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Abstract: In a graph G = (V, E), a set SV(G) is a distance closed set of G if for each vertex uS 
and for each wV – S, there exists at least one vertex v S such that d<S>(u, v) = dG (u, w) and  S is 
called a dominating set of G if every vertex in V(G) – D is adjacent to some vertex in S. Also, S is said 
to be a distance closed dominating set of G if (i) <S> is distance closed and (ii) S is a dominating set. 
The concept of distance closed domination in graphs is studied in [10] and it is useful in 
communication networks. In this paper, we have studied the changing and unchanging of distance 
closed domination number in graphs and this concept is more applicable in a fault tolerance networks. 
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1. Introduction 
Graphs discussed in this paper are undirected and simple. Unless otherwise stated 

the graphs which we consider are connected and simple graphs only. For a graph, let V(G) 
and E(G) denotes its vertex and edge set respectively. The degree of a vertex v in a graph G 
is denoted by degG(v). The length of any shortest path between any two vertices u and v of 
a connected graph G is called the distance between u and v and it is denoted by dG(u, v). 
The distance between two vertices in different components of a disconnected graph is 
defined to be ∞. For a connected graph G, the eccentricity eG(v) = max {dG(u, v):             
 u V(G)}. If there is no confusion, we simply use the notion deg (v), d(u, v) and e(v) to 
denote degree, distance and eccentricity respectively for the connected graph. The 
minimum and maximum eccentricities are the radius and diameter of G, denoted by r(G) 
and d(G) respectively. If these two are equal in a graph, that graph is called self-centered 
graph with radius r and is called an r self-centered graph. Such graphs are 2-connected 
graphs. Some structural properties are studied in [2] and [3]. A vertex u is said to be an 
eccentric vertex of v in a graph G, if d (u, v) = e(v) in that graph. In general, u is called an 
eccentric vertex, if it is an eccentric vertex of some vertex. For vV(G), the neighborhood 
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NG(v) of v is the set of all vertices adjacent to v in G. The set NG[v] = NG(v){v} is called 
the closed neighborhood of v. A set S of edges in a graph is said to be independent if no 
two of the edges in S are adjacent. An edge e = (u, v) is a dominating edge in a graph G if 
every vertex of G is adjacent to at least one of u and v. 

The concept of distance in graph plays a dominant role in the study of structural 
properties of graphs in various angles using related concept of eccentricity of vertices in 
graphs. The study of structural properties of graphs using distance and eccentricity started 
with the study of center of tree and propagated in different directions in the study of 
structural properties of graphs such as unique eccentric point graphs, k-eccentric point 
graphs, self-centered graphs, graphs realizing given eccentricity sequence, radius, diameter 
and eccentric critical graphs and Hamiltonian properties in iterated line graphs. A ciliate 
Cp, q is a graph obtained from p disjoint copies of the path pq+1 by linking together one end 
point of each in a cycle Cp. Also these ciliates are the only graphs that are radius critical 
(graphs in which removal of every vertex changes the radius of the given graph). The 
structural and eccentricity properties of various graph operations and iterated graph 
operations are given in references [2], [3], [4], [7] [9], [12] and [14]. 

The concept of domination in graphs was introduced by Ore [13]. A set              
DV(G) is called dominating set of G if every vertex in V(G) – D is adjacent to some 
vertex in D. D is said to be a minimal dominating set if D – {v} is not a dominating set for 

any vD. The domination number γ(G) of G is the minimum cardinality of dominating 

sets. We call a set of vertices a γ-set if it is a dominating set with cardinality γ(G). 
Different types of dominating sets have been studied by imposing conditions on the 
dominating sets. The sub graph of a graph G whose vertex set is S and whose edge set is 
the set of those edges of G that have both ends in S is called the induced sub graph of G 
induced by S and is denoted by <S>. A dominating set D is called connected (independent) 
dominating set if the induced sub graph <D> is connected (independent). D is called a 
total dominating set if every vertex in V(G) is adjacent to some vertex in D. The list of 
survey of domination theory papers are in [6], [11], [15], [16] and [17].  
 The new concepts such as ideal sets, distance preserving sub graphs, eccentricity 
preserving sub graphs, super eccentric graph of a graph, pseudo geodetic graphs are 
introduced and structural properties of those graphs are studied in [9]. Janakiraman and 
Alphonse [1] introduced and studied the concept of weak convex dominating sets, which 
mixes the concept of dominating set and distance preserving set. 

The changing and unchanging terminology was first suggested by Harary [8]. It is 
useful to partition the vertex set or the edge set of a graph G into three sets according to 
how their addition or removal affects the domination number. The changing and 
unchanging of a given domination number is more applicable in a fault tolerance network. 
The behavior of a network in the presence of a fault can be analyzed by determining the 
effect that removing an edge (link failure) or a vertex (processor failure) from its 

underlying graph G has on the fault tolerance criterion. For example, a γ-set in G 
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represents a minimum set of processors that can communicate directly with all other 
processors in the system. Also the networks can be made fault tolerant by providing 
redundant communication links (adding edges). The concept of changing and unchanging 
invariant of graphs is studied in [5], [8], [18], [19] and [20]. 

In this paper, we have studied the changing and unchanging the above distance 
closed domination number in graphs. 

