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Abstract:Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, INC,L(G)(G) is a 
graph with vertex set V(G)  E(G) and two vertices are adjacent if and only if they correspond to two 
adjacent vertices of G, a vertex and an edge incident to it in G or two non-adjacent edges of G. For 
simplicity, denote this graph by BG2(G), Boolean graph of G-second kind. In this paper, some properties 
of BG2(G) are studied.  
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1.Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge 
set E(G). For graph theoretic terminology refer to Harary [10], Buckley and Harary [7].  

The girth of a graph G, denoted g(G), is the length of a shortest cycle (if any) in 
G; the circumference c(G) is the length of any longest cycle. The distance d(u, v) between 
two vertices u and v in G is the minimum length of a path joining them if any; otherwise 

d(u, v) = . A shortest u-v path is called a u-v geodesic. A graph G is geodetic, if for 
every pair of vertices (u, v) there exists a unique shortest path connecting them in G.   

Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is 

the distance to a vertex farthest from v. Thus, e(v) = max {d(u, v) : u  V}. The radius 
r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is the 

maximum eccentricity. For any connected graph G, r(G)  diam(G)  2r(G). v is a 
central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central 
subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a peripheral 
vertex if e(v) = diam(G). The periphery P(G) is the set of all such vertices. For a vertex v, 
each vertex at distance e(v) from v is an eccentric node of v.  

A graph is self-centered if every vertex is in the center. Thus, in a self-centered 
graph G all nodes have the same eccentricity, so r(G) = diam(G). 

An edge uv  E(G) is a dominating edge of G, if all the vertices of G other than 
u and v are adjacent to either u or v.  
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A vertex (point) and an edge are said to cover each other, if they are incident. A 
set of vertices, which cover all the edges of a graph G is called a (vertex) point cover of G, 
while a set of lines (edges), which covers all the vertices is a line cover. The smallest 
number of points in any point cover for G is called its point covering number and is 

denoted by (G) or .  Similarly, (G) or  is the smallest number of lines in any 

line cover of G and is called its line covering number. Clearly, (Kp) = p1 and (Kp) 

= (p+1)/2.  A point cover (line cover) is called minimum, if it contains  

(respectively ) elements.  
A set of points in G is independent, if no two of them are adjacent. The largest 

number of points in such a set is called the point independence number of G and is 

denoted by o(G) or o. Analogously, an independent set of lines (matching) of G has no 
two of its lines adjacent and the maximum cardinality of such a set is the line 

independence number 1(G) or 1, o(Kp) = 1 and 1(Kp) = p/2. A set of independent 
edges covering all the vertices of a graph G is called a 1-factor or a perfect matching of G.  

A coloring of a graph is an assignment of colors to its vertices so that no two 

adjacent vertices have the same color. The chromatic number(G) is defined to be the 
minimum n for which G has n coloring. 

The minimum number of complete subgraphs of G needed to cover the vertices 

of G is known as the clique cover number of G and is denoted (G). 
The maximum number of mutually adjacent vertices, that is the size of the largest 

complete subgraphs of G is known as the clique number of G and is denoted (G). 
 A graph G is Berge [16] if it does not contain odd cycles of length at least five or 

their respective complement as induced subgraphs. A graph is perfect if o(H) = (H) for 

every induced subgraph H of G. This implies that (H) = (H) for every induced 
subgraph H. Clearly, every bipartite graph is perfect. 

Theorem 1.1 (Gallai) [8] For any connected graph G, +0 = p = 1+1. 

Theorem 1.2 [8] o(L(G)) = 1(G), (L(G)) = q1(G) and 1(L(G)) = q/2. 

Theorem 1.3 [10] (G)  1+(G). 

Theorem 1.4 [10] For any simple graph G, (G) = (G) and o(G) = ( G). 

Theorem 1.5 (Hayward) [16] If G is Berge and if it contains neither a cycle of length at 
least 6 or its complement as an induced subgraph, then G is perfect.  
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Motivation: The Line graphs, Middle graphs, Total graphs and Quasi-total graphs are very 
much useful in computer networks. In analogous to line graph [5, 17], total graph [4], [5], 
middle graph [1, 2] and quasi-total graph, thirty-two graphs can be defined using different 
adjacency relations. Out of these operations, eight were already studied. Among the 
remaining twenty-four graph operations, two are defined and analyzed here. All the others 
have been defined and studied thoroughly and will be submitted elsewhere. This is 
illustrated below. 

