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Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, INC,L(G)(G) is a 
graph with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G, a vertex and an edge incident to it in G or two non-adjacent edges of G. For 
simplicity, denote this graph by BG2(G), Boolean graph of G-second kind. In this paper, the 
domination number, connected, cycle and total domination, independent domination, global 
domination and restrained domination of BG2(G) and its complement are studied. 
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1. Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). 
For graph theoretic terminology refer to Harary [6], Buckley and Harary [4].  

Definition 1.1 [6] A set S  V is said to be a dominating set in G, if every vertex in VS 
is adjacent to some vertex in S. A dominating set D is an independent dominating set, if no 
two vertices in D are adjacent that is D is an independent set. A dominating set D is a 
connected dominating set, if < D > is a connected subgraph of G. A dominating set D is a 

perfect dominating set, if for every vertex u  V(G)D, |N(u) D|= 1. A dominating set 
D is a total dominating set, if < D > has no isolated vertices. A dominating set D is called 
an efficient dominating set, if the distance between any two vertices in D is at least three. A 

cycle C of a graph G is called a dominating cycle of C, if every vertex in VC is adjacent to 

some vertex in G. A set D  V(G) is a global dominating set, if D is a dominating set in G 
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andG. A total dominating set D of a graph is a total global dominating set, if D is also a 

total dominating set ofG.  

 A set D  V(G) is a restrained dominating set, [7] if every vertex in VS is 

adjacent to a vertex in S and other vertex in VS.  

Definition 1.2 [7] A set S of vertices is said to be irredundant, if for every vertex v  S, 

pn[v, S] = N[v]N[S{v}]  , that is, every vertex v  S has a private neighbor. The 
irredundance number ir(G) equals the minimum cardinality of a maximal irredundant set 
in G. 

Definition 1.3 The domination number  of G is defined to be the minimum cardinality 

of a dominating set in G. Similarly, one can define the perfect domination number p, 

connected domination number c, total domination number t, independent domination 

number i, efficient domination number e, cycle domination number o, global 

domination number g, total global domination number tg, restrained domination 

number r.  

Definition 1.4 A vertex (point) and an edge are said to cover each other, if they are 
incident. A set of vertices, which cover all the edges of a graph G is called a (vertex) point 
cover of G, while a set of lines (edges), which covers all the vertices is a line cover. The 
smallest number of points in any point cover for G is called its point covering number and 

is denoted by (G) or .  Similarly, 1(G) or 1 is the smallest number of lines in any 
line cover of G and is called its line covering number. Clearly, A point cover (line cover) is 

called minimum, if it contains  (respectively 1) elements. 

Definition 1.5 A set of points in G is independent, if no two of them are adjacent. The 
largest number of points in such a set is called the point independence number of G and is 

denoted by o(G) or o. Analogously, an independent set of lines (matching) of G has no 
two of its lines adjacent and the maximum cardinality of such a set is the line 

independence number 1(G) or 1, A set of independent edges covering all the vertices of 
a graph G is called a 1-factor or a perfect matching of G.  

Theorem 1.1 [7] ir(G)  (G)  i(G)  o(G). If (G)  2, (G)  t(G)  c(G). 

 Cockayne and Hedetniemi [5] defined the domatic number d(G) of a graph to be 
the maximum number of elements in a partition of V(G) into dominating sets. G is 

domatically full if d(G) = 1+(G). 
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Theorem 1.2 [7] tg(G) < t(G)+2. 

Theorem 1.3 [7] Let D be a g-set of G such that < D > has no isolates and diam(G) = 3, 

then tg(G)  g(G)+2. 

Theorem 1.4 [9] (Sampathkumar et al.) (G)  no(G)  (G).  

Motivation: The Line graphs, Middle graphs, Total graphs and Quasi-total graphs are very 
much useful in computer networks. In analogous to line graph, total graph, middle graph 
and quasi-total graph, thirty-two graphs can be defined using different adjacency relations. 
Out of these operations, eight were already studied. Among the remaining twenty-four 
graph operations, four are defined and analyzed in [3]. All the others have been defined 
and studied thoroughly and will be submitted elsewhere. This is illustrated below. 

Defining a new graph from a given graph by using the adjacency relation between 
two vertices or two edges and incident relationship between vertices and edges is known as 
Boolean operation. It defines new structure from the given graph and adds extra 
information of the original graph. 

In Management and in social networks, the incident and non-incident relations of 
vertices and edges are used to define various networks. So these are very much applicable 
in socio-economical problems. In some cases, it is possible to retrieve the original graph 
from the Boolean graphs in polynomial time. So these graph operations may be used in 
graph coding or coding of some grouped signal. Also, it is possible to study the structure 
of original graphs through these Boolean graph operations. This motivates the study for 
the exploration of various Boolean operations and study of their structural properties. 

In [3, 12] Boolean graph BG2(G) is defined as follows:  

Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G).              

BG, INC,L(G)(G) [3] is a graph with vertex set V(G)  E(G) and two vertices are adjacent if 
and only if they correspond to two adjacent vertices of G or to a vertex and an edge 
incident to it in G or two non-adjacent edges of G. For simplicity, denote this graph by 
BG2(G), Boolean graph of G-second kind. With an immediate consequence of the 
definition of BG2(G), if G is a (p, q) graph, whose vertices are v1, v2, ..., vp having degrees 

di, and edges eij, note that BG2(G) has p+q vertices and (q2+7q∑di
2)/2 edges with         

deg vi = 2di; deg eij = q+3(di+dj). Also, G andL(G) are induced subgraphs of BG2(G). 

 

G/G/Kp/Kp 

       Incident (INC)/ 
Non-incident (NINC) 

  

L(G)/L(G)/Kq/Kq 
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 In this paper, domination parameters of BG2(G) and its complement are studied. 

2. Domination Parameters of BG2(G) andBG2(G) 

Domination number of BG2(G) andBG2(G) 

First domination parameters of BG2(G) andBG2(G) are studied and bounds for 
them are found out. 