 

2. Prior results 
The concept of ideal set is defined and studied in the doctoral thesis of 

Janakiraman [9] and the concept of ideal sets in graph theory is due to the related concept 
of ideals in ring theory in algebra. The ideals in a ring are defined with respect to the 
multiplicative closure property with the elements of that ring. Similarly, the ideal set in a 
graph is defined with respect to the distance property between the ideal set and the 
vertices of the graph. Thus, the ideal set of a graph G is defined as follows: 
Let I be a vertex subset of G. Then I is said to be an ideal set of G if  

(i) For each vertex uI and for each wV – I, there exists at least one vertex vI 
such that d<I>(u, v) = dG(u, w). 

(ii)  I is the minimal satisfying (i). 
Also, a graph G is said to be a 0-ideal graph if it has no non-trivial ideal set other than G. 
The ideal set without the minimality condition is taken as a distance closed set in the 
present work. Hence, the distance closed set of a graph G is defined as follows: 
 A vertex subset S of G is said to be a distance closed set of G if for each vertex       
uS and for each wV – S, there exists at least one vertex vS such that d<S>(u, v) = 
dG(u, w). For example, in the graph given in Figure 2.1, S = {4, 1, 2, 5} is a distance closed 
set.  
 
 
 
 
 
 
                                  
 
 
 
                                  
                                   Figure 2.1 - An example of distance closed set 

 
 
Thus, the distance closed dominating set of a graph G is defined as follows: 
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A subset SV(G) is said  to be a distance closed dominating (D.C.D) set, if 
(i) <S> is distance closed; 
(ii) S is a dominating set. 

          The cardinality of a minimum D.C.D set of G is called the distance closed 

domination number of G and is denoted by γdcl. 

          Clearly from the definition, 1 ≤ γdcl ≤ p and a graph with γdcl = p is called a            
0-distance closed dominating graph. Also if S is a D.C.D set of G, then the complement     
V – S need not be a D.C.D set of G. The definition and the extensive study of the above 
said distance closed domination in graphs are studied in [10]. The following results given 
in [10] are used to prove many results in the present work. 

Theorem 2.1[10]: If T is a tree with number of vertices p ≥ 2, then γdcl(T) = p – k + 2, 
where k is the number of pendant vertices in T. 
 

Theorem 2.2[10]: If G is a 2-self centered graph with a dominating edge, then γdcl(G) = 4. 
 
Theorem 2.3[10]: Let G be a 2-self centered graph having no dominating edge.  If v is a 

vertex with degree δ in G, then γdcl(G) ≤ 2δ + 1. 
 

Theorem 2.4 [10]: If a graph G is connected and d(G) ≥ 3, then γdcl( G ) = 4. 
 

3. Main results 
 In this paper, we have studied the structure of graphs by using changing and 
unchanging parameters of the distance closed domination number in a graph G. 
 
3.1 Changing and unchanging of vertex removal (CVR and UVR): 

If we remove a vertex from a graph G, then the vertex set of G is partitioned into 
three sets according to how its removal changes\unchanges the distance closed domination 
number. Also removal of a vertex can increase the distance closed domination number by 
more than one, but can decrease it by at most one. In some graphs, there are vertices 
whose removal will maintain (unchange) the distance closed domination number. Thus, 
we have the following 3 sets.  

Let VD0 = {vV(G) | γdcl(G – v) = γdcl(G)}  (UVR) 

                   VD+ = {vV(G) | γdcl(G – v) >γdcl(G)}  (CVR) 

                   VD– = {vV(G) | γdcl(G – v) <γdcl(G)}           
Then V = VD0VD+VD– and the following are the results of some special classes of 
graphs without proof. 

1. For any complete graph Kp, VD0 = V(G), p ≥ 3. 
2. For any complete bipartite graph Km, n, VD0 = V(G), p ≥ 6 and m, n ≥ 3. Also if     

m, n = 2 then V(G) = VD– ,where m + n = p. 
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3. For a Petersen graph G (2-self centered), V = VD–. 
4. For any cycle C2n, VD– = V(G) and  for C2n+1, VD0 = V(G). 

 

Proposition 3.1.1: Let G be a graph with p ≥ 3. If G has γdcl(G) = 2 and having at least 
three vertices with degree p – 1, then V = VD0. 

Proof: Let G be a graph with p ≥ 3 and let γdcl(G) = 2. If G has at least three vertices with 
eccentricity equal to 1, then G is either a complete graph or a graph with radius 1 and 
diameter 2. In both the cases, removal of any vertex u will not affect the D.C.D number of 
G. Hence, V = VD0. 
 

Proposition 3.1.2: Let G be a graph with p ≥ 3. If G has γdcl(G) = 2 and having exactly two 
vertices with degree p – 1, then V = VD0VD+, where VD0 = {vV(G) | e(v) = 2},     
VD+= {vV(G) | e(v) = 1} and | VD+| = 2. 

Proof: Since γdcl(G) = 2 and G has exactly two vertices with eccentricity equal to 1, G is of 
radius 1 and diameter 2. If we remove any vertex v with eccentricity 2, then it will not 
affect the D.C.D number of G. Thus vVD0, for every v with e(v) = 2 in G. Also, if we 
remove any vertex v with eccentricity 1, then it will increase the D.C.D number of G to 3. 
Thus vVD+, for every v with e(v) = 1 in G and | VD+| = 2. 