Defining a new graph from a given graph by using the adjacency relation between 
two vertices or two edges and incident relationship between vertices and edges is known as 
Boolean operation. It defines new structure from the given graph and adds extra 
information of the original graph. 

In Management and in social networks, the incident and non-incident relations of 
vertices and edges are used to define various networks. So these are very much applicable 
in socio-economical problems. In some cases, it is possible to retrieve the original graph 
from the Boolean graphs in polynomial time. So these graph operations may be used in 
graph coding or coding of some grouped signal. Also, it is possible to study the structure 
of original graphs through these Boolean graph operations. This motivates the study for 
the exploration of various Boolean operations and study of their structural properties. 

Let G be a (p, q) simple, undirected graph with vertex set V(G) and edge set E(G). 

The Boolean graph BG, INC,L(G)(G) has vertex set V(G)  E(G) and two vertices in               

BG, INC,L(G)(G) are adjacent if and only if they correspond to two adjacent vertices of G or 
to a vertex and an edge incident to it in G or two non- adjacent edges of G. For simplicity, 
denote this graph by BG2(G), Boolean graph of G-second kind[6]. The vertices of 
BG2(G), which are in V(G) are called point vertices and those in E(G) are called line 
vertices of BG2(G). 

 V(BG2(G)) = V(G)  E(G) and E(BG2(G)) = [E(T(G))E(L(G))]  E(L(G)). 
With an immediate consequence of the definition of BG2(G), if G is a (p, q) graph, whose 
vertices are v1, v2, ..., vp having degrees di, and edges eij, note that BG2(G) has p+q vertices 

and (q2+7q∑di
2)/2 edges with deg vi = 2di; deg eij = q+3(di+dj). Also, G andL(G) are 

induced subgraphs of BG2(G). 

2. Properties of BG2(G) andBG2(G) 

First let us see some simple properties of the graph BG2(G). 

Proposition 2.1 (1) Every vertex of BG2(G) lies in a triangle if G has no isolated vertices.  

 

G/G/Kp/Kp 

       Incident (INC)/ 
Non-incident (NINC) 

  

L(G)/L(G)/Kq/Kq 



 

 

96 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

(2) If vi  V(G), and degG vi = di in G, then vi lies on di triangles with distinct edges in 
BG2(G).  
(3) BG2(G) has at least q triangles and girth of BG2(G) is three. 
Proof: Proof easily follows from the definition. 

Remark 2.1 If G has no isolated vertices, then (BG2(G))  2(G) and (BG2(G))  2. 

Proposition 2.2 Degree of a vertex in BG2(G) is two if it is a pendant vertex of G or a line 
vertex which is adjacent to all other edges in G. 

Proof: Let x  V(BG2(G)) such that deg x = e in BG2(G). Suppose x is a point vertex, then 
deg x = 2degG x in BG2(G). This implies that degG x = 1, that is, x is pendant in G. Suppose 
x is a line vertex, then deg x = 2 in BG2(G) implies that number of edges not adjacent to x 

in G is zero. Hence, x  E(G) is adjacent to all the edges of G. The converse is obvious. 

Proposition 2.3 (1) BG2(G) has an isolated vertex if and only if G has an isolated vertex.  
(2) BG2(G) is regular if and only if G is regular and degG u = (q+3)/4, p = 4q/(q+3).  
(3) BG2(G) is connected if and only if G has no isolated vertices. 

Proof of (1): Assume BG2(G) has an isolated vertex x  V(BG2(G)). Since by the 
definition, every line vertex is adjacent to its incident point vertices, x must be a point 
vertex. Hence, deg x = 0 in BG2(G) if and only if degG x = 0, if and only if x is an isolated 
vertex of G. 
Proof of (2): BG2(G) is regular implies degree of every vertex of BG2(G) is equal.  
Therefore, deg ui = k for all point vertices and deg eij = k in BG2(G), for all line vertices eij 

 E(G). This implies that 2degG ui = k for ui  V(G). That is degG ui = m (= k/2) for all ui 

 V(G). Hence, G is regular of degree m. Also, deg eij = q+3(degG vi+degG vj). This 
implies that m = (q+3)/4, since k = 2m. Since, G is m-regular, this implies p = 4q/(q+3). 
Thus, BG2(G) is 2m regular if and only if G is regular of degree m, with m = (q+3)/4 and 
p = 4q/(q+3). 
Proof of (3): Suppose G has an isolated vertex. Then BG2(G) has an isolated vertex and 
hence, BG2(G) is disconnected. On the other hand, suppose G has no isolated vertex. Then 
G may be connected or disconnected. But in either case, BG2(G) is connected, since any 
two line vertices are adjacent in BG2(G) if they correspond to non-adjacent edges of G. 
Hence, this proves the result (3). 