Theorem 2.1 (BG2(G)) = 1 if and only if G = K1,n. 
Proof: Radius of BG2(G) = 1 if and only if G = K1,n. 

Hence, (BG2(G)) = 1 if and only if G = K1,n. 

 Next two theorems give the bound of (BG2(G)) in terms of (G) and degree of 
vertices of G. 

Theorem 2.2 (BG2(G))  (G)+2. 

Proof: Let D  V(G) be a minimal dominating set of G with cardinality (G). Let u  D 

be such that u is adjacent to v  V(G). (This is always possible, since G is non-trivial). Let 

e = uv  E(G), where u, v  V(G). Consider D = D  {v, e}  V(BG2(G)). D 
dominates every point vertex of BG2(G), since D dominates G. The line vertex e 
dominates all line vertices not adjacent to e in G. All the line vertices adjacent to e in G 

are dominated by u and v in BG2(G). Hence, (BG2(G))  D = (G)+2. This proves 
the theorem. 

Theorem 2.3 Let G be a graph with diam(G)  2 and G  K1,n. Then                   

(BG2(G))  min {2degG v, q+3(degG u+degG v)}, where e = uv  E(G). 

Proof: Since G  K1,n and diam(G)  2, BG2(G) is self-centered with diameter 2. 
Therefore, neighborhood of every vertex in BG2(G) is a dominating set for BG2(G) and 

deg v = 2degG v and deg e = q+3–(degG u+degG v) in BG2(G), where e = uv  E(G). 

Therefore, (BG2(G))   min {2degG v, q+3(degG u+ degG v)}.  

Corollary 2.3 If G  K1,n, diam(G)  2 and G has a pendant vertex, then,            

(BG2(G)) = 2 = c(BG2(G)). 
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Proof: G  K1,n. Hence, (BG2(G))  1. Consider the pendant vertex u  V(G), and let v 

 V(G) be its adjacent vertex in G. e = uv  E(G). Now, in BG2(G), D = {v, e} is a 

connected dominating set. Thus, (BG2(G)) = 2 = c(BG2(G)). 

 Next theorem gives the bound of (BG2(G)) in terms of (G).  

Theorem 2.4 If G is a graph with diam(G)  2,  (BG2(G))  (G)+1. 

Proof: Consider u  V(G) with degree (G). Consider NG(u)  V(G). In BG2(G), 
elements in NG(u) dominates all the point vertices and line vertices incident with u (in G). 
The line vertices in BG2(G), which are not dominated by elements of NG(u) are nothing 
but the edges of G in < N2(u) >. Now, consider an edge e incident with u in G.                 

D = N(u)  {e}  V(BG2(G)) dominates BG2(G). 

 Therefore, (BG2(G))  (G)+1. 

Remark 2.1 (1) If diam(G)  2 and < N2(u) > in G is totally disconnected, then   

(BG2(G))  (G).  

(2) Let S  E(G) be a point cover for G. Then S  V(BG2(G)) is a dominating set for 
BG2(G).  
(3) The set of all point vertices is a dominating set for BG2(G). 
(4) The set of all line vertices is a dominating set for BG2(G), if and only if G has no 
isolated vertex.  
(5) The set of all point vertices is a minimum dominating set for BG2(G), if and only if    

G =Kn.  
(6) The set of all line vertices is a minimum dominating set for BG2(G) if and only if        
G = nK2.  

 Following two theorems relate (BG2(G)) with  (G). 

Theorem 2.5 (1) D  V(G) is a dominating set for BG2(G) if and only if D is a point 

cover for G. Also, (BG2(G))  (G).  

(2) D  E(G) is a dominating set for BG2(G) if and only if D is a line cover which 

dominatesL(G). 

Proof of (1): Suppose D  V(G) is a dominating set for BG2(G). In G, every edge is 
incident with some element in D. This D is a point cover for G. On the other hand, 

suppose D  V(G) is a point cover for G. In G, every edge in G is incident with some 
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vertex in D. Hence. In BG2(G), D dominates every point vertices and line vertices. Thus, 
D is dominating set for BG2(G). 

Proof of 2: D  E(G) is a dominating set for BG2(G) if and only if D is a dominating set 

forL(G) and every point vertex in G is incident with some element in D, that is D covers 

all the point vertices of G and D is a line cover for G and dominatesL(G). This proves 2. 

Theorem 2.6 If (G) = (G), then (BG2(G)) = (G). 

Proof: (G) = (G). Hence, there exists a dominating set D, which is also a point cover 

with cardinality (G). This implies that D is a dominating set for BG2(G). Therefore, 

(BG2(G)) = (G).  

Remark 2.2 (1) (BG2(G))  (G).  

(2) The converse of Theorem 2.6 need not be true. That is, (BG2(G) = (G) need not 

imply that (G) = (G). 

Remark 2.3 (1) If G is a disconnected graph having K2 as a component, then       

(BG2(G)) = (G).  

(2) If there exists a (G) dominating set D such that e  E(G) is not adjacent to all edges 

in < V(G)D > then (BG2(G))  (G)+1.  

(3) If (G) = (G)+1, then also (BG2(G))  (G)+1.  

(4) If G has at least one (G) dominating set, which is not independent then        

(BG2(G))  (G)+1. 

Theorem 2.7 If (BG2(G)) = (G)+2, then G satisfies all the following conditions: 

(1) (G)  (G)+2.  
(2) G has no component as K2.  

(3) Every (G) dominating set of G is independent.  

(4) There exists no edge e  E(G), which is not adjacent to all other edges in                   

< V(G)D >, where D is a (G) dominating set of G. 

Proof of (1): If (G)  (G)+1, (BG2(G))  (G)+1. Hence (1) follows. 

Proof of (2): If G has a component as K2, (BG2(G)) = (G). 

Proof of (3): If a (G) dominating set D contains an edge, then (BG2(G))  (G)+1. 

Proof of (4): If there exists an edge e  E(G) such that e is not adjacent to edges of          

< V(G)D >, then (BG2(G))  (G)+1. Hence the theorem follows. 



