exists a point cover D for G having at least two 

vertices with |D| = 0(G), |V(G)–D|  2 and D is not independent in G. 
 
Remark 3.33:  

 If |V(G)–D| = 1, then G  Kn, n  3. If G  K4, then the sub set of B3(K4) 
containing three point vertices and the line vertices corresponding to any two independent 

edges in K4 is a restrained dominating set of B3(G). Hence, r(B3(K4))  5. 
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Proposition 3.34:  

 r(B3(G))  0(G) + 2, if there exists a point cover D of G with  |D| = 0(G)  and  

two  independent  edges  e1  and  e2  in  G  such  that <E(G)–{e1, e2}>  K1,nmK1, where 

n  1 and m  0. 
 
Remark 3.35:  

 If <E(G)–{e1, e2}>  K1,nmK1, (n  1 and m  0) for all independent edges in e1 

and e2 in G, then r(B3(G))  0(G) + 3. 
 
Proposition 3.36:  

 r(B3(G))  (G), if there exists a dominating set D of G with |D| = (G) and 

|E(<V(G)–D>)|  1. 
 
Remark 3.37: 

 The set of all point vertices is a restrained dominating set of B3(G), if r(L(G))  2.  
 

Split and Non split domination numbers in B3(G) 
 In the following, split and non split domination numbers are determined. Here, 
the graphs G for which B3(G) is  connected are considered.  
 
Theorem 3.38:  

 s(B3(G)) = 2 if and only if there exists a pair of independent edges e1 and e2 in G 

such that no edge in G is adjacent  to   both   e1   and   e2   and <G –{e1, e2}>    K1,nmK1, 

for n  1 and m  0. 
Proof: 

 We have proved (B3(G)) = 2 if and only if  there exists a apir of independent 
edges e1 and e2 in G such that no edge in G is adjacent to both e1 and e2. 

Since G – {e1, e2}  K1,nmK1, for n  1 and m  0, the centre vertex of K1,n is isolated in 
<V(B3(G) – D> and hence D is a split dominating set of B3(G). 

 Conversely, if G – {e1, e2}  K1,nmK1, for n  1 and m  0, then           
<V(B3(G) – D> is connected, which is a contradiction. 
 
Theorem 3.39:  
 Let G be a graph with at least four vertices. If there exists an edge e in G with 

<G–e>  K1,nmK1, for n  1 and m  0, then s(B3(G))  3. 
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Proof:  

 Let e = (u, v)E(G) be an edge in G with <G–e>  K1,nmK1, for n  1 and     

m  0, where u, vV(G). If e is the line vertex in B3(G) corresponding to the edge e, 

then D = {u, v, e}  V(B3(G)) is a dominating set of B3(G). Further, the point vertex 
corresponding to the center vertex of K1,n is isolated in V(B3(G))–D. Thus, D is a split 

dominating set of B3(G) and s(B3(G))  3. 
 
Theorem 3.40:   

If   G   is   any   (p, q)   graph   with   (G) < p-1,   then  s(B3(G))  p + q - 2(G) . 
Proof:  

 Let vV(G) be such that degG(v) = (G), where (G) < p-1 and let D be the set 
of line vertices in B3(G) corresponding to the edges not incident with v in G. 

Case(i). <V(G)v>  K1,n, for n  1 .  

Then D = D(V(G)–N[v]) is a dominating set of B3(G). Also v is isolated  in    
V(B3(G))–D.  Thus,  D  is  a  split  dominating  set  of  B3(G)  and  

s(B3(G))  (p + q) - (2(G) + 1) . 

Case(ii). <V(G)–v >  K1,n, for n  1.  

Then   D{center vertex of K1,n}   is   a   split   dominating   set  of  B3(G).  Thus,  

s(B3(G))  p + q - 2(G).  

 This bound is attained, if G  C3. 
 