Proposition 2.4 Let G be a disconnected graph with components G1 and G2 (has no 
isolated vertices). Then the edges of BG2(G) can be partitioned into  BG2(G1), BG2(G2) and 
Km,n, where m, n denotes the number of edges in G1, G2 respectively. 
Proof: Since edge e in G1 is not adjacent to all edges of G2 and vice versa, the result 
follows. 
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Proposition 2.5 BG2(G) is geodetic if  and only if G = K1,m, m  1.   

Proof: Let G be a graph with a triangle. Then BG2(G) contains a    K4e. Thus, BG2(G) is 
not geodetic. Again if G has an induced P4, BG2(G) has a C4 and hence BG2(G) is not 
geodetic. Also, BG2(G) is geodetic implies G is geodetic, since G is an induced subgraph of 
BG2(G). Therefore, BG2(G) is geodetic if G is geodetic and must not contain a triangle or 

a P4. Hence, G must be any one of K2, K1,n, n  2. Hence the result is proved. 

Proposition 2.6 Let G be a self-centered graph with radius 2. Then every vertices of 
BG2(G) lie on C3, C4, ..., C8 (may not be induced). 
Proof: Since G is self-centered, it is two connected. Also, every vertex of BG2(G) lies on a 

triangle. Let u  V(BG2(G)) be a point vertex u  V(G). Now, let v  V(G) be an 
eccentric node of u in G. Therefore, dG(u, v) = 2 and there are at least two paths from u to 
v, that is u and v lie on a C4 or C5 in G. Let u u1 v v1u be a C4 in G. Let e1 = uu1, e2 = u1v, e3 

= vv1, e4 = uv1  E(G). In BG2(G), one can clearly see that u lies on C3, C4, ..., C8. 
Similarly, it can be proved that any line vertex of BG2(G) lies on some C3, C4, ..., C8. Hence 
the theorem is proved. 

Remark 2.2 If a point vertex in G lies on C5, then in BG2(G) it lies on some C3, C4, ..., C10. 
If e is any edge in G, which lies in a C5 in G, then the line vertex e lies in C3, C4, ..., C10 in 
BG2(G). 

Proposition 2.7 If G is a self-centered graph with radius r, then every vertex of BG2(G) lies 
on cycles of length 3, 4, 5, ..., 4r in BG2(G). 

Proof: If u  V(G) lies on a cycle of length n in G, then as in the previous proportion it 
can be proved that u lies on a cycle of length 3, 4, ..., 2r in BG2(G). Similarly, if an edge e 
in G is an edge on a cycle of length n in G, then in BG2(G) the line vertex e lies on some 

cycle C3, C4, ..., C2n such that Ck+1 contains exactly (k1) edges of Ck. Also, if G is a self-
centered graph with radius r, then every vertex of G lies on a cycle of length 2r or 2r+1 in 
G. This proves the proposition. 

 Now, some properties of the graphBG2(G) can be seen. 

 BG2(G), the complement of BG2(G) is a graph with vertex set V(G)  E(G) and 
two vertices are adjacent if and only if they correspond to two non-adjacent vertices of G, 
to two adjacent edges of G or to a vertex and an edge not incident to it in G. Hence, 

E(BG2(G)) = (E(T(G)E(L(G)))  E(L(G)).G and L(G) are induced subgraphs 

ofBG2(G). Degree of a point vertex inBG2(G) = p+q12degG u and degree of a line 

vertex eij inBG2(G) = p4+di+dj. Number of edges ofBG2(G) is p(p1)/2+q(p
4)+(∑di

2)/2. 
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Proposition 2.8BG2(G) has an isolated vertex if and only if G = K1,n, n  1. 

Proof: Let G = K1,n. Then obviouslyBG2(G) has an isolated vertex, which is the central 
vertex of K1,n. 

 On the other hand, assumeBG2(G) has some isolated vertices. 

Case 1: Suppose this isolated vertex ofBG2(G) is a point vertex u  V(G).  
Then u must be adjacent to every other vertex in G and is incident with all edges in G. 
This gives G = K1,n. 

Case 2: Suppose this isolated vertex ofBG2(G) is a line vertex e. 

Then G has only two vertices u, v, where e = uv  E(G). This implies that G = K2. Hence 
the proposition is proved. 

Proposition 2.9BG2(G) has a pendant vertex if and only if G =     K1,n  K1, K1,n+x or 
K3. 

