International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 3, No. 2, April –June 2012, pp. 85-92

Even Sequential Harmonious Labeling of Some

Tree Related Graphs

B. Gayathri and D. Muthuramakrishnan

Periyar E.V.R. College, Tiruchirappall, India

National College, Tiruchirappall, India E-mail: maduraigayathri@gmail.com, muthunct@gmail.com

Abstract: Graham and Sloane introduced the harmonious graphs and Singh & Varkey introduced the odd sequential graphs. Gayathri et al introduced even sequential harmonious labeling of graphs. In this paper, we investigate even sequential harmonious labeling of some tree related graphs.

1. Introduction

All graphs in this paper are finite, simple and undirected. The symbols V (G) and E(G) denote the vertex set and the edge set of a graph G. The cardinality of the vertex set is called the **order** of G. The cardinality of the edge set is called the **size** of G. A graph with p vertices and q edges is called a (**p**, **q**) graph.

Graham and Sloane[2] introduced the harmonious graphs and Singh & Varkey [6] introduced the odd sequential graphs. Harmonious and related graphs are dealt in [3 -5]. We refer to the excellent survey by Gallian [1] for varieties of labeling and graphs. Gayathri et al [1] say that a labeling is an **even sequential harmonious labeling** if there exists an injection *f* from the vertex set V to {0,1,2,...,2q} such that the induced mapping *f*⁺ from the edge set E to {2,4,6,...,2q} defined by $f^+(uv) = \begin{cases} f(u)+f(v), \text{if } f(u)+f(v) \text{ is even} \\ f(u)+f(v)+1, \text{if } f(u)+f(v) \text{ is odd} \end{cases}$ are distinct. A graph G is said to be an **even sequential harmonious graph** if it admits an even sequential harmonious labeling. In this paper, we investigate even sequential harmonious labeling of some tree related graphs. 86 International Journal of Engineering Science, Advanced Computing and Bio-Technology

2. Main Results

Theorem 2.1:

The path P_n $(n \ge 2)$ is an even sequential harmonious graph.

Proof:

Let the vertices of P_n , $V(P_n) = \{v_1, v_2, v_3, \dots, v_n\}$ and the edges of P_n , $E(P_n) = \{e_1, e_2, e_3, \dots, e_{n-1}\}$ defined as follows, $e_i = (v_i, v_{i+1})$ for $i = 1, 2, 3, \dots, n-1$ which are

denoted as in Figure 2.1.

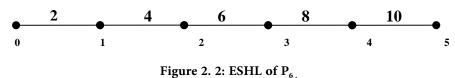
Figure 2. 1: P_n with ordinary labeling

We, now label the vertices of P_n by: $f(v_i) = i - 1$ $1 \le i \le n$.

Then the induced edge labels are: $f^{\dagger}(e_i) = 2i$ $1 \le i \le n-1$.

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$. Hence, P_n is an even sequential harmonious graph.

ESHL of P_6 is shown in Figure 2. 2.



Theorem 2.2:

The graph P_n^+ , $n \ge 2$ is an even sequential harmonious graph.

Proof:

Let the vertices of P_n^+ be $v_1, v_2, v_3, \dots, v_n$ and $u_1, u_2, u_3, \dots, u_n$ and the edges of P_n^+ be

 $e_1, e_2, e_3, \dots, e_n$ and $e_1, e_2, e_3, \dots, e_{n-1}$ are defined as follows, $e_i = (v_i, u_i)$ for $1 \le i \le n$. $e_i = (v_i, v_{i+1})$ for $1 \le i \le n-1$ which are denoted as in Figure 2. 3.

Even Sequential Harmonious Labeling of Some Tree Related Graphs

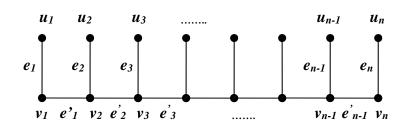


Figure 2. 3: P_n^+ with ordinary labeling.

We, first label the vertices of P_n^+ as follows:

For $1 \le i \le n$ $f(u_i) = \begin{cases} 2n+i-2, i \text{ is odd} \\ 2n+i, & i \text{ is even} \end{cases}$ $f(v_i) = \begin{cases} i & ; \text{ when } i \text{ is odd} \\ i-2 & ; \text{ when } i \text{ is even} \end{cases}$ Then the induced edge labels are: $f(a_i) = 2i = 1 \le i \le n$

$$f^{+}(e_{i}) = 2i \qquad 1 \le i \le n-1$$

$$f^{+}(e_{i}) = 2n + 2i - 2 \qquad 1 \le i \le n$$

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$.

