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Abstract: Hartsfield and Ringel [1] introduced antimagic labeling. In this paper, we investigate the
antimagic labeling of C, @ Ps forn = 3 ; K, © G, for n 2 3 ;C. forn = 3 ; SC. ; the
generalized Peterson graph P(n,k); gear graphs ; Helm H, for all n > 3 ; Sflower F, for n > 3 ;
shell graph H(n,n-3) for n >4 ; Banana tree BT (n;,nz) Jor all 2 < n < n,; friendship graph

C. for all £22; fan graph F, for all 022 ; LanternK, + K (forn 22) and sriangular

snakes.

1. Introduction
Kotzig and Rosa [3] defined a magic labeling of a graph G(V,E) as a bijection f
from VUE to {1,2,..,
They proved that (1) k,,, has a magic labeling for all m,n. (2) C, has a magic

vU E| } such that for all edge xy, f(x) + f(y) +f(xy) is constant.

labeling for all n 2 3. (3) nP, has a magic labeling if and only if n is odd. (4) K, has a
magic labeling if and only if n = 1,2,3,4,5 and 6. Balakrishnan and Sampath Kumar [4]
proved that the join of K, and two disjoint copies of K, is magic if and only if n = 3.

Hartsfield and Ringel [1] introduced antimagic graphs. A graph with q edges is called
antimagic if its edges can be labeled with 1,2, ....... g. so that the sum of the labels of the
edges incident to each vertex are distinct. Paths P, (n 2 3)cycles C,and K, (n = 3)are
antimagic. Hartsfield and Ringel Conjectured that every tree except P, is antimagic. . For

an extensive survey on graph labeling we refer to Gallian[2].

In this paper, we investigate the antimagic labeling of C, © P, forn = 3; K, © C,

forn = 3 ;C; forn > 3 ; SIC: ; the generalized Peterson graph P(n,k); gear graphs ;

Helm H, for all n = 3 ; flower F, for n 2 3 ; shell graph H(n,n-3) for n > 4 ; Banana
(V)

3

tree BT (n;,n,) for all 2 < n < n,; friendship graph C.~ for all t=>2; fan graph F, for

all n =2 ; Lantern K, -|-K_n (for n 2 2) and triangular snakes.

2. Main Results
Let C, be the cycle with n vertices and P, be the path on 3 vertices. We obtain

C, © P, from C, and n copies of P, by joining i vertex of C, to every vertex of i copy
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of P,. C, ®© P; has 4n vertices and 6n edges. In the following theorem, we prove that

C, O, P, is antimagic.

Theorem 2.1 : The graph C, ®© P, is antimagic, for all n = 3.

Proof : LetG=Cn® P;

V(G) = {v,,a;,b,,c,/1<i<n} and

E(G) = {aibi,bici,viai,vibi,vici/ISiSn}

|\ {vnvl,viviﬂ/lSiSn-l}

We define f: E(G) — {1,2,...... ,6n} as follows :
f(VivH_l)=6n—i+1,ifi=1,2,...,n-1
f(vnv1)=5n+1;andforalli,ISiSn,
f(vaa,)=if(v,b))=2n+if(v.c))=n+if(a,b)=3n+iandf(b,c,)=4n+i,
The induced map f* on V is given by
f*(a;) =3n+2i
f*(b,) =9n+3i forall1<i<n
f*(c,)=5n+2i
f"(vi):15n+i+3fora112£iﬁn and f* (v, ) =14n + 4.

As3n+2i<5n+2i<9n+3i<ld4n+4<15n+i+3, foralli, 1<i<n it
follows that f* is injective and hence f is an antimagic labeling for C, ®© P,. An antimagic

labeling for C, ®© P, is illustrated in figure 2.1. The graph K, ®© C, obtained from K,

and two copies of C, by joining i vertex (i=1,2) of K, to each vertex of i® copy of C,. It

can also be obtained from two copies of wheel W, by joining central vertices of the two
copies by an edge.

Figure2.1 An antimagic labeling for C, ®© P,
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Theorem 2.2 : The graph G =K, O, C, is antimagic, for all n > 3.
Proof:

Let V(G) ={u1,u2,vi,wi/1 <i<n} and

E(G) = {uu

1722

ww,v v U {ww,_ vV, /1<i<n-1}

U {uw,,u,v, /1<5i<n}
We define f: E(G) — {1,2,..4,,4,,,} as follows:

fw,w,  )=ifori=12,.n-1

flw_w, )=n

flu, w,)=2n-i+1 fori=1.2,.,n

f(v, v, )=2n+i fori=1.2,.,n-1

f(v_ v,)=3n

f(u,v,)=4n-i+1 fori=12,.,n

f(u, u,)=4n+1.