Theorem 3.41:    

 Let    G   be    a    (p, q)    graph    with    p  5.    Then   s(B3(G))  p + q - k -1,  

where   k  =   max {degG(u) + degG(v) :  uvE(G)  and <V(G)–{u, v}> is not totally 
disconnected}. 
Proof:  

 Let u, vV(G) be such that e = (u, v)E(G), <V(G)–{u, v}> is not totally 

disconnected and degG(u) + degG(v) = k is maximum. If D is the set of line vertices in  
B3(G)   corresponding  to  the  edges  not  incident  with  u  or  v,  then                           

D = <V(G)–{u, v}>D is a dominating set of B3(G) and <V(B3(G))–D>  

K1,nK1,mK1, where m, n  1.   Thus,   D   is   a   split    dominating set   of   B3(G)   

and s(B3(G))  p + q - k -1. 
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Remark 3.42:  
 (i). Let G be a graph other than a star. Then the set of all line vertices is a split 

dominating set of B3(G). Thus s(B3(G))  q. 

 (ii). Let G be a graph having at least three vertices. IfL(G) is disconnected, then 

the set  of  all  point  vertices  is  a  split  dominating  set  of  B3(G). IfL(G) is connected 

with connectivity (G), then s(B3(G))  p + (G). 
 

 Next, the non split domination number ns of B3(G) is obtained. In view of 
Theorem 3.38 and Theorem 3.39, the following theorems are stated without proof. 
 
Theorem 3.43:  

 ns(B3(G)) = 2 if and only if there exists a pair of independent edges e1 and e2 in G 

such that no edge in G is adjacent to both e1 and e2 and G–{e1, e2}   K1,nmK1, for n  1 

and m  0. 
 
Theorem 3.34:  

 Let e = (u, v) be an edge in G, where u, vV(G) and e be the corresponding line 
vertex in B3(G). 

(i). If <Ge>  K1,nmK1, for n  1 and m  0, then {u, v, e} is a non split dominating 
set of B3(G). 

(ii). If  for  each  edge  e  in  G,  <Ge>  K1,nmK1,  for n  1  and  m  0, then         

{u, v, e, center vertex of K1,n, for n  1} is a non split dominating set of B3(G) and hence 

ns(B3(G))  4. 

(ii). If both G andL(G) are connected graphs, then ns(B3(G))  p. 
 
 

Global, total global and global point set domination numbers in 
B3(G) 
 In the following, various bounds for the global domination number g of B3(G) 

are discussed. The graphs G for which g(B3(G)) is 2 or 3 are obtained. Here,B3(G) 
denotes the complement of B3(G). 
 
Theorem 3.35:   

 Let  G  be  a  graph  having  at least  three  vertices.  Then g(B3(G)) = 2 if and 

only if G  2K2. 



 
 

179 Domination Numbers on the Boolean Function Graph B(Kp, NINC,L(G)) of a Graph 

Proof:  

 By Theorem 3.3., (B3(G)) = 2 if and only if there exists two independent edges e1 

and e2 in G such that no edge in G is adjacent to both e1 and e2. Let e1 and e2 be the 

corresponding line vertices in B3(G). If D = {e1, e2} is  a  global dominating  set of  B3(G),  
then D  must be a line cover for G. Thus,  

G  2K2. Converse is obvious. 
 
Theorem 3.36:  
 Let G be any graph having no isolated vertices and at least four vertices. Then 

g(B3(G)) = 3 if and only if one of the following holds. 
(i). radius of L(G) is 1; 
(ii). There exists a dominating edge in L(G); 
(iii). There exists at least two adjacent edges e1 and e2 and a vertex v in G incident with e1 
or e2 such that each edge in G is adjacent to at least one of e1 and e2 and there exists no 
edge in G incident with v and adjacent to both e1 and e2; 
(iv). There exists at least two independent edges e1 and e2 and a vertex v in G not incident 
with both e1 and e2 such that each edge in G is either incident with v or adjacent to at least 
one of e1 and e2 or both; and 

(v). There exists a line cover D for G with |D| = 3 and 0(<D>)  2 satisfying, for  every  

eE(G)–D,  there  exists  at least  one  edge  e1  in  D  such  that d(e, e1)  2 in L(G), 

where e and e1 are the vertices in L(G) corresponding to the edges e and e1 respectively. 
Proof:  

 Assume g(B3(G)) = 3. Then there exists a global dominating set D of B3(G) with 
|D| = 3. Since G contains at least four vertices, there exists no dominating set of B3(G) 
containing point vertices only, since D is a dominating set of B3(G). 

