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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC,L(G)) of G is  a   graph  with    vertex   set   V(G)E(G)    
and    two  vertices  in B(Kp, NINC,L(G)) are adjacent if and only if they correspond to two 
nonadjacent edges of G or to a vertex and an edge not incident to it in G, where L(G) is the line graph 
of G. For brevity, this graph is denoted by B3(G). In this paper, structural properties of B3(G) including 
traversability and eccentricity properties are studied. Also the graphs G for which B3(G) contains Cn, for 
n  4 are obtained. Further, decomposition of B3(G) for some known graphs are given. 
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1. Introduction 
 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, 
let V(G) and E(G) denote its vertex set and edge set respectively. Eccentricity of a vertex 

uV(G) is defined as eG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance 
between u and v in G. We denote the eccentricity of vertex v in G as e(v) and the distance 
between two vertices u, v in G as d(u, v). The minimum and maximum eccentricities are 
the radius and diameter of G, denoted r(G) and diam(G) respectively. When diam(G) = 
r(G), G is called a self-centered graph with radius r, equivalently G is r-self-centered. A 
vertex u is said to be an eccentric point of v in a graph G, if d(u, v) = e(v). In general, u is 
called an eccentric point, if it is an eccentric point of some vertex. We also denote the ith 

neighborhood of v as Ni(v) ={uV(G) : dG(u , v) = i} and denote the cardinality of the set 

H asH. If Ne(v)(v) is m for each point vV(G), then G is called an m- eccentric 
point graph. If m = 2, we call the graph G as bi-eccentric point graph. A connected graph G 
is said to be geodetic, if a unique shortest path joins any two of its vertices.  

Whitney[17] introduced the concept of the line graph L(G) of a given graph G in 
1932. The first characterization of line graphs is due to Krausz. The Middle graph M(G) of 
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a graph G was introduced by Hamada and Yoshimura[5]. Chikkodimath and 
Sampathkumar[3] also studied it independently and they called it, the semi-total graph 
T1(G) of a graph G. Characterizations were presented for middle graphs of any graph, 
trees and complete graphs in [1]. The concept of total graphs was introduced by Behzad[2] 
in 1966. Sastry and Raju[16] introduced the concept of quasi-total graphs and they solved 
the graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. 
These graphs are very much useful in the construction of various related networks from 
the underlying graphs of networks. This motivates us to define and study other graph 
operations. Using L(G), G, incident and non-incident, complementary operations, 
complete and totally disconnected structures, one can get thirty-two graph operations. As 
already total graphs, semi-total edge graphs, semi-total vertex graphs and quasi-total 
graphs and their complements (8 graphs) are defined and studied, we have studied all 
other similar remaining graph operations.   

 
The points and lines of a graph are called its elements. Two elements of a graph are 

neighbors, if they are either incident or adjacent. The Total graph T(G) of G has vertex set 

V(G)E(G) and vertices of T(G) are adjacent, whenever they are neighbors in G. The 
Quasi- total graph P(G) of G is a graph with vertex set as that of T(G) and two vertices are 
adjacent if and only if they correspond to two nonadjacent vertices of G or to two adjacent 
edges of G or to a vertex and an edge incident to it in G. The Middle graph M(G) of G is 
one whose vertex set is as that of T(G) and two vertices are adjacent in M(G), whenever 
either they are adjacent edges of G or one is a vertex of G and the other is an edge of G 

incident with it. Clearly, E(M(G)) = E(T(G))E(G). 
 

The Boolean function graph B(Kp, NINC,L(G))  G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC,L(G)) are adjacent if and only if they 
correspond to two nonadjacent edges of G or to a vertex and an edge not incident to it in 
G. For brevity, this graph is denoted by B3(G), where L(G) is the line graph of G. The 
vertices of G and L(G) in B3(G) are referred as point and line vertices respectively. In this 
paper, the properties of the Boolean function graph B3(G) are studied The line vertex in 

B3(G) corresponding to an edge e in G is denoted by e.  
 