 Hence, V = VD0VD+. 
 

Proposition 3.1.3: If G is a graph with p ≥ 4 and γdcl(G) = 3, then V = VD0VD+VD–, 
where  

VD0 = {vV(G) | e(v) = 2 and v is not a unique eccentric   point of any other 
vertex in G}. 

VD– = {vV(G) | e(v) = 2 and v is a unique eccentric point of at least one vertex 
           of G}. 
VD+ = {vV(G) | e(v) = 1} and | VD+| = 1. 

Proof: Since γdcl(G) = 3, G is a graph with radius 1 and diameter 2 and G has exactly one 

vertex with eccentricity 1 (otherwise γdcl(G) = 2), say v. Then clearly removal of the vertex 

v from G will increase the D.C.D number of G. Therefore, γdcl(G – v) >γdcl(G). Hence,      
vVD+ and | VD+| = 1 (as v is the only such vertex in G). 

Also, if we remove any vertex u with eccentricity 2 and u is a unique eccentric 
point of at least one vertex of G, then G – u has at least one vertex with eccentricity 1 

other than u. Therefore, γdcl(G – v) = 2. Hence γdcl(G – v) <γdcl(G) and hence uVD–

.Suppose that if u is a vertex with e(u) = 2 and u is not a unique eccentric point of any 
other vertex in G, then removal of u will not affect the D.C.D number of G. Hence            
vVD0 and hence V = VD0VD+VD–. 
Theorem 3.1.1: If G is a (p – 2) regular graph, then V = VD–. 
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Proof: If G is a (p – 2) regular graph, then G is a self-centered graph of diameter 2. Also, 
G is a 2-connected unique eccentric point graph and every vertex and its eccentric point 

lie on a C4. Therefore, γdcl(G) = 4. If we remove any vertex v, then the eccentricity of v1 

will be reduced to 1, where v1 is the eccentric vertex of v. Thus, the set of vertices {u, v1, w} 

forms a D.C.D set of G – v, where u and w are non adjacent. Hence, γdcl(G – v) = 3 =  

γdcl(G) – 1 <γdcl(G), for every vV(G) and hence V = VD–. 
 

Theorem 3.1.2: Let G be a graph with diameter 3 and radius 2 and γdcl(G) = 4. If a vertex     
vVD–, then  
             (i) v is non adjacent to at least one vertex of degree p – 2 in G. 
             (ii) d(G – v) < d(G). 
             (iii) v must be the peripheral vertex. 

Proof: Let G be a graph with diameter 3 and radius 2 and γdcl(G) = 4. 

(i) Let vVD–. Then γdcl(G – v) < γdcl(G). That is γdcl(G – v) is either 3 or  2, 
which only means that G – v has at least one vertex of degree p – 2, say u. Suppose that, if 
v is adjacent to u, then d(u) = p – 1 in G, a contradiction to G is of diameter 3. Hence, v is 
not adjacent to u. 

(ii) By (i), v is not adjacent to at least one vertex of degree   p – 2 in G, say u. 
That is, d(u) = p – 2 in <G – v>. Hence, the induced sub graph of G – v, <G – v> is of 
diameter 2 and hence d(G – v) = 2 < d(G).  

(iii) By (ii) d(G – v) = 2. Suppose that, if e(v) = 2, then the diameter of G is also 
equal to 2, a contradiction to G is of diameter 3. Hence, e(v) = 3 and hence v must be the 
peripheral vertex. 
 
Proposition 3.1.4: If G is an r-self centered and a unique eccentric point graph, then          
V = VD–. 
Proof: Let G be a self centered graph of diameter r. Let vV(G) and let u be the vertex of 
G such that v is the unique eccentric point of u. Then clearly e(u | G) > e(u | G – v). 

Hence, γdcl(G – v) <γdcl(G) and hence vVD–. This is true for every vertex vV(G). 
Therefore, V = VD–. 

 

Proposition 3.1.5: Let G be a 2-self-centered graph with δ ≥ 3. In G, if for every vertex       
uV(G) both <N1(u)> and <N2(u)> are independent, then V = VD0. 

Proof: Let G be a 2-self centered graph with δ ≥ 3. If for every vertex uV(G) both 

<N1(u)> and <N2(u)> are independent, then G is a bipartite graph. Hence, γdcl(G – v) = 4 

= γdcl(G) for every vertex vV(G) and hence V = VD0. 
 
Proposition 3.1.6: If G is a (p – 3) regular graph with p ≥ 5, then V = VD0. 
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Proof: Let G be a (p – 3) regular graph with p ≥ 5. Then every vertex v of G must lie on a 
C5. For otherwise d(v) ≥ p – 3, a contradiction to G is (p – 3) regular. Hence, G must be   

2-self centered and γdcl(G) = 4. Also for every vV(G), (G – v) is 2-self centered and the 

D.C.D set of (G – v) is a dominating cycle of length 4 or a P4. Therefore, γdcl(G – v) = 4. 
Hence, every vertex v of G is in VD0 and hence V = VD0. 
 
Proposition 3.1.7: If G is a ciliate on p vertices, then V = VD–. 

Proof: In a ciliate, we know that γdcl(G) = p. Since the ciliates are radius critical, if we 

remove any vertex v, then γdcl(G – v) = p – 1. Hence, γdcl(G – v) < γdcl(G) for every vertex  
vV(G) and hence V = VD–. 
 