Hence P_n^+ is an even sequential harmonious graph. ESHL of P_9^+ is shown in Figure 2. 4.

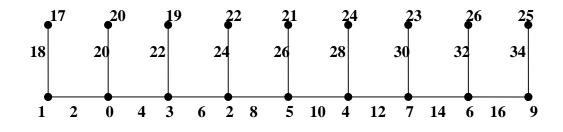


Figure 2.4: ESHL of P_9^+

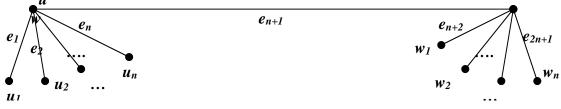
Theorem 2.3:

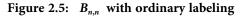
The graph Bistar $B_{n,n}$, $(n \ge 2)$ is an even sequential harmonious graph.

Proof:

Let the vertices of Bistar $B_{n,n}$ be $\{u, w, u_i, w_i; 1 \le i \le n\}$ and the edges be $\{e_i; 1 \le i \le 2n+1\}$ which are denoted as in Figure 2. 5.

87





First we label the vertices of Bistar as follows:

$$f(u) = 0, f(w) = 2(n+1)$$

$$f(u_i) = 2i, 1 \le i \le n ; f(w_i) = 2i-1 , 1 \le i \le n$$

Then the induced edge labels are: $f^{+}(e_i) = 2i$, $1 \le i \le 2n+1$

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$.

Hence, the graph Bistar $B_{n,n}$, $(n \ge 2)$ is an even sequential harmonious graph.

ESHL of $B_{4,4}$ is shown in Figure 2. 6.

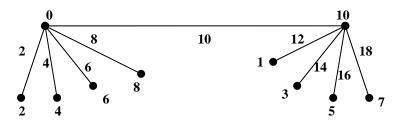


Figure 2. 6: ESHL OF $B_{4,4}$

2.1 Definition:

The graph $\langle K_{l,n}: m \rangle$, $(m,n \ge 2)$ is obtained by taking m disjoint copies of $K_{l,n}$ and joining a new vertex to the centers of the copies of $K_{l,n}$.

2.4 Theorem:

The graph $\langle K_{l,n} : m \rangle$, $(m,n \ge 2)$ is an even sequential harmonious graph.

Proof:

Let the vertices be{ $u_{i,}, w_j : 1 \le i \le m$ and $1 \le j \le m-1$ } and $\{u_{ij} : 1 \le i \le m$ and $1 \le j \le n$ and the edges be $\{e_i : 1 \le i \le mn + 2(m-1)\}$ which are denoted as in Figure 2. 7.

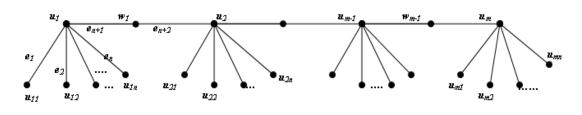


Figure 2. 7: $\langle K_{1,n} : m \rangle$ with ordinary labeling

n

First we label the vertices as follows:

$$f(\mathbf{u}_{1}) = 0; f(u_{i}) = 2i - 3 , 2 \le i \le m$$

$$f(w_{j}) = 2n + 2 + (2n + 2)(j - 1) , 1 \le j \le m - 1$$

$$f(u_{ii}) = 2j + (2n + 2)(i - 1) , 1 \le i \le m \text{ and } 1 \le j \le m$$

Then the induced edge labels are: $f^{+}(e_i) = 2i$, $1 \le i \le mn + 2(m-1)$

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$. Hence, the graph $\langle K_{l,n} : m \rangle$ is an even sequential harmonious graph.

ESHL of $\langle K_{1,3}$: 3 is shown in Figure 2. 8.

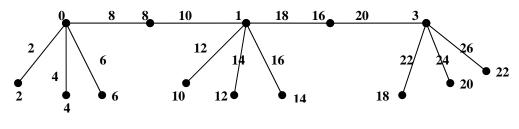


Figure 2. 8: ESHL OF (K1,3: 3)

2.5 Theorem:

The Festoon graph $P_m \Theta K_{l,n}$ $(m \ge 2, n \ge 1)$ is an even sequential harmonious graph.