2. Properties 
 In this section, properties of B3(G) including traversability, eccentricity properties 

are studied. Also the graphs G for which B3(G) contains Cn, for n  4 are obtained. 
Further, decomposition of B3(G) for some known graphs are given. 
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Observation 2.1. 

1. L(G) is an induced subgraph of B3(G) and subgraph of B3(G) induced by point 
vertices is totally disconnected. 

2.   If  di = degG(vi),  viV(G),  then  the  number  of  edges  in  B3(G)  is  

 (q/2)(2p + q - 3) – (1/2)1 i  pdi
2. 

3.  The degree of a point vertex v in B3(G) is q - degG(v) and the degree of a line vertex e 
in B3(G) is degL(G)(e) + p - 2 = p + q - degL(G)(e) - 3 and hence  

 (B3(G)) = q - (G). 
4.  B3(G) contains isolated vertices if and only if G is one of the following  graphs.  K2, 

K1,n, n  2,  nK1,  K2nK1,  K1,mnK1,  where n  1 and m  2.  

5.  B3(G)  is  totally  disconnected  if  and  only  if  G  nK1 or K2, n  1. 

6.  B3(G) is disconnected if and only if G  nK1, K2mK1, C3mK1 and K1,nmK1, for  

m  0 and n  2. 

7.  Let G be any  graph  having  at least  one  edge and  G  Kn, n  2. Then B3(G) is 
biregular if and only if G is regular. 

8.  Both G and B3(G) are regular if and only if either G is totally connected or G is 
complete. 

 
 Proposition 2.2.  
 For any (p, q) graph G, B3(G) contains cut-vertices if and only if there exists a 
vertex in G of degree q-1. 
Proof: 

 Assume there exists a vertex v V(G) such that  degG(v) = q – 1. Therefore, there 
exists exactly one edge e in G, which is not incident with v and hence degB3(G)(v) = 1. Also, 

B3(G) - e disconnected with an isolated vertex v in B3(G) and hence e is a cut-vertex in 
B3(G). 
 Conversely, assume B3(G) contains cut- vertices. Suppose there exists no vertex 

vV(G) such that  degG(v) = q – 1. Therefore, all the point vertices of B3(G) have degree 

at least two. That is, degB3(G)(v)  2, for all v  V(B3(G)) and each line vertex in B3(G) is 
adjacent to exactly (p- 2) point vertices and hence no vertex of B3(G) is a cut-vertex, 

which is a contradiction. Hence, there exists at least one vertex v V(G) such that   
degG(v) = q – 1. 
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Proposition 2.3. 

 For any graph G with at least five vertices and 1(G)  2, B3(G) contains triangles 

if and only if G contains 2K2K1 (with 2K2 induced) as a subgraph, where 1(G) is the 
line independence number of G. 
Proof: 

 Assume B3(G) contains triangles. Since, neither G norG is a  subgraph of B3(G), 
atleast two vertices of the triangle must be line vertices. 
(i) If the two vertices of the triangle are line vertices and the third vertex is a 

 point vertex, then G contains 2K2K1 (with 2K2 induced) as a subgraph. 

(ii) If all the vertices of the triangle are line vertices, then 1(G)  3. 
 Converse follows from the construction of B3(G). 
 

 In the following, we find the girth of B3(G). 
 
Proposition 2.4. 
 If G is graph with at least four vertices, then the girth of B3(G) is 3, 4 or 5. 
Proof: 

Case (i):  1(G)  2 
 If G contains atleast five vertices, then by Proposition 2.3, B3(G) contains 
triangles. Assume G contains exactly four vertices. Then, B3(G) contains either no cycles 
or contains C5 as an induced subgraph.  

Case (ii):  1(G) = 1 

If G contains P32K1 as a subgraph, then B3(G) contains either C4 as an induced 
subgraph or contains no cycles.  
 Hence, girth of B3(G) is 3, 4 or 5. 
 