Theorem 3.1.3: If T is a tree with p vertices and k number of pendant vertices and if a 
vertex vVD0, then v must satisfy any one of the following conditions. 

(i) v is a pendant vertex whose support vertex is of degree greater than or 
equal to 3. 

(ii) v is a support vertex with degree equal to 3 and its adjacent vertices other 
             than the pendant vertex are of degree equal to 2.                                    
(iii) v is a vertex of degree 2 and it is adjacent to two vertices u and w such 

that d(u) = 2 and d(w) ≥ 3. 
Proof: Let T be a tree with p vertices and k number of pendant vertices. 
 (i) Since the distance closed domination number of any tree T is p – k + 2, 
removal of any pendant vertex v, whose support vertex is of degree greater than or equal 

to 3 will maintain the distance closed domination number. That is, γdcl(T – v) = γdcl(T). 
Hence, vVD0. 

(ii) Let v be a support of a pendant vertex u of T with degree equal to 3. Since the 
adjacent vertices of v are of degree 2, T – v has three components T1, T2 and T3 each has 
p1, p2 and p3 (|p3| = 1) vertices and k1, k2 and k3 number of pendant vertices respectively.      

Therefore, γdcl(T – v) = γdcl(T1) + γdcl(T2) + γdcl(T3)  
                                 = p – 2 – (k + 1) + 5 

                                 = p – k + 2 = γdcl(T). 
Hence, vVD0. 

(iii) If v is a vertex of degree 2 and it is adjacent to two vertices u and w such that 
d(u) = 2 and d(w) ≥ 3, then T – v has two components T1 and T2 such that |T1| + |T2| =     
p – 1 and the number of pendant vertices must be increased by one in T – v. Also,         
|T1| = p1, |T2| = p2 and k1, k2 are the number of pendant vertices in T1 and T2 respectively. 

Therefore,  γdcl(T –  v) = γdcl(T1) + γdcl(T2) 
                                   = (p – 1) – (k + 1) + 4  

                                   = p – k + 2 = γdcl(T).  
Hence, vVD0. 
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Proposition 3.1.8: Let T be any tree. If v is a vertex with d(v) ≥ 4 in T, then vVD+. 
Proof: Let T be any tree and let v be a vertex with 4 ≤ d(v) = m. Also, let k be the number 
of pendant vertices in T.  
Case (i): T is a star K1, m 

If T is a star K1, m and 4 ≤ d(v) = m, where p = m + 1 and k = m = p – 1, then         
T – v has m number of isolated vertices and trivially vVD+. 
Case (ii): v is a support vertex of (m – 1) pendant vertices and u is a vertex adjacent to v 
with d(u) ≥ 2 

If v is a support vertex of (m – 1) pendant vertices and u is a vertex adjacent to v 
with d(u) ≥ 2, then we have the following two sub cases. 
Sub case (a): d(u) = 2 

If d(u) = 2, then T – v has (m – 1) isolated vertices and k – (m – 2) pendant 
vertices. 

Thus, γdcl(T – v) = (p – 1) – [k – (m – 2)] + 2 

                          ≥ p – k + 3 = γdcl(T) + 1 

Hence, γdcl(T – v) >γdcl(T).  
Sub case (b): d(u) ≥3 

If d(u) ≥3, then T – v has (m – 1) isolated vertices and k – (m – 1) pendant 
vertices. 

Thus, γdcl(T – v) = (p – 1) – [k – (m – 1)] + 2 

                          ≥ p – k + 4 = γdcl(T) + 2 

Hence, γdcl(T – v) > γdcl(T). 
Case (iii): v is a vertex of T with 4 ≤ d(v) = m and its adjacent vertices are of degree 
equal to 2 

If v is a vertex of T with 4 ≤ d(v) = m and its adjacent vertices are of degree equal 
to 2, then T – v has m components and it has k + m number of pendant vertices. 

Thus, γdcl(T – v) = (p – 1) – (k + m) + 2m 

                          ≥ p – k + 3 = γdcl(T) + 1 

 Hence, γdcl(T – v) >γdcl(T). 
Case (iv): v is a vertex of T with 4 ≤ d(v) = m and its adjacent vertices are of degree 
greater than or equal to 3 

If v is a vertex of T with 4 ≤ d(v) = m and its adjacent vertices are of degree 
greater than or equal to 3, then T – v has m components and it has k number of pendant 
vertices. 

Thus, γdcl(T – v) = (p – 1) – k + 2m 

                           ≥ p – k + 7 = γdcl(T) + 5 

Hence, γdcl(T – v) > γdcl(T). 
Therefore, from all the above cases we have vVD+. 
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Proposition 3.1.9: Let T be any tree. If v is any vertex of degree equal to 2 in T and it is 
adjacent to two vertices u and w such that d(u) = 2 and d(w) = 2, then vVD– . 
Proof: If v is a vertex of T with d(v) = 2 and it is adjacent to two vertices u and w such 
that d(u) = 2 and d(w) = 2, then T – v has 2 components and it has k + 2 number of 
pendant vertices. 

Thus, γdcl(T – v) = (p – 1) – (k + 2) + 4 
                        = p – k + 1 

                        = γdcl(T) – 1  

Hence, γdcl(T – v) < γdcl(G). 
Therefore, vVD–. 