 
 121 Domination Parameters of the Boolean Graph BG2(G) and its Complement 

Remark 2.4 Even if every (G) dominating set is independent, (BG2(G)) may be equal to 

(G)+1. Example, G = C5. 

Remark 2.5 A line vertex in BG2(G) can dominate at most two point vertices in BG2(G). 

Hence, if S  V(BG2(G)) is a dominating set of BG2(G), another dominating set D can be 

formed with same cardinality S such that D contains at most one line vertex. 

Following theorems give the characterizations of G for which (BG2(G)) = (G), 

(BG2(G)) = (G)+1 and (BG2(G)) = (G)+2. 

Theorem 2.8 (BG2(G) = (G) if and only if any one of the following is true: 

(1) There exists a (G) dominating set D of G, which is a point cover. (2) G has K2 as a 

component. (3) G has a pendant vertex v such that e = uv  E(G) and there exists a (G) 

dominating set D of G containing u and {N(u)v}. 

Proof: Suppose (BG2(G)) = (G). Let S  V(BG2(G)) be a (BG2(G)) dominating set of 
BG2(G). By the remark, one can find a dominating set D of BG2(G) with at most one line 
vertex. 
Case 1: D has no line vertices. 
Since D is a dominating set of BG2(G), D is a point cover for G. 
Case 2: D has one line vertex. 

D dominates all the point vertices in BG2(G) also. Let e  E(G) be a line vertex in D. Let  

e = uv  E(G). Clearly, e dominates only two point vertices. Therefore,                         

D{e}  {u} = D is a (G) dominating set for G and e is not adjacent to all edges in      

< V(G)D > in G. Three sub cases arise. 

Sub case 1: V(G) – D is independent. 

This implies D is a point cover for G. 
Sub case 2: e is not adjacent to any other edges of G. 
In this case, G has K2 as a component. 
Sub case 3: e is adjacent to some other edges of G. 
In this case, BG2(G) is dominated by D implies that e cannot dominate the line vertices 
corresponding to the edges adjacent to e in G. Hence, there must exist, point vertices 
which are incident with the edges which are adjacent to e. 

Let e = uv  E(G), D = D{e}  {u}. Let u1, u2, …, uk be neighbors of u. Then 

u1, u2, …, uk must be in D. Thus, D contains u and N(u). 

Claim: degG v = 1. Suppose degG v >1. Let e1 = vv1 adjacent to e in G. e is not dominated 
by e. Therefore, either v must be in D or v1 must be in D. But already u and N(u) are in 
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D1 implies D itself dominates u and v. Therefore, e is not necessary to dominate u or v in 

BG2(G). This implies thatD  (G)+1, which is a contradiction. Hence, degG v must 

be one. That is, G has a pendant vertex v and e = uv  E(G) and D containing u and 
N(u) is a dominating set of G.  

Converse is obvious. 

Theorem 2.9 (BG2(G)) = (G)+1 if and only if there exists a (G)-dominating set D of 
G, which is not independent and is not a point cover or there exists an edge e in G such 

that e is not adjacent to all the edges of < V(G)D > and (G)  (G). 

Proof: Let D  V(BG2(G)) be a (BG2(G)) dominating set of BG2(G). Assume that 

(BG2(G)) = (G)+1. By the remark 2.5, there exists D such that D contains at most one 

line vertex e. Therefore, D{e}  V(G) is a dominating set of G. D is a (BG2(G)) 

dominating set implies that D{e} is not a point cover, and e dominates all the line 

vertices which are in V(G)(D{e}). Hence, e must be either in < D > or e  E(G) such 

that e is not adjacent to all the edges of < V(G)D >. 
 Converse is obvious. 

Next, we study the domination parameters ofBG2(G). Following theorem 

characterize the graphs for which (BG2(G)) = 1.   

Theorem 2.10 (BG2(G)) = 1 if and only if G has an isolated vertex. 

Proof: If G has an isolated vertex u, then D = {u} dominates every vertex in BG2(G). 

Therefore, (BG2(G)) = 1. On the other hand, suppose (BG2(G)) = 1. Then there 

exists x  V(BG2(G)) such that x is adjacent to every other vertex inBG2(G). 
Therefore, x must not be a line vertex and x must be adjacent to every other point vertex 

inBG2(G). This implies that x is an isolated vertex in G. 

Following theorem characterize the graphs for which (BG2(G)) = 2.   

Theorem 2.11 If G has no isolated vertices, then (BG2(G)) = 2, if and only if any of the 

following is true. (1) diam(G)  3, (2) i(L(G)) = 2. 

Proof: Case 1: D = {u1, u2}  V(G). D is a dominating set forBG2(G) if and only if u1, u2 

are not adjacent in G and there is no w  V(G) adjacent to both u1 and u2. This implies 

that, dG(u1, u2)  3. Hence, diam(G)  3. 
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Case 2: D = {e1, e2}  E(G). D is a dominating set forBG2(G) if and only if e1, e2 
dominate L(G) and e1, e2 are not adjacent in G. (otherwise, the common point of 

incidence is not dominated by D). This is true only when i(L(G)) = 2. 

Case 3: D = {u, e}, where u  V(G), e  E(G). 
Sub case 3.1: D = {u, e}, and u and e are not incident in G. 

D is a minimal dominating set forBG2(G) if and only if u dominates the end vertices of e 

inBG2(G) and e dominates all the line vertices inBG2(G) which are edges incident with 
u in G. 

This is true, if and only if u is not adjacent to the incident vertices of e in G and 
there is no edge incident with u in G.  

Hence, diam(G)  3 and u is an isolated vertex. In this case, {u} is a minimal 

dominating set forBG2(G). 

Sub case 3.2: D = {u, e}, where e = uv  E(G). This case is not possible since in this case, 

v is not dominated by u or e inBG2(G). Therefore, (BG2(G)) = 2, if and only if         

(i) diam(G)  3 or i(L(G)) = (L(G)) = 2. 