Remark 2.5.  
 If G contains two or three vertices, then B3(G) is cycle-free. 
 
Proposition 2.6.  
 Let G be a connected graph with at least four vertices other than a star. Then 
B3(G) is geodetic if and only if G is a path on four vertices. 
Proof: 
Case(i): G contains atleast five vertices 

 Since G is connected, G contains P3K2 as a subgraph and B3(G) contains C4 as an 
induced subgraph and hence, B3(G) is not geodetic. 
Case (ii): G contains four vertices and is not a path on four vertices. 



 
 

146 On the Boolean Function Graph B(Kp, NINC,L(G)) of a Graph 

 If G is not a path on four vertices, then B3(G) contains C6 as an induced subgraph 
and hence B3(G) is not geodetic. 
 By Case (i) and Case (ii), we see that G is a path on four vertices. 
Conversely, if G is a path on four vertices, then B3(G) is geodetic. 
 
Proposition 2.7.  
 For any graph G with at least four vertices, B3(G) contains  K1,3  as  an  induced  

subgraph  if  and  only  if either 1(G)  2 or G contains C3K1 or K1,3K1 as  a 
subgraph. 
Proof: 

 Assume B3(G) contains  K1,3  as  an  induced  subgraph. If 1(G) = 1 and if G is 

star on four vertices, then B3(G) is isomorphic to C7K1. Hence, either 1(G)  2 or g 

contains C3K1 or K1,3K1 as  a subgraph.  

 Conversely, if either 1(G)  2 or G contains C3K1 or K1,3K1 as  a subgraph, 
then B3(G) contains  K1,3  as  an  induced  subgraph 
 
 In the following, a necessary and sufficient condition for B3(G) to be Eulerian is 
given. For simplicity, the degree of a vertex v in B3(G) is denoted by d3(v). 
 
Theorem 2.8.  
 Let G be any (p, q) graph such that B3(G) is connected. Then B3(G) is Eulerian if 
and only if one of the following holds. 
(i). p is odd, q is even and G or each component of G is Eulerian; and 
(ii). q is odd and each vertex in G is of odd degree. 
Proof.  
 Assume B3(G) is Eulerian. Therefore, each vertex in B3(G) is of  even  degree. If v 
is a point vertex in B3(G), then d3(v) = q - degG(v) is even and hence q and degG(v) are of 

same parity. Similarly, if e is a line vertex in B3(G), then d3(e) = degL(G)(e) + p - 2 =      

p + q - degL(G)(e) - 3 is even. Therefore, if q is even, then p must be odd, since degL(G)(e) 
is even. Assume q is odd. Since q and degG(v) are of same parity, degG(v) is odd. Since the 
number of odd degree vertices in G is even, p is even. Thus, condition (i) or (ii) holds. 
Converse follows easily. 
 
 In the following, a necessary condition that B3(G) to be Hamiltonian is given. 
 
Theorem 2.9.   

 Let   G   be   any    (p, q) with   p  5   and   (G)  q - 2 .  If (G)  (q-p)/2, 
then B3(G) is Hamiltonian. 
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Proof.  

 Let vV(G) be such that degG(v) = (G).  Then vV(B3(G)). If d3(v) is the 

degree of v in B3(G), then d3(v) = q - (G)  = (B3(G)). Since (G)  (q - p)/2, (B3(G)) 

 q - ((q - p)/2) and hence (B3(G))  (p + q)/2. Thus, B3(G) is Hamiltonian. 
 
Example 2.10.  

(i).  B3(K4)  Petersen graph and hence not Hamiltonian. 
(ii).   B3(Cn),  B3(Cm+),  B3(Pn),  B3(Wt)  and  B3(Kt) are Hamiltonian graphs, where      

n  4, m  3 and t  5, where Cn is a cycle on n vertices, Cm+ is the graph 
obtained from the cycle Cm by attaching exactly one edge at each of its vertices, Pn 
is a path on n vertices, Wt is a wheel and Kt is a complete graph on t vertices . 