 
Proposition 3.1.10: If G is an unicyclic graph with p vertices and if G has a cycle of length 
(p – 1), then we have the following 

(i) If p is even, then V = VD0VD+. 
(ii) If p is odd, then V = VD0VD–. 

Proof: Let G be a unicyclic graph with p vertices and let G has a cycle of length (p – 1). 
Since G is a connected and a unicyclic graph, G is of the structure given in Figure 3.1 and 
we have the following cases. 
 
 
 
 
 
 
 
 
 
 
                                        Figure 3.1 - A unicyclic graph with a cycle Cp – 1 
 
Case (i): p is even 

If p is even, then Cp – 1 is an odd cycle of length p – 1. Let us now remove a vertex v 
from G.  

(a) If d(v) = 1, then (G – v) = Cp – 1 and γdcl(G – v) = γdcl(G). Hence, vVD0. 

(b) If d(v) = 2 and it is adjacent to a vertex of degree 3, then γdcl(G – v) =  γdcl(G) + 1 

> γdcl(G). Hence, vVD+. 

(c) If d(v) = 2 and it is adjacent to vertices of degree 2, then γdcl(G – v) = γdcl(G). 
     Hence, vVD0. 

Therefore, V = VD0VD+. 

v1 

v2

v3 

v4

vp –1 
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Case (ii): p is odd 
If p is odd, then Cp – 1 is an even cycle of length p – 1. Let us now remove a vertex v 

from G. 

(a) If d(v) = 1, then G = Cp – 1 and γdcl(G – v) = γdcl(G). Hence, vVD0 

(b) If d(v) = 2 and it is adjacent to a vertex of degree 3, then  γdcl(G – v ) = γdcl(G).  
      Hence, vVD0. 

(c) If d(v) = 2 and it is adjacent to vertices of degree 2, then γdcl(G – v) = γdcl(G) – 1  

<γdcl(G). Hence, vVD–. 
Therefore, V = VD0VD–. 
 
3.2 Changing and unchanging of edge removal (CER and UER): 

Now we classify the edges of a graph G in such a way that their removal affects or 
doesn’t affect the D.C.D number of G. Clearly, removal of an edge from G cannot 
decrease the distance closed domination number (except ciliates) and increases by at the 
most 2. Let us define 

      ED0 = {eE(G) | γdcl(G – e) = γdcl(G)}  (UER) 

      ED+ = {eE(G) | γdcl(G – e) >γdcl(G)}  (CER) 

      ED–  = {eE(G) | γdcl(G – e) <γdcl(G)}   
Clearly, E = ED0ED+ED– = ED0ED+ (since ED– = for any graph). The following 
are the results of some special classes of graphs without proof. 

1. For any complete graph Kp, E = ED+, p ≥ 3. 
2. For any complete bipartite graph Km, n,E = ED0, p ≥ 4 where p = m + n. 
3. For a Petersen graph G (2-self centered), E = ED0. 
4. For any even cycle C2n, E = ED0.  
5. For any odd cycle C2n+1, E = ED+. 

 
Proposition 3.2.1: Let G be a graph with radius 1 and diameter 2 and let  
 A = {e = uv | e(u) = e(v) = 1}; 
 B = {e = uv | e(u) = e(v) = 2} and; 
 C = {e = uv | [e(u), e(v)] = (1, 2) or (2, 1)}. 
Then we have the following: 
 (i) If |A| ≤ 3, then E = ED0ED+. 
 (ii) If |A| ≥ 6, then E = ED0. 

Proof: If G is a graph with radius 1 and diameter 2, then γdcl(G) = 2 or 3 according to the 
number of vertices with eccentricity 1 in G. 
Case (i): G has exactly one vertex with eccentricity 1 

If G has exactly one vertex with eccentricity 1, then |A| =   and γdcl(G) = 3. Now, let us 
remove an edge e from G. Then 

(a) If eC, then γdcl(G – e) = 4 = γdcl(G) + 1 >γdcl(G). Hence, eED+.  
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(b) If eB, then γdcl(G – e) = 3 = γdcl(G). Hence, eED0. 
Therefore, E = ED0ED+. 
Case (ii): G has exactly two vertices with eccentricity 1 

If G has exactly two vertices with eccentricity 1, then |A| = 2C1 = 2 and γdcl(G) = 2.   Now, 
let us remove an edge e from G. Then 

(a) If eA, then γdcl(G – e) = 4 = γdcl(G) + 2 >γdcl(G). Hence, eED+.  

(b) If eB, then γdcl(G – e) = 2 = γdcl(G). Hence, eED0.  

(c) If eC, then γdcl(G – e) = 3 = γdcl(G) + 1 >γdcl(G). Hence, e  ED+.  
Therefore, E = ED0ED+. 
Case (iii): G has exactly three vertices with eccentricity 1 

If G has exactly three vertices with eccentricity 1, then |A| = 3C2 = 3and γdcl(G) = 2. Now, 
let us remove an edge e from G. Then 

(a) If eA, then γdcl(G – e) = 3 = γdcl(G) + 1 >γdcl(G). Hence, eED+.  

(b) If eB, then γdcl(G – e) = 2 = γdcl(G). Hence, eED0.  