Remark 2.6 If 1(G) > 2, either diam(G)  3 or diam(G)  2. 

When diam(G)  3, (BG2(G)) = 2, D = {u1, u2}, dG(u1, u2)  3 dominatesBG2(G). 

When diam(G)  2, 1(G) > 2 implies that i(L(G))  2 and hence (BG2(G)) > 2. 

Therefore, (BG2(G)) = 2 if and only if any one of the following is true.           

(i) diam(G)  3 (ii) 1(G) = 2. 

In the following we obtain a characterization of graphs G for which (BG2(G)) = 3. 

Theorem 2.12 (BG2(G)) = 3 if and only if diam(G)  2 and 1(G)  2. 

Proof: G is non-trivial. Therefore, there exists at least one edge e  E(G). Let e = uv,       

uv  E(G), D = {u, v, e}  V(BG2(G)) is a dominating set forBG2(G). Thus,    

(BG2(G))  3. The theorem follows from Theorems 2.10 and 2.11. 

Remark 2.7 Any dominating set ofG containing at least three elements is a dominating 

set forBG2(G). If G  K1,n, then the set of all independent edges of G is a dominating set 

forBG2(G). If G  K1,n, K3, then a line cover for G is a dominating set forBG2(G). 

Theorem 2.13 For any non-trivial simple graph G, 

                  3  (BG2(G))+(BG2(G))  (G)+5. 
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Proof:  G has an isolated vertex if and only if (BG2(G)) = 1. In this case,      

(BG2(G))  2. (BG2(G)) = 1 if and only if G = K1,n. In this case, (BG2(G))  2, 

sinceBG2(G) has an isolated vertex. Thus in all cases, (BG2(G))+(BG2(G))  3. Also, 

in all cases, (BG2(G))  3 and (BG2(G))  (G)+2. Therefore, 

(BG2(G))+(BG2(G))  (G)+5. Hence, 3  (BG2(G))+(BG2(G))  (G)+5. 

Example 2.1 Let G = K1,n  K1, (BG2(G)) = 1 and (BG2(G)) = 2. 

 Therefore, (BG2(G))+(BG2(G)) = 3. 

Example 2.2 
 
 
    
 
 
 
                            Fig:2.1      G 

(G) = 1. 

Here, (BG2(G)) = (G)+2 and                                

(BG2(G)) = 3, since diam(G) = 2 and 1(G)  2. 

Therefore, (BG2(G))+(BG2(G)) = (G)+5. 

 Hence, the bounds in the theorem are sharp. 

Connected, Cycle and total domination of BG2(G) andBG2(G):  

Following theorems deal with the connected domination, cycle domination and 

total domination parameters of BG2(G) andBG2(G). 

Theorem 2.14 If (G) = c(G), then c(BG2(G)) = (G) or (G)+1. 

Proof: (G) = c(G). Therefore, G has a connected dominating set D with cardinality 

(G). Hence, D1 = D  {e}, where e = uv  E(G), u, v  D is a connected dominating set 

for BG2(G). Thus, c(BG2(G)) = (G) or (G)+1. 

Remark 2.8 t(BG2(G)) = t(G) or t(G)+1 if (G) = t(G). 

Theorem 2.15 If G has a cycle dominating set, then BG2(G) also has a cycle dominating 

set and o(BG2(G))  o(G)+1. 

Proof: Let D be a minimum cycle dominating set for G. D  {edge in < D >} is a cycle 

dominating set for BG2(G). Also, D  {e}, where e is an edge in < D > is a cycle 

dominating set (not induced) for BG2(G). Therefore, o(BG2(G))  o(G)+1. 
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Remark 2.9 If (G) = (G), o(BG2(G))  o(G). 

Theorem 2.16 Let G be a graph without isolated vertices. Then                         

(BG2(G)) = c(BG2(G)) = t(BG2(G)) = 2 if and only if diam(G)  3. 

Proof: Suppose diam(G)  3. Let u1, u2  V(G) such that dG(u1,u2)  3. D = {u1, u2} is a 

connected dominating set forBG2(G). On the other hand, if c(BG2(G)) = 2, 

(BG2(G)) = 2. (G has no isolated vertices). This gives diam(G)  3 or 1(G) = 2 by 

Remark 2.6. But 1(G) = 2 and diam(G)  2 means (BG2(G)) = 2, D = {e1, e2}, where 

e1, e2 are independent edges in G is a dominating set forBG2(G). But D is not connected. 

Hence, c(BG2(G)) = 2 if and only if diam(G)  3. 

Theorem 2.17 Let G be a graph without isolated vertices. c(BG2(G)) = t(BG2(G)) = 

3 if and only if diam(G)  2, G  K1,n. 

Proof: Let diam(G)  2, G  K1,n, K3. G  K1,n. Therefore, 1(G) > 1. 

Case 1: 1(G) = 2. 

If p  5, D = {e1, e2, w}, where e1 and e2 are independent edges and w not incident with 

both e1 and e2 is a connected dominating set. Therefore, c(BG2(G)) = 3. If p  4, 

diam(G)  2, which implies that G is connected, (Also, G  K1,n impliesBG2(G) is 
connected) and there exists an edge, adjacent to both e1 and e2 in G. Thus, D = {e1, e2, e} is 

a connected dominating set forBG2(G). 

 Hence, c(BG2(G)) = 3. If G = K3, then also c(BG2(G)) = (BG2(G)) = 3. 

Case 2: 1(G) > 2. 

Since 1(G) > 2, there exists at least three independent edges and hence p  6. 
Sub case 2.1: diam(G) = 2. 

Since p  6 and diam(G) = 2, there exists at least two non-adjacent vertices u1, u2  V(G) 

and an edge e  E(G), not incident with u1 and u2. Take, D = {u1, u2, e}. Clearly, D is a 

cycle dominating set inBG2(G). 