Proof: Let u  V(BG2(G)) be a pendant vertex . 
Case 1: u is a point vertex. Then there are only two possibilities (a) u has no non-incident 

edges in G and has only one non-adjacent vertex in G. In this case, G = K1,n  K1. (b) u 
has a non-incident edge and all other vertices are adjacent to u in G. In this case, G = 
K1,n+x or K3. 
Case 2: e = u is a line vertex. In this case, e has only one non-incident vertex and has no 

adjacent edges in G. Hence, G = K2  K1. This proves the result. 

Proposition 2.10 Let G be a connected graph. Then girth ofBG2(G) = 3, if G  K1,2 or 

C4, girth ofBG2(K1,2) = 4, and girth ofBG2(C4) = 4. 

Proof: Case 1: (G)  3. Then the edges incident at that vertex u such that degG u = 

(G), form a triangle inBG2(G). Therefore, girth (BG2(G)) = 3. 

Case 2: (G)  2. Then G is either a circle or a path. Clearly, girth ofBG2(Pn) = 3, n  4, 

girthBG2(P3) = 4. 

 girth ofBG2(Cn) =    4 if n = 4. 
                     3 if n = 3. 
                     3 if n > 4. 

 Hence, girth ofBG2(G) = 3 if G  K1,2 or C4 and girth ofBG2(K1,2) = 4, girth 

ofBG2(C4) = 4. 

Proposition 2.11 If G is disconnected, then girth ofBG2(G) is 3 or 4. 
Proof: Let G be a disconnected graph. If a component of G contains more than two 

vertices then girth ofBG2(G) is three.  
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 Suppose each component contains at most two vertices. Suppose G has more than 

two components, then girth ofBG2(G) = 3. Suppose G has exactly two components and 

each contains at most two vertices, then G = K2  K2 or  K1  K2. Girth ofBG2(2K2) = 4 

andBG2(K1  K2) = K1,3. Hence the proposition is proved. 

Theorem 2.1 Let G be a (p, q) graph such thatBG2(G) is connected. ThenBG2(G) is 

geodetic if and only if G = K3 or K2   K1. 

Proof: If G = K3 or K2  K1, thenBG2(G) is clearly geodetic. On the other hand, 

letBG2(G) be connected and geodetic. If p  4, then G has at least four vertices u1, u2, u3 

and u4 and since G is nontrivial, G has at least one edge e = u1u2   E(G). 
Case 1: G has no other edge. 

Then inBG2(G), u3 and u4 are adjacent to u1 and u2. Also u3, u4 are adjacent. Hence, u1, 

u2, u3, u4 form K4x as induced subgraph ofBG2(G). 
Case 2: There exists some other edge in G. 

(a) If e1 = u1u2, e2 = u3u4  E(G), then u1 u3 u2 u4 u1 form an induced C4 inBG2(G). (b) If 
u1, u3 are adjacent in G, e1 = u1u2, and u4 not adjacent to u1, u2, u3 in G, then e1, e2, u3, u4 

form an induced K4  x inBG2(G). (c) If u1 and u3 are not adjacent in G, then u4 is not 

adjacent to u3, then e1, e2, u4, u3 form an induced K4x inBG2(G). (d) If u1 and u3 are not 
adjacent in G; u4 is adjacent to u3; u4 is not adjacent to u1 and u2, then let e3 = u3u4 in G. In 

this case, u1, u4, e3, u3 form an induced C4 inBG2(G).  

 Similarly, in all other cases there exists an induced C4 or K4x inBG2(G). 

Therefore,BG2(G) is not geodetic if p  4. Now, consider G with p  3. G is non-trivial. 

Therefore, G is any one of K2, K3, K1,2 or K2  K1. Among thisBG2(G) is disconnected if 

G = K2 or K1,2 andBG2(K3),BG2(K2  K1) are geodetic. 
This proves the theorem.  

Theorem 2.2 Let G be a non-trivial (p, q) graph such thatBG2(G) is connected. 

ThenBG2(G) is two connected if and only if G  K1,n  K1, K3 and K1,n+x, n  1. 

Proof: It is clear that G is 2-connected implies G  K1,n  K1, K3 and K1,n+x. On the other 

hand, assume G  K1,n  K1, K3 and K1,n+x. To proveBG2(G) is two connected, it is 

enough to prove that any two vertices ofBG2(G) is connected by at least two edge 

disjoint paths inBG2(G). Let x, y  V(BG2(G)). 