(c) If eC, then γdcl(G – e) = 2 = γdcl(G). Hence, eED0.  
Therefore, E = ED0ED+. 
Case (iv): G has more than three vertices with eccentricity 1 

If G has more than three vertices with eccentricity 1, then |A| ≥ 4C2 = 6 and γdcl(G) = 2. In 

this case, if we remove any edge eE(G) = ABC, then γdcl(G – e) = 2 = γdcl(G). 
Hence, eED0 and hence E = ED0. 

Therefore from cases (i), (ii) and (iii), E = ED0ED+ for |A| ≤ 3. Also, from      
case (iv), E = ED0 for |A| ≥ 6. 

 

Corollary 3.2.1: If G is a graph with radius 1 and diameter 2, then γdcl(G – uv) = γdcl(G) if 
and only if u and v must have eccentricity equal to 2. 
 

Corollary 3.2.2: If G is a graph with γdcl(G) = 2 and ddcl(G) ≥ 2, then E = ED0. 
 

Corollary 3.2.3: Let G be a graph with γdcl(G) = 3. If an edge e = uvED+, then either u 
or v is of eccentricity equal to 2. 
 
Theorem 3.2.1: Let T be a tree. Ife = uv is an edge of T with d(u) = 1 and d(v) = 2                
(or) d(u) = 2 and d(v) = 2, then eED0. 
Proof: We know that, in a tree T every edge e = uv is a cut edge and T – e has two 
components T1 and T2 with |T1| = p1 and |T2| = p2, where p1 + p2 = p. 
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Case (i): e = uv with d(u) = 1 and d(v) =2 
If we remove an edge e = uv with d(u) = 1 and d(v) = 2, then T – e has two 

components T1 and T2 with |T1| = 1 and |T2| = p – 1 and T2 has k number of pendant 
vertices.  

Therefore, γdcl(T – e) = 1 + (p – 1) – k + 2 = γdcl(T). 
Hence, eED0. 

Case (ii): e = uv with d(u) = 2 and d(v) =2 
If we remove an edge e = uv with d(u) = 2 and d(v) = 2, then T – e has two 

components T1 and T2 with |T1| = p1 and |T2| = p1, where p1 + p2 = p and T – e has k + 2 
number of pendant vertices. 

Therefore, γdcl(T – e) = p – (k + 2) + 4 = γdcl(T)  
Hence, eED0. 

 
Theorem 3.2.2: For any tree T, if an edge e = uv with either d(u) or d(v) greater than or 
equal to 3, then eED+. 
Proof:  Let T be a tree with p vertices and k pendant vertices. If we remove an edge         
e = uv, then T – e has two components T1 and T2 with |T1| = p1 and |T2| = p2, where         
p1 + p2 = p. Thus, we have the following 3 cases. 
Case (i): d(u) = 1 and d(v) ≥ 3 
 If e = uv is an edge with d(u) = 1 and d(v) ≥ 3, then T – e has two components T1 
and T2 with |T1| = 1 and |T2| = p – 1 and T2 has k – 1 number of pendant vertices. 

Therefore, γdcl(T – e) = 1 + (p – 1) – (k – 1) + 2 

                      = γdcl(T) + 1 > γdcl(T) 
Hence, eED+. 

Case (ii): d(u) = 2 and d(v) ≥ 3 and vice versa 
If e = uv is an edge with d(u) = 2 and d(v) ≥ 3, then T – e has k + 1 number of 

pendant vertices. 

Therefore, γdcl(T – e) = p – (k + 1) + 4 

                      = γdcl(T) + 1 > γdcl(T) 
Hence, eED+. 

Case (iii): d(u) ≥ 3and d(v) ≥ 3 
If e = uv is an edge with d(u) ≥ 3and d(v) ≥ 3, then T – e has k number of 

pendant vertices.  

Therefore, γdcl(T – e) = p – (k) + 4 

                      = γdcl(T) + 2 > γdcl(T) 
Hence, eED+. 

 
Proposition 3.2.2: If G is a unicyclic graph with p vertices and if G has a cycle of length   
(p – 1), then we have the following: 



  79 Changing and Unchanging of Distance Closed Domination Number in Graphs 

 (i) If p is even, then E = ED+. 
(ii) If p is odd, then E = ED0ED+. 

Proof: Let G be a unicyclic graph with p vertices and let G has a cycle of length (p – 1). 
Then, G is of the structure given in Figure 3.1 and we have the following cases. 
Case (i): p is even 

If p is even, then Cp – 1 is an odd cycle of length p – 1. Let us now remove an edge 
e = uv from G. 

(a) If d(u) = 3 and d(v) = 1, then γdcl(G – e) = γdcl(G) + 1>γdcl(G). Hence, eED+. 

(b) If d(u) = 3 and d(v) = 2, then γdcl(G – e) = γdcl(G) + 2>γdcl(G). Hence, eED+. 

(c)  If d(u) = 2 and d(v) = 2, then γdcl(G – e) = γdcl(G) + 1>γdcl(G). Hence, eED+. 
Therefore, E = ED+. 
Case (ii): p is odd 

If p is odd, then Cp – 1 is an even cycle of length p – 1. Let us now remove an edge 
e = uv from G. 

(a) If d(u) = 3 and d(v) = 1, then γdcl(G – e) = γdcl(G) + 1>γdcl(G). Hence,             
e  ED+. 