 Therefore, c(BG2(G)) = 3 = t(BG2(G)) =  o(BG2(G)). 
Sub case 2.2: diam(G) = 1. 
In this case, G = Kn. Take D = {e1, e2, e}, where e1, e2 are independent edges in G and e is 

adjacent to both e1 and e2. D is a connected domination set forBG2(G). Therefore, 

c(BG2(G)) = 3 = t(BG2(G)). 
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 Conversely, c(BG2(G)) = 3 implies, (BG2(G)) = 2 or 3. Suppose,         

diam(G)  3, (BG2(G)) = 2. Therefore, c(BG2(G)) = 3 implies that diam(G)  2 and 

G  K1,n (since BG2(K1,n) is not connected). This proves the theorem. 

Theorem 2.18 If G has an isolated vertex, then o(BG2(G)) = 3. 

Proof: Let u  V(G) be an isolated vertex of G and G non-trivial. G = K1  G1, where G1 
has at least one edge. If G1 is not complete, there exists at least two non-adjacent vertices 

v1, v2 in G1. Hence inBG2(G), D = {u, v1, v2} forms a cycle dominating set. Therefore, 

o(BG2(G)) = 3. If G1 is complete and is not K2, there exists an edge e = xy  E(G) and 
another vertex z in G1. In this case, D = {e, z, u} forms a cycle dominating set for 

BG2(G). Hence o(BG2(G)) = 3. 

If G1 = K2, then G = K2  K1 andBG2(G) is K1,3, which has no cycle domination. 

Theorem 2.19 Let G be a graph with (G)  1 and G  K1,n, and Kn, then      

(1) o(BG2(G)) = 3, if any one of the following is true (a) (G) >1 and G  2K2,           

(b) (G) = 1 and (G) = 1, (c) (G) = 1, (G) = 2  degG v for all v in the center. 

(2) o(BG2(G)) = 4 if any one of the following is true: (a) (G) = 1, (G) = 2=degG v for 

all v  V(G) such that e(v)  1. (b) (G) = 3, (G) = 1 (c) (G) = 4, p = 5, (G) = 1, (d) 
G = 2K2.  

(3) o(BG2(G)) = 5 if (G) = 1, (G)  4 and p  6. 

Proof: Case 1: (G) > 1. 

Suppose p  5. Then there exist u, v not adjacent in G and an edge e  E(G) not incident 
with u and v such that u and v are not both adjacent to the end vertices of e. Consider, D 

= {u, v, e}, D is a cycle dominating set forBG2(G). Therefore, o(BG2(G)) = 3. 

If p = 4, (G) > 1, which implies that G = C4 or G = 2K2. If G = C4, consider two adjacent 
edges e1, e2 in G and a vertex u not incident with e1 and e2. D = {e1, e2, u} is a cycle 

dominating set forBG2(G). Hence, o(BG2(G)) = 3. If G = 2K2, then o(BG2(G)) = 4. 

Case 2: (G) = 1 and diam(G) = 2. 

In this case, G  K1,n and G  Kn. Since G  K1,n and (G) = 1, G has at least one triangle. 

Let u  V(G) be such that eG(u) = 1. 

Sub case 2.1: (G) = 1. 

Let w  V(G) be such that degG w = 1. Then G has two adjacent edges e1 and e2, one 
incident with u, other not incident with u and e1, e2 are not incident with w. D = {e1, e2, w} 

dominatesBG2(G) and < D > is C3 inBG2(G). Therefore, o(BG2(G)) = 3. (If G has 
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only one triangle formed by the edges e1, e2, e3, D = {e1, e2, e3} is also a cycle dominating 
set). 

Sub case 2.2: (G) = 2. 

If there exists v  V(G), such that 2 < degG v < p1, as in the previous cases, there exists 
edges e1 incident with u, e2 adjacent to e1 and not incident with u. Edges incident with w 
are adjacent to one of e1 and e2. In this case, D = {e1, e2, w} is a cycle dominating set 

forBG2(G). 

 Consider the case that degG v = 2 for all v  u. 
In this case, take e1 and e2 independent such that e1 is incident with u and adjacent to the 
edges incident with w. Let e be an edge adjacent to both e1 and e2. D = {e1, e2, e, w} is a 
cycle dominating set and there is no cycle dominating set with cardinality less than this. 

Therefore, o(BG2(G)) = 4. 

Sub case 2.3: (G) = 3. In this case, p  5 and G  Kn. 

Let w  V(G) such that degG w = 3. Then there exists (i) an edge e1 incident with u and 
not incident with w. (ii) e2 not adjacent to e1 (iii) e adjacent to both e1 and e2 such that 
edges incident with w are adjacent to any one of e1, e2, e. Then D = {w, e, e1, e2} is a cycle 

dominating set forBG2(G) and o(BG2(G)) = 4. 

Sub case 2.4: (G)  4. 

Since G  Kn, p  6. Here, one cannot find two independent edges e1, e2 and an edge e 
adjacent to e1 and e2 such that edges incident with w is adjacent to any one of e1, e2 or e. 
Therefore, D = {e1, e2, e, w} is not a dominating set. But, D1 = {w, e1, e2, e3, e4}, where e1 
and e2 are not adjacent; e3 adjacent to both e1 and e2; e4 adjacent to all e1, e2, e3 is a cycle 

dominating set forBG2(G). Here, e1 is an edge incident with w and all edges incident 

with w are dominated by e1 inBG2(G). Therefore, o(BG2(G)) = 5. If p  6 and       

(G)  4, one can always find such a dominating set. This proves the theorem. 

Theorem 2.20 (1) D = {u, v, w}  V(G) is a cycle dominating set forBG2(G) if and only 

if D is independent in G and D dominatesG.  

(2) D = {e1, e2, e3}  E(G) is a cycle dominating set forBG2(G) if and only if e1, e2, e3 
form a triangle in G and all other edges are adjacent to any one of e1, e2, e3 in G. 

Proof of (1): D = {u, v, w}  V(G) is a cycle dominating set forBG2(G) if and only if D 

forms a triangle inBG2(G) and dominatesBG2(G). This is true, if and only if D is 
independent in G and there exists no point vertex, which is adjacent to all these point 
vertices. This proves (1). 