 
Remark 2.11.  
 If G is any (p, q) graph other than a star and q = p - 1, then B3(G) contains a 
Hamiltonian path. 
 
  In the following, the eccentricity properties of B3(G) for any graph G are 
discussed. Here, the graphs G for which B3(G) are connected are considered. First, the 
graph G for which B3(G) is self-centered with radius 2 is characterized. For simplicity, the 
distance between two vertices u, v in B3(G) and the eccentricity of a vertex v in B3(G) are 
denoted by d3(u, v) and e3(v) respectively.  Since, there is no vertex of degree p + q – 1 in 
B3(G), radius of B3(G) is atleast 2. 
  
Theorem 2.12.  
 Let G be any graph with at least two edges. Then B3(G) is self-centered with 
radius 2 if and only if for every pair of vertices u, v in G there exists at least one edge not 
incident with both u and v. 
Proof.  
 Assume for every pair of vertices u, v in G there exist at least one edge not 
incident with both u and v.  

(i). Let v1 and v2 be two point vertices in B3(G). Then v1, v2V(G). By the assumption, 
there exists an edge in G not incident with both v1 and v2. Then, d3(v1, v2) = 2.  

(ii). Let v and e be a point and line vertices in B3(G) respectively and e be the edge in G 

corresponding to e. If e is not incident with v in G, then d3(v, e) = 1. Let eE(G) be 
incident with v in G. By the assumption, there exists at least one edge in G not adjacent to 

e. Then d3(v, e) = 2. 
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(iii). Let e1 and e2 be two line vertices in B3(G) and e1, e2 be the corresponding edges in 

G. If e1 and e2 are nonadjacent edges in G, sinceL(G) is an induced subgraph of B3(G), 

d3(e1, e2) = 1. Let e1 and e2 be adjacent edges in G. By the assumption, there exists at least 

one vertex v in G not incident with both e1 and e2 and hence d3(e1, e2) = 2. Hence, it 
follows that all the vertices in B3(G) have eccentricity 2 and is self-centered with radius 2.  
Conversely, assume there exists a pair of vertices u, v in G such that each edge in G is 

incident with at least one of u and v. Then u, vV(B3(G)). If (u, v)E(G), then           

d3(u, v) = 3. Let (u, v)E(G) and e = (u, v) and let e be the corresponding line vertex in 

B3(G). Then v, u, eV(B3(G)) and d3(v, e) = d3(u, e) = 3, which is a contradiction. 
 
 From the above facts, following are immediate consequences. 
Remark 2.13.  
 Let G be any graph such that B3(G) is connected. Then B3(G) is bi-eccentric with 
radius 2 if and only if there exists at least one pair of vertices u, v in G such that each edge 
in G is incident with at least one of u and v. Hence, by Theorem 6.1.4, it is clear that the 
diameter of B3(G) is at most 3. 
    
Remark 2.14.  

 If G  K1,n, n  2, then B3(G)  CK1, where the component C is self-centered 
with radius 3. 
 

In the following, a necessary and sufficient condition that B3(G) contains          

Cn(n4), as an induced subgraph is obtained, where G is any graph not totally 
disconnected. 

 
Proposition 2.15.  

 B3(G) contains C4 as an induced subgraph if and only if G contains P32K1 as a 
subgraph. 
Proof: 
 Assume B3(G) contains C4 as an induced subgraph. Since, no two point vertices in 
B3(G) are adjacent, any C4 in B3(G) can have atmost two point vertices. If two vertices of 
C4 in B3(G) are line vertices and the remaining two vertices are point vertices, then G 

contains P32K1 as an induced subgraph. The other cases also give rise to P32K1 as a 
subgraph. Converse follows easily. 
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Proposition 2.16.  
 B3(G) contains C5 as an induced subgraph if and only if G contains  either C5 or 
P4 as a subgraph. 
Proof: 
 Assume B3(G) contains C5 as an induced subgraph. A cycle on five vertices in  
B3(G) is possible, if the cycle contains either three line vertices and two point vertices or 
all line vertices. That means, G contains either P4 or C5 as a subgraph. 
 