Case 1: x and y are point vertices ofBG2(G). Let x = u and y = v  V(G). 
Sub case 1.1: u and v are adjacent in G. 
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Let e = uv  E(G). Since, G  K1,n  K1, K1,n+x, there exists another edge e1 = u1v1 not 

adjacent to uv = e in G. Then u e1 v is a path from u to v inBG2(G). Also, if u, v, u1, v1 

form a K4, then u (u1v) (uv1) v is another path, where u1v and uv1  E(G). Otherwise, u u1 
v or u v1 v or u v1 (uu1) v is a path. So, in all cases, there exist at least two paths from u to 
v. 
Sub case 1.2: u and v are not adjacent in G. 

u and v are adjacent inBG2(G). If e1, e2  E(G) and e1 is incident with u, e2 is incident 

with v such that e1 and e2 are adjacent in G, then u e2 e1 v is a path in BG2(G). If there 
exists e3 not incident with u and v, then u e3 v is a path. If G = 2K2, then also u and v are 
joined by at least two paths. 
Case 2: x = e1 and y = e2 are line vertices. 
Sub case 2.1: e1 and e2 are adjacent in G. 

InBG2(G), e1e2 is a path. Again, e1 w e2 is a path, where w is a vertex not incident with e1 
and e2 in G. 
Sub case 2.2: e1 and e2 are not adjacent in G. 
Let e1 = u1v1 and e2 = u2v2. Consider the induced subgraph formed by u1, v1, u2, v2, e1, e2 

inBG2(G). In all cases, there exist at least two paths from e1 to e2. 
Case 3: x = u is a point vertex and y = e is a line vertex.  
Sub case 3.1: e is incident with u in G. 

If eG(u)  1 in G, then u w e is a path inBG2(G). If eG(u) = 1 in G, u ek e is a path 

inBG2(G), where ek is not incident with u and adjacent to e in G. Since G has at least 
four vertices (by the given conditions), there exist at least two paths of this type. 
Sub case 3.2: e is not incident with u in G. 

ue is a path inBG2(G). Since G  K1,n+x, there exists at least one more path from u to e 

inBG2(G). This proves the theorem. 

Following two theorems give the necessary and sufficient conditions for BG2(G) 

andBG2(G) to have a dominating edge. 

Theorem 2.3 BG2(G) has a dominating edge if and only if G satisfies any one of the 
following: (1) G has a dominating edge e such that all other edges are adjacent to e. (2) 
r(G) = 1 and G has a pendant vertex. (3) G = 2K2. 
Proof: Suppose BG2(G) has a dominating edge. 
Case 1: u1u2, where u1, u2 in V(G) is a dominating edge of BG2(G). 
In this case, all point vertices and line vertices are adjacent to u1 or u2 in BG2(G). This 
implies all vertices are adjacent to u1 or u2 and all edges are incident with u1 or u2 in G. 
This proves that G satisfies (1). 

Case 2: ue, where u  V(G) and e  E(G) is a dominating edge of BG2(G). 
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ue is a dominating edge in BG2(G) implies that e is incident with u in G, all edges not 
incident with u are not adjacent to e in G and all other point vertices are adjacent to u in 
G. Hence, if e = uv, v must be a pendant vertex in G. Thus G is a graph with eG(u) = 1 and 
v is pendant in G. This proves (2). 

Case 3: e1e2, (where e1, e2  E(G)) is a dominating edge of BG2(G). 
By the assumption, e1 and e2 are non-adjacent edges of G and all point vertices are 
incident with e1 or e2 in G. Hence, G = 2K2. This proves (3). 
 Proof of the converse is obvious. 

Theorem 2.4BG2(G) has a dominating edge if and only if diameter of G is greater than 
2. 

Proof: AssumeBG2(G) has a dominating edge. 

Case 1: uv is a dominating edge inBG2(G), where u and v are in V(G). 

uv is a dominating edge inBG2(G), where u and v are adjacent inBG2(G), implies that u 

and v are not adjacent in G and all other vertices are adjacent to u or v inBG2(G). This 

implies, in G, there is no vertex adjacent to both u and v in G. Hence, dG(u, v)  3. 

Case 2: ue is a dominating edge inBG2(G), where u is in V(G) and e is in E(G). 

Since ue is a dominating edge inBG2(G), e is not incident with u in G. If there exists e1 = 
uu1, incident with u in G, then e1 must be adjacent to e and hence, u1 is not dominated by 

u or e inBG2(G). Thus, u must be an isolated vertex of G. Therefore, diam(G) > 2. 

Case 3: e1e2 is a dominating edge inBG2(G), where e1, e2 are in E(G). 