 
 

128 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Proof of (2): D = {e1, e2, e3}  E(G) is a cycle dominating set ofBG2(G) if and only if e1, 
e2, e3 are adjacent to each other and dominates all other point vertices and line vertices 

inBG2(G). This is true only when D forms a triangle in G and all other edges of G are 
adjacent to any one of e1, e2, e3. This proves (2). 

Remark 2.10 Any cycle dominating set ofG is a cycle dominating set forBG2(G). 

Theorem 2.21 o(BG2(Kn)) =      3   if n =  3, 4 
    4   if n = 5 

    5   if n  6. 

Proof: When n = 3 or 4, any three edges forming triangle in G dominates BG2(G) and   

< D > = C3. Therefore, o(BG2(Kn)) = 3 if n = 3, 4. 
When n = 5. Consider any two independent edges e1, e2 of G, e3 adjacent to both e1 and e2, 
w is a vertex, not incident with e1 and e2. D = {e1, e2, e3, w} is a cycle dominating set 

forBG2(G). Therefore, o(BG2(Kn)) = 4, if n = 5. 

When n  6.  Take any four vertices v1, v2, v3, v4. Consider the edges e1, e2, e3 incident 
with v1 and e4 = v3v4. Let D = {e1, e2, e3, e4, v2}. e1 and e2 dominates all other point vertices 

ofBG2(G). v2 dominates all the line vertices which are edges not incident with v2, edges 

incident with v2 are dominated by e1. D is a dominating set forBG2(G). Also, < D > has a 
Hamiltonian cycle. 

Therefore, o(BG2(Kn)) = 5 if n  6. 

Remark 2.11 For any graph G  K1,n, o(BG2(G))  5. 

Independent domination of BG2(G) andBG2(G): 

This sub section deals with the independent domination of BG2(G) andBG2(G). 

Theorem 2.22 Let G be a graph with a (G) independent dominating set D. If there exists 

e  E(G) such that e is not adjacent to all other edges of <V(G)D>, then            

i(BG2(G))  (G)+1. 

Proof: D is an independent (G) dominating set for G. Hence, i(G) = (G). By the 

property of e, D1 = D  {e}  V(BG2(G)) is an independent dominating set for BG2(G). 

Therefore, i(BG2(G)) = (G) or (G)+1. 

Theorem 2.23 Let every (G) dominating set of G is independent and D be a minimum 
dominating set of G. D is a dominating set of BG2(G) if and only if G is bipartite. 
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Proof: Let D be a (G) dominating set of G. D is independent. If D is a dominating set for 
BG2(G), it dominates every line vertices of BG2(G), that is D is a point cover for G. 

Therefore, V(G)D is independent in G. Both D and V(G)D are independent implies 
that G is bipartite. 
 On the other hand if G is bipartite, every minimal dominating set is independent 

and is a point cover for G. Hence, D is a minimum (BG2(G)) dominating set of BG2(G). 

Theorem 2.24 Let D be a minimum independent dominating set for G, with cardinality 

i(G). Then (1) i(BG2(G))  i(G)+k, where k  3 is the minimum degree of                  

< V(G)D >.  

(2) i(BG2(G))  i(G)+3 if < V(G)D > has triangle or has a vertex of degree two or 
three or has K2 as a component. 

Proof of (1): Let v  V(G)D such that degG v = k  3 in G. Consider the edges e1, e2, …, 

ek in < V(G)D > incident with v. {e1, e2, …, ek} is an independent set in V(BG2(G)). None 

of e1, e2, …, ek is incident with elements of D. Hence, D  {e1, e2, …, ek} is an independent 

dominating set for BG2(G). Therefore, i(BG2(G))  i(G)+k. 

Proof of (2): If e1, e2, e3 forms a triangle in < V(G)D >, then             D  {e1, e2, e3} is an 
independent dominating set for BG2(G). If <V(G)–D> has a vertex of degree two, then D 

 {e1, e2} or {e1, e2, e3}  D forms an independent dominating set for BG2(G). If             

< V(G)D > has K2 as a component, then D  {e1}, where e1 is the edge in K2 is an 
independent dominating set for BG2(G). This proves (2). 

Theorem 2.25 Let G be a graph without isolated vertices. Then (1) i(BG2(G)) = 2 if 

and only if 1(G) = 2.  (2) i(BG2(G)) = 3 if and only if 1(G)  2. 

Proof of (1): Assume that 1(G) = 2. Take D = {e1, e2}, where e1, e2 are two independent 

edges in G. Then D dominatesBG2(G) and is independent inBG2(G). Therefore, 

i(BG2(G)) = 2. Conversely, i(BG2(G)) = 2 implies that (BG2(G)) = 2 (since G has 

no isolated vertices.) (BG2(G)) = 2 if and only if 1(G) = 2 or diam(G)  3. Also, if 

diam(G)  3, then 1(G)  2 implies that (BG2(G))  3 (Remark 2.6). Therefore, 

i(BG2(G)) = 2 implies that 1(G) = 2. 

Proof of (2): When 1(G)  2. Consider e  E(G) such that e = uv, where u, v  V(G). 

Take D = {u, v, e}  V(BG2(G)). D is an independent dominating set forBG2(G). 

Therefore, i(BG2(G)) = 3. On the other hand i(BG2(G)) = 3 implies that   

i(BG2(G))  2. This implies that 1(G)  2. Hence the theorem is proved. 
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Global domination of BG2(G): 

Dominating sets of BG2(G) which are also dominating sets ofBG2(G) are studied 
here. 

Proposition 2.1 (G)  gd(BG2(G))  (G)+2. 

Proof: Let D be a dominating set for G. Take u  D, v  D and e = uv  E(G). Then {u, 

v, e} is a dominating set forBG2(G) and D  {v, e} is a dominating set  for BG2(G). 

Therefore, D  {v, e} is a global dominating set for BG2(G). Hence,                  

gd(BG2(G))  (G)+2. 

The following propositions are stated without proof, since they are easy to follow. 