(b) If d(u) = 3 and d(v) = 2, then γdcl(G – e) = γdcl(G) + 1 >γdcl(G). Hence,           
eED+. 

(c) If d(u) = 2 and d(v) = 2, then γdcl(G – e) = γdcl(G). Hence, e  ED0. 
Therefore, E = ED0ED+. 
 
Proposition 3.2.3: If G is a ciliate, then E = ED–. 

Proof:  We know that for a ciliate G, γdcl(G) = p. Let e = uv be an edge of G. Then, we 
have the following cases. 
Case (i): d(u) = 1 and d(v) = 2 
 If e = uv is an edge of G with d(u) = 1 and d(v) = 2, then removal of e from G 

reduce the distance closed domination number of G by 1. That is, γdcl(G – e) =  γdcl(G) – 1 

<γdcl(G). Hence, eED–. 
Case (ii): d(u) = 3 and d(v) = 2 
 If we remove an edge e = uv with d(u) = 3 and d(v) = 2, then <G – e> has two 
components G1 and G2 in which one of them is a path. Also, the distance closed 

domination number of <G – e> will be reduced by 1. That is, γdcl(G – e) = γdcl(G) – 1< 

γdcl(G). Hence, eED–. 
Case (iii): d(u) = 2 and d(v) = 2 
 If we remove an edge e = uv with d(u) = 3 and d(v) = 2, then <G – e> has two 
components G1 and G2 such that one of them is a path. Also, the distance closed 

domination number of <G – e> will be reduced by 1. That is, γdcl(G – e) = γdcl(G) – 1< 

γdcl(G). Hence, eED–. 
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Case (iv): d(u) = 3 and d(v) = 3 
 If we remove an edge e = uv with d(u) = 3 and d(v) = 2 (removing an edge within 

the cycle), then <G – e> is a tree with γdcl(G – e) = p – k + 2, where k is the number of 

pendant vertices in G – e. Hence, γdcl(G – e) = γdcl(G) – 2 < γdcl(G) and hence eED– . 
Therefore in all the cases, every edge e = uv of G is in ED–. Hence, E = ED–. 

 
3.3 Changing and unchanging of edge addition (CEA and UEA): 

Just as deleting an edge can increase the distance closed domination number by at 
most 2, adding an edge can decrease it by at most 2. In some cases the distance closed 
domination number is unchanged when an arbitrary edge is added. But there is no graph 
in which the distance closed domination number is increased after adding an edge. 
Let us define 

EA0= {e E(G) | γdcl(G + e) = γdcl(G)} (UEA) 

             EA+= {e E(G) | γdcl(G + e) >γdcl(G)}  (CEA) 

 EA– = {e E(G) | γdcl(G + e) <γdcl(G)}   
Then E = EA0EA+EA– = EA0EA–  (since EA+ =   for any graph). The following are 
the results of some special classes of graphs without proof. 

1. For an even cycle, every additional edge e reduces the D.C.D number. Hence, 
every additional edge eis in EA–. 

2. For an odd cycle, addition of an edge, which induces a C3, is in EA0. But the 
remaining additional edges are in EA–. 

3. For any complete graph Km, n with m + n = p and p ≥ 4, every additional edge e is 
in EA–. 

4. For a Petersen graph (2-self centered), every additional edge is in EA–. 
 

Proposition 3.3.1: If G is a graph with γdcl(G) = 2, then every additional edge e is in EA0. 

Proof:  Since G is a graph with γdcl(G) = 2, G must be a complete graph or G is a graph 
with radius 1 and diameter 2 and also G has more than two vertices with eccentricity 1. 
Hence, every additional edge between the vertices with eccentricity 2 will not affect the 
D.C.D number of G and hence every additional edge e is in EA0. 
 
Proposition 3.3.2: If G is a graph with exactly one vertex with eccentricity 1, then 

(i) An additional edge e = uvEA–,if at least one of u or v is of degree equal to     
p – 2 

(ii)  An additional edge e = uvEA0,if both u and v are of degree not equal to p –2 

Proof: Since G is a graph with γdcl(G) = 3, G must have exactly one vertex with 
eccentricity equal to 1. 

(i) If we add an edge e between the vertices u and v such that at least one of them 

is of degree equal to p – 2, then γdcl(G + e) = 2 <γdcl(G). Hence, eEA–. 
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(ii) If we add an edge e between the vertices u and v such that both d(u) and d(v) 

are not equal to p – 2, then γdcl(G + e) = 3 = γdcl(G). Hence, eEA0. 
 
Proposition 3.3.3: If G is a (p – 2) regular graph, then every additional edge is in EA–. 

Proof: Since G is a (p – 2) regular graph, it is 2-self centered and γdcl(G) = 4. If we add an 
edge e between a pair of non adjacent vertices of G, then that new edge will form a D.C.D 

set for (G + e). Hence, γdcl(G + e) = 2 <γdcl(G) and hence eEA– , for every additional 
edge e in G. 
 
Proposition 3.3.4: If G is a 2-self centered graph and if an edge e added between two 
vertices u and v such that at least one of them is of degree p – 2, then eEA–. 

Proof: Since G is 2-self centered, γdcl(G) ≥ 4. Let u and v be any pair of vertices in G such 
that at least one of them is of degree p – 2. Now, if we add an edge e between u and v then 

clearly, it will reduce D.C.D number to 3 or 2. Hence, γdcl(G + e) < γdcl(G) and hence         
eEA–. 
 