Case(i). D contains two point vertices v1 and v2 and one line vertex, say e.  
 Then v1, v2V(G). Let e be the edge in G corresponding to the line vertex e. If v1 
and v2 are non-adjacent and e is incident with one of the vertices v1 and v2 in G, then       

D = {v1, v2, e} is not a dominating set of B3(G). Similarly, if e is incident with none of the 
vertices v1 and v2 in G, then also D is not a dominating set of B3(G).   Therefore,   v1 and  

v2  must  be   adjacent  in  G  and  e = (v1, v2). Then D = {v1, v2, e} is a global dominating 
set of B3(G) implies that r(L(G)) = 1. 

Case(ii). D contains two line vertices e1, e2 and one point vertex v (say).  

 Then vV(G). Let e1 and e2 be the edges in G corresponding to the line vertices 

e1 and e2 respectively. 
(a). If  e1  and  e2  are  adjacent  and  v  is  incident with e1 or e2 (not both), then since       
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D = {e1, e2, v} is a global dominating set of B3(G), either each edge in G is adjacent to at 
least one of e1 and e2 and there exists no edge incident with v and adjacent to both e1 and 
e2. 
(b). If e1 and e2 are adjacent edges in G and v is the common vertex of both e1 and e2, then 

D = {e1, e2, v} is a dominating set of both B3(G) andB3(G) implies that each edge in G is 
adjacent to at least one of e1 and e2. That is, there exists a dominating edge in L(G). 
 (c). If e1 and e2 are independent edges in G and v is not incident with both e1 and e2, then 
either each edge in G is incident with v or adjacent to at least one of e1 and e2 or both. 

Case(iii). D contains three line vertices e1, e2 and e3, (say). 

 Let   e1,  e2   and  e3   be   the   respective   edges  in  G.  Then  D = {e1, e2, e3} is   
a  dominating  set  of  B3(G)  implies  that 0(<{e1, e2, e3}>)  2  in  G  and for every  

eE(G)–{e1, e2, e3},   there  exists  at least  one  edge   ei, i = 1, 2,  3   with d(e, ei)  2 in 

L(G), where e is the vertex in L(G) corresponding to the edge e. D is also a dominating 

set ofB3(G) implies that {e1, e2, e3} is a line cover for G. Converse can be verified easily. 
 
 The following propositions are stated without proof. 
Proposition 3.37: 
 Let G be a graph having no isolated vertices and at least six vertices. Then 

g(B3(G))  p/2, if there exists a perfect matching in G. 
 
Proposition 3.38:  
 Let G be a graph, which is not bipartite. Then  

g(B3(G))  0(G) + 1. 
 
Proposition 3.39:  

 If G is a bipartite graph with bipartition [A, B], then g(B3(G))  min(m, n) + 2, 
where m and n are the number of vertices in A and B respectively. 
 
Proposition 3.40: 

 Let G be a graph having no isolated vertices. Then g(B3(G))  g(L(G)) + 1 if 
and only if there exists a global dominating set of L(G) containing at least two 
independent vertices. 
 
Proposition 3.41:  

 g(B3(G))  g(L(G)) if and only if there exists a global dominating set D of L(G) 

such that D is a line cover for G and 0(<D>)  2. 
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 In the following, the total global domination number tg of B3(G) is determined 

by applying Theorem 2.2. Here, the graphs G for which both (B3(G))  1 and    

(B3(G))  1 are considered. 
 
Theorem 3.42:  

 Let 1(G) = 2 and e12 = (v1, v2), e34 = (v3, v4) be two independent edges in G, 

where v1, v2, v3, v4V(G). Let e12 and e34 be the line vertices  in  B3(G)  corresponding  to  
the  edges  e12  and  e34  respectively. Then  

{v1, v3, e12, e34} is a total global dominating set of B3(G) if and only if there exists no edge 
in G joining the vertices v1 and v3. 
Proof:  
 Assume there exists no edge  in  G joining the vertices v1 and v3. Then                

D = {v1, v3, e12, e34} is a dominating set of B3(G) and <D>  P4 in B3(G). Hence, D is a 
total dominating set of B3(G). Also for each point vertex v in V(B3(G))–D, there is a vertex 

uD such that uv is not an edge in B3(G). Similarly, since 1(G) = 2, each line vertex in 
V(B3(G))–D is not adjacent to at least one of the vertices in D. Hence, D is a total global 

dominating set of B3(G). Conversely, assume {v1, v3, e12, e34} is a total global dominating 
set of B3(G). If v1 and v3 are adjacent in G,  then  the  line  vertex  in  V(B3(G))–D  
corresponding  to the edge (v1, v3) is not adjacent to any of the vertices in D, which is a 
contradiction. 
 