 Similarly, the following propositions can be proved. 
Proposition 2.17.  
 B3(G) contains C6 as an induced subgraph if and only if either G contains G1 as 
an induced subgraph or G contains C4 or K1,3 as a subgraph, where G1is the graph 

obtained from K4 - e by subdividing its diagonal edge exactly once. 
 
Proposition 2.18.  

 B3(G) contains no Cn, (n  7) as an induced subgraph. 
 
Remark 2.19.  
 From the above propositions, it follows that B3(G) contains cycles if and only if G 

contains one of the following graphs as a subgraph. 2K2K1 (with 2K2 induced), P32K1, 
C5, P4, C4, K1,3 and the graph G1, where G1 is the graph obtained from K4 - e by 
subdividing its diagonal edge exactly once. 
 

In the following, the edge partition of B3(G)  for some known graphs are given. 
Theorem 2.20.  

 Let G be any connected (p, q) graph such that G  K1,n and K3. Then the edges of 

B3(G) can be partitioned intoL(G) and qK1,p-2, where the center vertex of each K1,p-2 is a 
line vertex. 
Proof:  
 Follows from the construction of B3(G). 
 
Theorem 2.21.  

 The edges of B3(Cn), (n  4) can be partitioned into ((n-2)/2 )C2n, ((n-4)/2)Cn and 
(n/2) K2, if n is even; and ((n-3)/2)C2n, ((n-3)/2)Cn and nK2, if n is odd. 
Proof: 

 Edges of B3(Cn) can be partitioned intoL(Cn) and nK1,n-2. ButL(Cn) is a          
(n-3)-regular graph on n vertices This can be partitioned into ((n-4)/2)Cn and (n/2)K2, if n 
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is even; and ((n-3)/2)Cn, if n is odd. The edges of nK1,n-2 can be partitioned into            
((n-2)/2)C2n, if n is even; and ((n-3)/2)C2n and nK2, if n is odd . Thus, the theorem follows. 
 
Theorem 2.22.  

 B3(K1,n), (n  2) is disconnected with exactly two components, one of the 
components being K1. If the other component is C, then the edges   of   C can   be   
partitioned   into   ((n-2)/2)C2n   and   nK2, if   n   is   even;  and ((n-1)/2)C2n, if n is odd. 
Proof: 

 B3(K1,n) = K1C, where E(C) = E((n-1)K1,n-1). Edges of (n-1)K1,n-1 can be 
partitioned into ((n-2)/2)C2n and nK2, if n is even; and ((n-1)/2)C2n, if n is odd.  
 
Theorem 2.23.  

 The edge set of B3(Kn), (n  4) can be partitioned into  (n-1)/2   times               
(n-2)-regular   graph on 2n  vertices  and (((n-2)(n-3))/2)-regular graph on ((n(n-1))/2 
vertices, if n is odd; and ((n-2)/2) times (n-2)-regular graph on 2n vertices, (n/2)K1,n-2 and  
(((n-2)(n-3))/2)-regular graph on (n(n-1))/2 vertices, if n is even. 
Proof: 

 Edges of B3(Kn) can be partitioned intoL(Kn) and ((n(n-1)/2)K1,n-2. ButL(Kn) is 
a ((n-2)(n-3)/2)-regular graph on (n(n-1)/2 vertices. The edges of ((n(n-1)/2)K1,n-2 can be 
partitioned into ((n-1)/2) times (n-2)-regular graph on 2n vertices, if n is odd; and        
((n-2)/2) times (n-2)-regular graph on 2n vertices and (n/2)K1,n-2, if n is even. Thus, the 
theorem follows. 
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