By assumption, e1, e2 are adjacent edges of G. Let e1 = uu1, e2 = uu2. Then inBG2(G), u is 
not dominated by e1 or e2. Therefore, this case is not possible. 

This proves the theorem. 

 Using the following lemmas and theorems, we prove that, BG2(G) is not perfect 

when p  5 and r(G) > 1. 

Lemma 2.1 BG2(G) contains P4 if and only if G contains any one of P4, C4, P5, K1,2, K1,2  

K2, 2K2, K3, K3  K2, K4x or K1,3+x as induced subgraphs. 
Proof: Suppose BG2(G) contains P4 as induced subgraph. 
Case 1: All the four vertices of P4 in BG2(G) are point vertices. 
This gives G contains P4 as induced subgraph. 
Case 2: All the four vertices of P4 in BG2(G) are line vertices. 
Let e1 e2 e3 e4 be a P4 in BG2(G), where e1, e2, e3, e4 are line vertices. P4 is induced. In this 
case, P5 is an induced subgraph of G. 
Case 3: P4 in BG2(G) contains one line vertex. 
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(a) Let e1 v1 v2 v3, where e1  E(G), v1, v2, v3  V(G) be a P4 in BG2(G). In this case, P4, 

K4x or K1,3+x is an induced subgraph of G. 
(b) Suppose v1 e1 v2 v3 represent P4 in BG2(G). This is not possible. 
Case 4: P4 contains two line vertices. 
(a) Let v1 e1 v2 e2 be a P4 in BG2(G). This is not possible. 

(b) Let v1 e1 e2 v2 be a P4 in BG2(G). G has 2K2, P4, K4x or K1,3+x as induced subgraph. (c) 

Let e1 e2 v1 v2 be a P4 in BG2(G). G has K1,2  K2 or K3  K2 as induced subgraphs of G. 
(d) Let e1 v1 v2 e2 be a P4. This implies that G contains K3 as an induced subgraph.      
Case 5: P4 in BG2(G) contains three line vertices. 

(a) v1 e1 e2 e3 represents P4 in BG2(G). Therefore, G has K1,2  K2 or K3  K2 as subgraphs. 

(b) e1 v1 e2  e3 represents P4 in G. In this case, G has P4, K4x, K1,3+x or C4 as induced 
subgraphs. 

Remark 2.3 Let G be a graph without isolated vertices. BG2(G) has no P4, if G has no P4, 

P5, K4x, K1,3+x, K1,2  K2, 2K2, K3, K2  K3. Therefore, G is connected, diam(G)  2, 
and G is triangle free. Hence, two cases arise: (1) diam(G) = r(G) = 2. (2) r(G) =1, 
diam(G) = 2.      If (2) is true, G = K1,n since G has no triangles. If (1) is true, G is self-
centered with diameter two and has no triangles, P4 and C4. This is not possible. Thus, the 
following theorem is proved. 

Theorem 2.5 Let G be a graph without isolated vertices. Then BG2(G) is free from P4 if 
and only if G = K1,n.  

Lemma 2.2 BG2(G) has C4 as induced subgraph if and only if G has C4, P4, K1,2  K2, K3 

 K2, K3  K1,2, 2K3 or 2K1,2, K4e, K1,3+e or K4 as induced subgraphs. 
Proof: Assume BG2(G) has C4 as induced subgraph. 
Case 1: All the four vertices of BG2(G), forming C4 are point vertices. 
This gives G contains C4 as induced subgraph. 
Case 2: C4 in BG2(G) contains only one line vertex. 

Let v1 e1 v2 v3 v1 be a C4 in BG2(G), where v1, v2, v3  V(G), e1  E(G). This is not possible. 
Case 3: C4 in BG2(G) contains two line vertices and two point vertices. 

Let v1 e1 e2 v2 v1 be a C4 in BG2(G), where v1, v2  V(G), e1, e2  E(G) [Other case is not 

possible]. Therefore, P4, C4, K4e, K4 or K1,3+e are induced subgraphs of G. 
Case 4: C4 in BG2(G) contains three line vertices.  

Let v1 e1 e2 e3 v1 be a C4 in BG2(G), where  v1, v2  V(G) and e1, e2  E(G). In G, K1,2  K2 
is a subgraph of G (may not be induced). 
Case 5: C4 in BG2(G) has all the four vertices as line vertices. 



 

 

103 On the Boolean graph BG2(G) of a graph G 

Let e1 e2 e3 e4 e1 be a C4 in BG2(G). Therefore, G has 2K1,2 as subgraph. Hence, if G contains 
more than three vertices (no isolated vertex), then BG2(G) is free from C4 only when G = 
K1,n, K2, nK2 or K3. 