Theorem 3.3.1: Let G be a graph with radius 2 and diameter 3. If C is the set of central 
vertices of G and if <C> is a clique, then we have the following 

(i) If γdcl(G) = 4, then every additional edge is in EA0. 

(ii) If γdcl(G) > 4, then every additional edge is in EA– . 
Proof: Let G be a graph with radius 2 and diameter 3 and let C be the set of central 
vertices of G with <C> is a clique. 

Case (i): γdcl(G) = 4 
Sub case (a): G has a unique pair of peripheral nodes 
Here, if we add an edge e between a pair of vertices u and v such that  

(i) If e(u) = 3 and e(v) = 2 or vice versa, then <G +e > is 2-self centered and                  

γdcl(G + e) = 4. 

(ii) If e(u) = 3 and e(v) = 3, then also <G + e> is 2-self centered and γdcl(G + e) = 4. 
Therefore, eEA0, for every e  E(G).     

Sub case (b): G has more than 2 peripheral nodes 
Here if we add an edge e between a pair of vertices u and v such that  

(i) If e(u) = 3 and e(v) = 2 or vice versa, then <G + e> is still of diameter 3 and  

γdcl(G + e) = 4. 
(ii) If e(u) = 3 and e(v) = 3, then <G + e> is of diameter 3 or 2-self centered 

according to u and v have same or different eccentric node and γdcl(G + e) = 4. 
Therefore, eEA0, for every e  E(G).     
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Case (ii): γdcl(G) > 4 

 If γdcl(G) > 4, then G has more than a pair of peripheral nodes and at least 2 of 
them are pendant vertices. Here, if we add an edge e between a pair of vertices u and v, 

then <G + e> is of diameter 3 and γdcl(G + e) < γdcl(G). 
Therefore, eEA–, for every e  E(G). 
 

Theorem 3.3.2: If T is a tree with p vertices and k pendant vertices, then we have the 
following 

(i) Addition of an edge between the pendant vertices which are incident at a 
common vertex is in EA0. 

(ii) Addition of an edge e between any two vertices u and v with d(u) ≥ 2 and       
d(v) ≥ 2 is in EA–. 

Proof:  Let T be a tree with p vertices and k pendant vertices. We know that, for any     

tree T, γdcl(T) = p – k + 2. 
(i) If we add an edge e between the pendant vertices which are incident at a common 

vertex, then γdcl(G + e) = γdcl(G). Hence, eEA0. 
(ii) Suppose that, if u and v are any two vertices with degree greater than or equal to 

2, then e(u) d (diameter of T) and e(v) d. Also, addition of an edge e between u and v 
will reduce the D.C.D number of <T + e> by at least one, as T has a unique shortest path 
between every pair of vertices.  Hence, eEA–. 
 
Proposition 3.3.5: For any graph G, addition of an edge between any two pendant vertices 
which are incident at a common vertex is in EA0. 
 
Proposition 3.3.6: For any graph G, addition of an edge e between any two central 
vertices u and v such that they are the eccentric nodes of each other, is in EA0. 
Proof:  Let C be the set of central vertices of G and let u, vC such that u and v are the 
eccentric nodes of each other. If we add an edge e between u and v, then clearly it will not 

affect the eccentricity of any vertex of G. Thus, γdcl(G + e) = γdcl(G).Hence, eEA0.  
 
Theorem 3.3.3: Let G be a graph with radius r and diameter d. If G has a unique pair of 
peripheral nodes and if we add an edge e between the peripheral nodes, then  

(a) eEA0, if d is odd. 
(b) eEA–, if d is even. 

Proof:  Let G be a graph with radius r and diameter d and let G has a unique pair of 
peripheral nodes. 
Case (i): If we add an edge e between the peripheral nodes, then <G + e> is r-self centered 
and 

(a) If d is odd, then γdcl(G + e) = γdcl(G). Therefore, eEA0.    
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(b) If d is even, then γdcl(G + e) <γdcl(G). Therefore, eEA–.    
 
Theorem 3.3.4: If G is a ciliate, then every additional edge is in EA–. 

Proof:  We know that for a ciliate G, γdcl(G) = p. Also, addition of an edge e in G will 

reduce the D.C.D number of <G + e>. Hence, γdcl(G + e) < γdcl(G) and hence eEA–. 
 
Corollary 3.3.1: If G is radius critical, then every additional edge is in EA–. 
 

4. Conclusion: 
In general, the concept of dominating sets in graph theory finds wide applications 

in different types of communication networks. In particular, the concept of distance closed 
dominating set has remarkable applications in fault tolerance analysis.  The faults and 
failures in larger networks may be due to the failure of components like nodes, links etc.  
This is analogous to the notion of studying the structural properties of graphs with vertex 
deletions and edge deletion respectively.  Similarly, the network behavior also changes 
when new nodes or links are introduced in case of communication network`s such as 
mobile networks and this is analogous to the study of structural properties of graphs with 
vertex additions and edge additions. Hence, by the changing and unchanging parameters 
of the graphs with respect to vertex, edge additions and deletions and thereby we have 
studied the behavior of the networks in all the above situations. Thus, the above work has 
lots of applications in the communication network, social and economical network and 
signal processing.  
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