 The following theorem relates tg(B3(G)) with the maximum number of edges 

1(G). 
 
Theorem 3.43:  

 If 1(G)  3, then tg(B3(G))  21(G) . 
Proof: 

 Let 1(G) = n, where n  3 and e1, e2, …, en, (n  3) be the independent  edges  

in G. Let vi be a vertex in G incident with ei, i = 1, 2, …, n and ei be the  corresponding 

line vertex in B3(G). Then {v1, v2, …, vn, e1, e2, …, en} is a total global dominating set of 

B3(G) and hence tg(B3(G))  21(G), where 1(G)  3. 
 

 The following theorem relates tg(B3(G)) with the point covering number 0(G) 
of G. 
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Theorem 3.44:  

 tg(B3(G))  [30(G)/2], if there exists a point cover D for G with |D| = 0(G) 

and 1(<D>G)  2. 
Proof: 

 Let D  be a  point  cover  for  G with |D| = 0(G) and 1(<D>G) = n, where  

n  2.   Let  e1, e2, …, en  (n  2)  be  the  independent    edges  in  <D>G .  

Then D{ei, i =1,2, …, n} is a total global dominating set of B3(G), where ei is the line 
vertex in B3(G) corresponding to ei. Thus,  

tg(B3(G))    0(G) + 1(<D>G) 

       0(G) + [|D|/2]) 

      = 0(G) + [0(G)/2] 

      =  [30(G)/2]. 
     
 The following propositions 3.45. and 3.46. are stated without proof. 
 
Proposition 3.45:  

 Let G be any graph having no isolated vertices. Then tg(B3(G))  tg(L(G)) + 1 if 

and only if there exists a total global  dominating set D of L(G) with 0(<D>L(G))  2. 
 
Proposition 3.46:  

 tg(B3(G))  tg(L(G)) if and only if there exists a total global dominating set D 
of L(G) such that D is a line cover for G and 0(<D>L(G))  2. 
 

 Next, the global point set domination number pg of B3(G) is obtained by using 

Theorem 2.2. Here, the graphs G for which both B3(G) and is complementB3(G) are 

connected are considered. An upper bound of pg(B3(G)) is given in terms of maximum 
degree of G. 
 
Proposition 3.47: 

 pg(B3(G))  p + q - (G), where (G) < p-1. 
Proof;  

 Let v be a vertex of maximum degree in G and D be the set of line vertices in 

B3(G) corresponding to the edges not incident with v. Then V(G)D is   a   global   

point   set   dominating   set (psd-set)   of   B3(G).   Hence, pg(B3(G))  p + q - (G). 
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Proposition 3.48:  
 The set of all point vertices in B3(G) is not a global psd-set of B3(G). 
Proof: 
 By Theorem 3.17., the set of all point vertices is a psd- set of B3(G) if and  only  if  

1  r(G)  .  Let D be  the  set of  all point  vertices  in B3(G) and  

S  V(B3(G))–D be such that <S> is complete. Then S will contain line vertices only and 
the corresponding edges in G are independent and there exists no vertex v in D such that 

SN(v) =  in B3(G). Thus, D is not a global psd-set of B3(G). 
 
 The following propositions are stated without proof. 
 
Proposition 3.49:  

 Let G be a disconnected graph but not totally disconnected. Then pg(B3(G)) = 3 
if and only if G contains K2 as one of its components. 
 
Proposition 3.50:  

 If   G   contains    P3   as one   of its components, then  pg(B3(G))  5. 
  

Conclusion: 
 We have obtained domination, cycle, connected and total domination numbers in 
B3(G). Also, perfect, Point set and restrained domination numbers are found for this 
graph. Further, Split and Non split domination numbers, global, total global and global 
point set domination numbers are determined. 
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