Proposition 2.2 If there exists a global dominating set D of G with cardinality (G) > 2 

and is also a point cover for G, then gd(BG2(G)) = (G). 

Proposition 2.3 If D is a global dominating independent set for G and is a point cover for 

G such that D= 2, then gd(BG2(G)) = 2 = (G) = D. 

Remark 2.12 If G = K1,n  K1,m, then gd(BG2(G)) = (G) = 2. 

Proposition 2.4 gd(BG2(G))  1(G)+2. 

Proof: Let D  E(G) be a line cover of G with cardinality 1(G). Then D or D  {e} or 

D  {u} is a dominating set for BG2(G). Hence, (BG2(G))  1(G)+1. Again, D is a 

dominating set for L(G) and hence D  {e} dominatesBG2(G) if G  K1,n. When           

G = K1,n, D  {u}, where u is the central node of G, dominatesBG2(G). Hence,              

D  {e, u} is a global dominating set of BG2(G). Therefore, gd(BG2(G))  1(G)+2. 

Following theorem characterize the graphs for which gd(BG2(G)) = 2. 

Theorem 2.26 gd(BG2(G)) = 2 if and only if G is any one of the following:    

(1) G = K1,n  K1,m.  (2) G = K2   K1. (3) G = 2K2. 

Proof: Assume that gd(BG2(G)) = 2. 

Case 1: D = {u1, u2}  V(G) is a global dominating set for BG2(G). 
D is a dominating set for BG2(G). Therefore, all point vertices are adjacent to u1 or u2 in G 
and all the edges in G are incident with either u1 or u2 or both. 
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D is a dominating set forBG2(G). Therefore, all other point vertices are adjacent to either 
u1 or u2 and there is no edge incident with both u1 and u2. 

 Combining all these, it is seen that G = K1,n  K1,m. 

Case 2: D = {u, e}  V(BG2(G)), u  V(G), e  E(G) is a global dominating set.  
D is a dominating set for BG2(G) implies all other point vertices are incident with e or 

adjacent to u in G. Let e = vv1  E(G). Suppose G is connected and u and v are not 
adjacent. Then there exists an edge adjacent to e and not incident with u, which is a 
contradiction to D dominates BG2(G). Therefore, v must be adjacent to u. Also, there is 

no other edge incident with v. But inBG2(G), the edge e1 = uv  E(G). The point vertex 
v is not dominated by u or e, which is a contradiction. 

 Therefore, in this case G must be disconnected. InBG2(G), e dominates all point 
vertices not incident with e and u dominates all point vertices not adjacent to u. Suppose 

there exists an edge e1, incident with u, inBG2(G), e1 cannot be dominated by u or e. 
Therefore, u must be an isolated vertex of G. If e has an adjacent edge e2 in G, in BG2(G), 

e2 cannot be dominated by e or u. Hence, G must be K2  K1. 

Case 3: D = {e1, e2}  E(G) is a global dominating set for BG2(G). 

D dominates BG2(G) and hence G must be K1,2 or 2K2. But when G = K1,2, BG2(G) 

cannot be dominated by D. Thus, gd(BG2(G)) = 2 only when G = K1,n  K1,m, K2  K1 or 
2K2. Converse is obvious. Hence the theorem is proved. 

Remark 2.13 (1) Set of all point vertices is a global dominating set for BG2(G) if and only 

if G  K2.  

(2) Set of all line vertices is a global dominating set for BG2(G) if and only if G  K1,n. 

Restrained domination of BG2(G) andBG2(G): 

In this sub section we study the restrained domination of BG2(G) andBG2(G). 

Theorem 2.27 Let G be a graph with isolated vertices. If there exists a point cover with 

cardinality (G), r(BG2(G)) = (G) or (G)+1. 

Proof: D is a point cover in G. Hence, D is a dominating set of BG2(G) and V(G)D is 

independent in G. Consider VD = V(BG2(G))D. The point vertices in VD are 
adjacent to edges incident with them and vice-versa in BG2(G). Consider the line vertices 
in BG2(G). These can be divided into two parts (1) edges in < D >; (2) edges joining 

vertices of D to vertices of V(G)D. The line vertices of BG2(G) which are edges in (2) are 

adjacent to point vertices (in (V(G)D)) in BG2(G). 
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Case 1: D is independent.  

Then D is a restrained dominating set in BG2(G). Therefore, r(BG2(G)) = (G). 

Case 2: <D> is connected and D = 2.  

Then D  {e}, where e is the edge in < D > is a restrained dominating set. Hence, 

r(BG2(G))  (G)+1. 

Case 3: D is not independent and D  3.  

Each edge in < D > always have some non-adjacent edge in G. Hence, in VD, every line 
vertex have some adjacent elements. Therefore, D is a restrained dominating set of 

BG2(G). Therefore, r(BG2(G)) = (G). 

Theorem 2.28 Let G be a graph without isolated vertices. If (G) > (G) and D is a 

(G) dominating set of G, then r(BG2(G)) = (G), (G)+1 or (G)+2. 

Proof: D is a dominating set for G with cardinality (G). 

Case 1: (BG2(G)) = (G). 

In this case, there exists an edge e in G such that e = uv  E(G), u  D, v  D, D1 =    

(D{u})  {e} is a dominating set for BG2(G). Every point vertex not in D1 has an 

adjacent vertex in V(BG2(G))D (namely the line incident to it in G) and u and v are 

adjacent in BG2(G). Every line vertex e not in D1 has an adjacent point vertex in 

V(BG2(G))D1 if e is not in < D{u} >. Suppose, e is an edge in < D{u}>, since   

(G) > (G) there exists e in V(BG2(G))D1, which is an edge in < V(G)D > such 

that e and e are adjacent elements in BG2(G). Therefore, D1 is a restrained dominating 
set. 

Case 2: (BG2(G)) = (G)+1. 