Theorem 2.6 BG2(G) is free from C4 (induced) if and only if G = K1,n, nK2 or K3. 
Proof: Follows from the Lemma 2.2. 

Lemma 2.3 BG2(G) has C5 as induced subgraph if and only if G has any of P5, C5, K3  K2 
or G1 as subgraph, where G1 is a connected subgraph of K5 containing P3 as induced 
subgraph.  
Proof: Assume BG2(G) has C5 as  induced subgraph. 
Case 1: C5 in BG2(G) has all the five vertices as point vertices. 
In this case, G has C5 as induced subgraph. 
Case 2: C5 in BG2(G) has all the five vertices as line vertices. 
Let e1 e2 e3 e4 e5 e1 be a C5 in BG2(G). In this case, G has C5 as subgraph. 
Case 3: C5 in BG2(G) has only one line vertex.  
Let v1 e1 v2 v3 v4 v1 be a C5 in BG2(G). This is not possible. 
Case 4: C5 in BG2(G) has two line vertices. 
(a) Let v1 e1 e2 v2 v3 v1 be a C5 in BG2(G). In this case, G has P5, C5 or any connected 
subgraph of K5, having P3 as induced subgraph is a subgraph of G.  Other cases are not 
possible. 
Case 5: C5 in BG2(G) has three line vertices.  

(a) Let v1 e1 e2 e3 v2 v1 be a C5 in BG2(G). Therefore, G has K3  K2 as subgraph (may not 
be induced). Other cases are not possible. 
Case 6: C5 in BG2(G) has four line vertices. 
Let v1 e1 e2 e3 e4 v1 be a C5 in BG2(G). In this case, G has a subgraph having P5 as subgraph. 
This proves the lemma. 

Theorem 2.7 If G is a connected graph with more than four vertices and diam(G)  2, 
then BG2(G) has C5 as induced subgraph. 
Proof: Follows from the Lemma 2.3. 

The following theorems are stated without proof, since the proofs are similar to 
the proof of the previous theorems. 

Theorem 2.8 BG2(G) has C6 as induced subgraph if and only if G has C6 or P6 as 

subgraphs (containing P4 as induced) or C4  K2 or K4e  K2 as subgraphs (having C4 

or K4e as induced). 
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Theorem 2.9 BG2(G) has C7 as induced subgraph if and only if G has C7 or P7 as subgraph 

containing P5 as induced or C5  K2 as subgraph, where C5 has P4 as induced subgraph. 

Remark 2.4 If G has no P4 as induced subgraph, then BG2(G) has no induced C7. In 

general, BG2(G) contain Cn, n  7 as induced subgraph if and only if G contains Cn or Pn 

as subgraph or Cn2  K2, as subgraph, where Cn2 contains Pn3 as induced subgraph.  

Theorem 2.10BG2(G) contains C4 as induced subgraph if and only if G has C4,C4 or 
K1,2 as induced subgraph or 2K2, 3K2 as subgraphs. 

Theorem 2.11BG2(G) contains C5 as induced subgraph if and only if G has C5 as 

induced subgraph or C5, P5, (containing P3 as induced) or C3  K2 as subgraphs.   

Theorem 2.12BG2(G) contains C6 as induced subgraph if and only if G containsC6 as 
induced subgraph or C6 as subgraph. 

Theorem 2.13BG2(G) contains Cn, n  6 as induced subgraph if and only if G 

containsCn as induced subgraph or Cn as subgraph. 

Theorem 2.14 BG2(G) is not perfect when p  5 and r(G) > 1. 

Next, chromatic number and covering numbers of BG2(G) andBG2(G) can be 
found. 

Theorem 2.15 Max { (G), (L(G)}  (BG2(G))  (G)+ (L(G)). 

Proof: By the definition of BG2(G), every independent set of G andL(G) are independent 
in BG2(G) also. Hence,  

(BG2(G))  (G)+ (L(G)) -------------(1).  

Now, let S be an independent set in G. Let S' be an independent set inL(G). If elements 

of S' are not incident with elements of S in G, S  S' is independent in BG2(G). Thus,  

max { (G), (L(G)}  (BG2(G)) --------------(2). 
From (1) and (2), the theorem follows. 

Theorem 2.16 (BG2(G)) = max {3, (G), (L(G))}. 