The induced map f* on V(G) is obtained as follows :
f*(wi)=2n+i for 2<i<n

f'(w,)=3n+1 f*(v,)=9n+1

f*(vi)=8n+i, for2<i<n
2

. 3n" +n
f (u)=———andf*(u,)=
2 2

2

. 3n"+n _ 18n+n

Ifn26,f(u1)= > >9n+3
2 2

7n° +n

3n° +n 7n° +n
Soif n>6, we have 2n +i<3n+1<8n+1i<9n+l < < ,

2 2
for all i, 1< i <n and hence in this case (n = 6), f* is injective.

If n =5, f* (u;) =40 = f* (x) for all x # u; € V(G) and ¥ (u,) = 18n.

If n =4, f* (u,) =26 = f* (x) for all x # u; € V(G), and
f* (u,) =58>37=9n + 1.

If n =3, f* (u;) =15 =5n # f* (x) for all x # u; € V(G), and f* (u,) > 10n.

Thus in all the cases, f* is injective and hence f is an antimagic labeling for K, ®© C..

An antimagic labeling for K, O, C, is illustrated in the figure 2.2



International Journal of Engineering Science, Advanced Computing and Bio-Technology

"

] l
6 g (14 2 2
[ N ) 200 N\ A2
23
25
19 ]

~1

5
16
10 29 03 e
8

(P8}

Figure 2.2 An antimagic labeling for K, © C,

Theorem 2.3 : The graph C| is antimagic, for all n > 3.
Proof :

Let Vv, v,...V_V, be the cycle C, and let u; be the pendant vertex attached to the
vertex v, forall i, 1 <i < n.

Define f: E(G) — {1,2,....,2n} as follows:

fluv,)=i forall1<i<n; f(uv, )=2n-i+1 forall1<i<n-1, and
f(uv )=n+1.

The induced map f* on V(G) is obtained as follows:

f*(ui)zi foralli,1<i<n; f*(v1)=3n+2 and f*(vl)=4n—i+3,forall2SiSn

Clearly f* is injective and hence is an antimagic labeling for C: .

Figure 2.3 Antimagic labeling for C+

Theorem 2.4 : The graph s, (C:) , obtained from C_ by subdividing each edge of C’
once, is antimagic.
Proof : Let u,u,..u, be thecycle C,and V,,V,,....,V, be the pendant vertices of C: ,

u; being adjacent to u;. Subdivide the edge u; u;,; by introducing a new vertex y; (for i
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1<i<n-1), the edge u,u, by introducing a new vertex. y,, and the edge u; v; (1<i<n), by
introducing a new vertex x;. Let the resulting graph S, (Cn+) be G.

Define f : E(G) — {1,2,...,4n} as follows :

f(x,v,)=1iforl <i<n

f(u,x,) =n+i,forl <i<n

f(uy,)=3n

f(y, ,u,)=3n—i+1,for2 <i<n

f(u,y,)=4n—i,forl <i<n-1

f(u y, )=4n
The induced map f* is obtained as follows:
£ (v,)=i
X for1<i<n
f (x,)=n+2i

f*(ui):8n—1+1
X for1<i<n-1
f (y,)=7n-2i

£ (y,)=7n and £ (u,)=8n+1.

Asi<n+2j<7n-2k < 7n < 8n-s+1 < 8n+1, for all 1<i, j<n; 1 < k,s < n-1, it follows that f*
is injective.

Thus f is an antimagic labeling for S, (C;L ).

An antimagic labeling for S, (C;r) is illustrated in Figure 2.4.

Figure 2.4: An antimagic labeling for S, (C: ).
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n
Theorem 2.5: Let n > 5 be a prime and k > 2 be a positive integers such that k < —. The
2

generalized Peterson graph P(n, k) is antimagic , for all prime n.