In this case, D1 = D  {u}, where all edges in < V(G)D > are incident with u  V(G) is 

a dominating set for BG2(G) or D1 = D  {e}, where e  E(G) is not adjacent to edges in 

< V(G)D > is a dominating set for BG2(G). In this case also D1 is restrained in BG2(G) 
(as in case 1, it can be proved). 

Case 3: (BG2(G)) = (G)+2. 

In this case, D  {v, e}, u  D, v  D and e = uv  E(G) is a dominating set of BG2(G), 

which is also restrained. Hence, r(BG2(G))  (G)+2. 

Remark 2.14 (1) Set of all line vertices is restrained in BG2(G) if and only if G has no 
isolated vertex.  
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(2) Set of all point vertices is a restrained dominating set for BG2(G) if and only ifL(G) 
has no isolated vertices. 

Theorem 2.29 Let G be a graph with p  6 and G has a perfect matching. Then D  E(G) 
containing the line vertices corresponding to the edges in the perfect matching is a 
restrained dominating set for BG2(G). 

Proof: Consider V(BG2(G))D = VD. Every element in V(BG2(G))D = VD has 

neighbors in D and in VD. Hence, D is a restrained dominating set for BG2(G). 

Therefore, r(BG2(G))  p/2, if G has a perfect matching. 

Remark 2.15 D is clique dominating set of BG2(G). 

 Now, we characterize the graphs for which r(BG2(G)) = 2. 

Theorem 2.30 r(BG2(G)) = 2 if and only if G satisfies any one of the following:             

(1) G = K1,2 or K3.        (2) (G) = 2 = (G)  c(G).     (3) G = K2   G with r(G) = 1. 
Proof: Let D be a restrained dominating set of BG2(G) with two elements. 

Case 1: D = {u, v}  V(G). 
D dominates BG2(G) implies that D is a dominating set of G, which is also a point cover 

of G. Hence, (G) = 1 or 2. If (G) = 1, then (G) = 1, which implies that G = K1,n. 

But in this case, ( BG2(G)) = 1. Hence (G) must be 2. If (G) = 1 and (G) = 2, 
then G must be K3 or K1,n+edges incident with v, where u is the central vertex of K1,n. But 

in this case, e = uv  E(G) is not adjacent to any other element in V(BG2(G))D. Hence, 

D is not restrained. Therefore, (G) = (G)  c(G). 

Case 2: D = {e1 , e2}  E(G). 
D is a dominating set of BG2(G) if and only if G = 2K2 and D is also restrained. 

Case 3: D = {u, e}, where u  V(G) and e  E(G). 

(i) If e is incident with u in G, then e = uv  E(G). D is a dominating set of BG2(G) 
implies that v is pendant in G. Therefore, v is not adjacent to any other element in 
BG2(G), which is a contradiction to D is restrained. 
(ii) If e is not incident with u in G, then either e has adjacent edges in G or not. If e has no 

adjacent edges, G = K2  G, where r(G) = 1. If e has an adjacent edge e1, then u must 
dominate e1 in BG2(G). Hence, G is of the form K1,2 or K3. In all these cases, D is 
restrained. Hence the theorem is proved. 
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Following theorems characterize the graphs for which r(BG2(G)) = 1, 

r(BG2(G)) = 2 and r(BG2(G)) = 3.   

Theorem 2.31 (1) r(BG2(G)) = 1 if and only if G has an isolated vertex. 

(2) r(BG2(G)) =  2 if and only if diam(G)  3 or 1(G) = 2 with G  K1,n+x, and G has 
no isolated vertex. 

Proof: Case 1: diam(G)  3. 

There exists u, v  V(G) such that dG(u, v)  3. Consider, D = {u, v}. D is a dominating 

set forBG2(G) and is restrained if G has no isolated vertex. Therefore, r(BG2(G)) = 2 if 

diam(G)  3 and G has no isolated vertex. r(BG2(G)) = 1 if G has an isolated vertex. 

Case 2: 1(G) = 2.  

Let e1, e2  E(G) be two independent edges of G. D = {e1, e2}  V(BG2(G)). If              

G  K1,n+x, D is restrained inBG2(G). If G = K1,n+x, D = {e1, e2} is a dominating set but it 

is not restrained, since the central node u  V(G) is not adjacent to any element of VD. 

Conversely, assume r(BG2(G)) = 2. This implies that (BG2(G))  2. But, 

(BG2(G)) = 1 if and only if G has an isolated vertex. Therefore, if G has no isolated 

vertices, (BG2(G)) = 2. Let D be a minimum dominating set ofBG2(G). By       
Theorem 2.11 and by the definition of restrained domination, G satisfies the given 
conditions. This proves the theorem. 

Theorem 2.32 r(BG2(G)) = 3 if and only if any one of the following is true:  

(1) diam(G)  2 and 1(G) > 2. (2) G = K1,n+x. 

Proof: r(BG2(G)) = 3 implies (BG2(G))  3. Suppose, (BG2(G)) = 1, G has some 

isolated vertex; suppose (BG2(G)) = 2, r(BG2(G)) = 2 if and only if diam(G)   3 or 

1(G) = 2 with G  K1,n+x. Therefore, r(BG2(G)) = 3 implies G has no isolated vertices 

and diam(G)  2 and 1(G) > 2 or G = K1,n+x. Also, r(BG2(G)  3, since D = {u, v, e}, 

where u, v  V(G), e = uv  E(G) is a restrained dominating set forBG2(G)). Converse 
is obvious.  

Remark 2.16  (1) Set of all point vertices is a restrained dominating set for BG2(G) if and 
only if L(G) has no isolated vertices.  

(2) Set of all line vertices is a restrained dominating set if and only ifG has no isolated 
vertices, that is radius of G > 1.  



 
 135 Domination Parameters of the Boolean Graph BG2(G) and its Complement 

(3) If G has no isolated vertices, any dominating set ofG (p  4) containing at least three 

elements is a restrained dominating set ofBG2(G). 

Conclusion: Other properties such as eccentricity, traversability, connectivity, 
characterization, edge partition of BG2(G) and other domination parameters are studied 
and submitted. 
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