Proof: K3 is an induced subgraph of BG2(G). Also, G andL(G) are induced subgraphs of 
BG2(G) and there exists no adjacent point vertices v1, v2 such that v1 is adjacent to e1 and 
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e2 and v2 is adjacent to e1 and e2 (e1, e2 are line vertices). Therefore, (BG2(G)) = max {3, 

(G), (L(G)}.  

Theorem 2.17 Suppose G has no isolated vertices. Then ((BG2(G)) = min   {q, (G)+ 

(L(G))}. 
Proof: In BG2(G), each line vertex is adjacent to its incident point vertices, which are 

adjacent in BG2(G). Therefore, at most q triangles or K3s and K2s are needed to cover the 
vertices of BG2(G). Also, in BG2(G), there is no complete subgraph Km, m > 3 containing 
point vertices and line vertices. Thus,  

((BG2(G)) = min{q, (G)+ (L(G))}. 

Theorem 2.18 Max {o(G), o(L(G))}  o(BG2(G))  o(G)+o(L(G)).  

Proof: Let D1  V(G) be a set of mutually non-adjacent vertices of G. Let |D1| = o(G). 

Consider < V(G)D1 >. Let D2  E(G) be the set containing maximum number of 

mutually adjacent edges in < V(G)D1 >. Then D1  D2 is an inde-pendent set of vertices 

of BG2(G). Also, |D1  D2| = o(G)+k, where k =|D2|. Therefore, o(BG2(G))  o(G)+k. 

Also, o(BG2(G))  max {(G), o(L(G))}. Hence, 

 max {o(G), o(L(G))}  o(BG2(G))  o(G)+o(L(G)). 

Theorem 2.19 (BG2(G))  (G)+ (L(G)); (BG2(G))  min {p+ (L(G)), 

q+ (G)}. 

Proof: Let D1, D2 be point covers of G andL(G) respectively. Then D1  D2 is a point 

cover for BG2(G). Therefore, (BG2(G))  (G)+ (L(G)). This also implies that  

(BG2(G))  min {p+ (L(G)), q+ (G)}. 

Theorem 2.20 1(BG2(G))  1(G)+ 1(L(G)).  

Proof: Since G andL(G) are  subgraphs of BG2(G), 1(BG2(G))  1(G)+ 1(L(G)). 

Case 1: q  p. 
Consider q edges in BG2(G), each joining a line vertex to a point vertex (distinct). 

Consider the remaining pq point vertices. Let k = min {1(G1)}, where G1 is a subgraph 

of G containing pq point vertices. Hence, 1(BG2(G))  q+k. 
Case 2: q > p. 
Consider the p edges joining a point vertex to a line vertex (distinct). Consider the 

remaining qp line vertices and let k1 = min {1(G2)}, where G2 L(G) containing, qp 

line vertices. Therefore, 1(BG2(G))  p+k1. 
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Theorem 2.21 1(BG2(G))  1(G)+1(L(G)) 

           1(BG2(G))      q + k if q  p  

                             q +k1 if p < q, where  

k = max (1(G1)}, G1 is a subgraph of G containing pq vertices, 

k1 = max {1(G2), G2 is a subgraph ofL(G) containing qp vertices. 
Proof:  Similar to the previous theorem. 

The following theorem is stated without proof, since the results are easy to follow. 

 

Theorem 2.22  

(1) max {(G), (L(G)}  (BG2(G))  (G)+ (L(G)). 

     (BG2(G)) = min { (G), (L(G)}. 

2. max {(G), (L(G)}  ((BG2(G))  (G)+(L(G)).    

3. max {(G), (L(G)}  (BG2(G))  (G)+ L(G))}. 

4. o(BG2(G))  = max {3, o(G), o(L (G))}. 

5. (G)+ (L(G))  (BG2(G)). 

    (BG2(G))  min {p+ (L(G)), q+ (G)}. 

6. 1(BG2(G))  min {1(G)+ 1(L(G)), p+k, q+k1}, 

 where k = min {1(G1)}, where G1  L(G) containing qp line vertices. 

 k1 = min{1(G2)}, where G2 G containing pq point vertices. 

7. 1(BG2(G))  max { 1(G)+1(L(G)), q+k if q  p }  

 1(BG2(G))     q + k if q  p  

                    q +k1 if p < q,   

where k = max {1(G1)}, G1 is a subgraph of G containing pq vertices, and 

k1 = max {1(G2)}, G2 is a subgraph ofL(G) containing qp vertices. 

Conclusion: Other properties such as eccentricity, traversability, connectivity, 
characterization, edge partition of BG2(G) and domination parameters are studied and 
submitted. 
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