Proof:

Let the vertices of $P_m \bigoplus K_{1,n}$ be $\{u_i, u_{ij}: 1 \le i \le m \text{ and } 1 \le j \le n\}$ and the edges of be $\{(u_i, u_{i+1}); 1 \le i \le m-1\} \cup \{(u_i, u_{ij}): 1 \le i \le m \text{ and } 1 \le j \le n\}$ which are denoted as in Figure 2. 9. 89

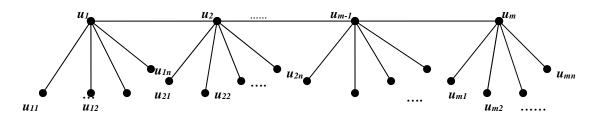


Figure 2. 9 : $P_m \odot K_{I,n}$ with ordinary labeling

First we label the vertices as follows:

$$f(u_i) = i \cdot 1$$
 $1 \le i \le m$
 $f(u_{ij}) = 2m + 2(j \cdot 1) + (2n \cdot 1)(i \cdot 1)$ $1 \le i \le m$ and $1 \le j \le m$

Then the induced edge labels are:

$$f^{*}(u_{i} u_{i+1}) = 2i \qquad 1 \le i \le (m-1)$$

$$f^{*}(u_{i} u_{ij}) = 2m+2(j-1)+2n(i-1) \quad 1 \le i \le m \text{ and } 1 \le j \le n$$

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$.

Hence, the graph $P_m \Theta K_{1,n}$ $(m \ge 2, n \ge 1)$ is an even sequential harmonious graph.

ESHL of $P_4 \Theta K_{1,3}$ is shown in Figure 2. 10.

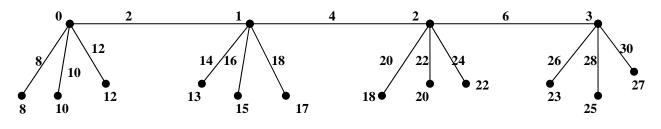


Figure 2.10 : ESHL OF $P_4 \bigoplus K_{1,3}$

2.6 Theorem:

The graph Banana tree $B_{m,n}$ $(m \ge 1, n \ge 1)$ is an even sequential harmonious graph.

Proof:

Let the vertices of $B_{m,n}$ be $\{u, v, w, u_i; 1 \le i \le m+n\}$ and the edges of $B_{m,n}$ be $\{e_i; 1 \le i \le m+n+2\}$ which are denoted as in Figure 2.11.

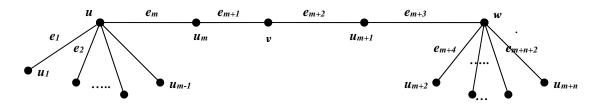


Figure 2. 11: $B_{m,n}$ with ordinary labeling

Now, we label the vertices as follows:

$$f(u) = 0; f(v) = 1; f(w) = 3$$

 $f(u_i) = 2i \quad 1 \le i \le m + n$

Then the induced edge labels are: $f^{+}(e_i) = 2i$ $1 \le i \le m+n+2$

Clearly, the edge labels are even and distinct, $f^+(E) = \{2, 4, 6, ..., 2q\}$.

Hence the graph Banana tree $B_{m,n}$ $(m \ge 1, n \ge 1)$ is an even sequential harmonious graph. ESHL of $B_{5,4}$ is shown in Figure 2. 12.

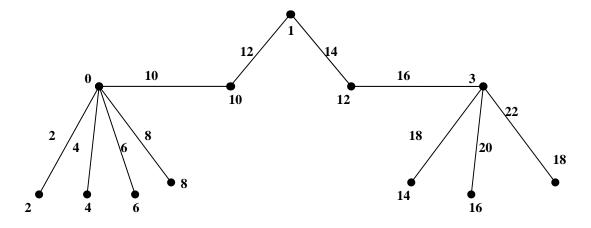


Figure 2. 12: ESHL OF B_{5,4}

References

- J. A. Gallian, A dynamic survey of graph labeling The Electronic Journal of Combinatorics 18 (2011), #DS6.
- [2]. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM

91

J. Alg. Discrete Math., 1 (1980) 382-404.

- [3]. M. Seoud, A. E. I. Abdel Maqsoud and J. Sheehan, Harmonious graphs, Util. Math., 47 (1995)225- 233.
- [4]. M. A. Seoud and M. Z. Yossef, Families of harmonious and non-harmonious graphs, J.Egyptian Math.Soc., 7(1999)117-125.
- [5]. S. C. Shee, On harmonious and related graphs, Ars Combin., 23(1987) A,237-247.
- [6]. G. S. Singh and T. K. M. Varkey, On odd sequential and bisequential graphs, preprint.