Proof:
Let G = P (n, k) be the generalized Peterson graph.
Let V(G) = {v,u; / 0 <i < n-1 }and let E(G) = {u; v;; v,vi,;» wu,, / 0< i < n-1}. (for
suffixes, the addition i+k is under addition modulo n). As n and K are prime to each
other, gcd(n, k) = 1 and k is a generator for the group Z, . Hence each i = m,k, for
some unique integer m; (0< m; <n-1) in the group Z, . It is clear that if i # j, then m; # m,
(0<1i, j< n-1).
Define f: E(G) — { 1,2,....,3n} as follows :
f(vv,,,) =i+l for 0<i< n-2;f(v,,v,)) = n;f(viy) =2n-i for 0<i< n-1
f(wu,,) =3n-m; for 0<i< n-1
Clearly, i+1 <n <2n-j<3n-s forall0<i< n-2;0<j,s< n-1and hence the map f is
bijective .
The induced map f is obtained as follows:
f(v)=2n+i+l1for 1<i< n-1;f(v,) =3n+1;f(u,) = 7n+1 and f (w) =8n-2m;-i+1 for
1<i< n-1.
As f(v) <4n <f*(y) forall 0<ij< n-1,f(v)#=f(v).
Now if 1<i< n-1, f(u) = f*(u)
= 8n-2m;-i +1 =8n-2m;-j +1

= 2m+i = 2m+]j

— 2(mi-mj) +(1j)=0

= 2(m;-m;) + (m;-m;) k = 0 (mod n)

= (k+2) (m;-m;) =0 (mod n)

= either m;- m; = 0 or n divides k+2,

(as n is prime)
= m=m; ask+2<n
= i=j



Antimagic Labelings of Graphs

Figure 2.5 : An antimagic labeling for P (11,4).

Remark : The antimagic labeling f defined in the theorem 2.5 also is an antimagic

n
labeling for P (n,k ) , Where k <— and both k and k+2 are prime to n. (The integer n
2

need not be a prime ).

Thorem 2.6: Every gear graph is antimagic .
Proof:

Let G be the gear graph obtained from a Wheel W, by subdividing each edge on

the cycle C, once. Let V(G) = {v, v;, u; | 1£i< n }.(n 2 3) and

let E(G) = {vu; Viui| 1<i< n}tU {uwvy,,, unvl| 1€i< n-1}.
Define f: E(G) — { 1,2,....,3n} as follows :

f(vyu) = ifor 1<i< n

f(uv,;) =n+i for 1<i< n-1

f(u,v,) =2n

f(vv)=3n-i+l1 for 1<i<n

The induced map f on V(G) is obtained as

* (u;) = n+2i for 1<i<n
f* (v,) = 4n+i for 2<i<n
f* (v;) = 5n+1

n(5n+1)
V)= —"

2
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n(5n +1)
Asn+2i<4n +j <5n+l < —— forall1<i<n;2<j<n (asn=3),
2

The map f'is injective and hence f is an antimagic labeling for G.

Figure 2.6 illustrates an antimagic labeling for the gear graph G,

241
12 13
23 22

11 25 136 14
22 % 35 A3
10/ 27 34 s

2 33 /4
N"29,.[3N 16
20

8 {7
195+

Figure 2.6 : An antimagic labeling for the gear graph G,,.

The helm H, the graph obtained from the Wheel W, (n = 3), by attaching a
pendant edge at vertex of the n cycle of W, .(H, can also be obtained from C' by joining

all the vertices of C with degree 3 to a new vertex v).

Thorem 2.7: Helm H,, is antimagic , for alln > 3.

Proof:

Let G =H,and let n>4 . Let V(G) = {v,v, u; | 1<i< n}and

let E(G) = {vv; vyu; v,v{/I<i< n}U {wvv,, |1<i< n-1}

G-v is the graph C; Let f be the antimagic labeling for C; as defined in the proof of the
Theorem 2.3. Now we extend that map f to E(G) , by defining f(vv;) =3n-i+2, 2<i< n
and f(vv,) = 2n+1

The induced map f on V(G) is given by

f(u)=i
. for 1<i<n

f(u_,)=5n+3+2i

n(5n+1)
*v)ys—

2
n(5n +1)
As n=>4, ——— >10n+2 > 5n+3 +2i for 1<i<n.
2

Hence f is injective and H,,, (n> 4) , is antimagic .

The helm Hj; is also antimagic , an antimagic labeling for H; is exhibited in the Figure
2.7 (a).

A flower F, is the graph obtained from the helm H, by joining each pendent vertex of H,

to the centrel vertex of H,, .
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Thorem 2.8 : For n> 3, flower F, is antimagic .
Proof :
Let G=F,, V(G) ={v,vyu;/1<i< n} andlet E(G) = {vv, viy vy / 1<i<n } U
{vovy, vivi,1 / 1€i< n-1}
Define f: E(G) — { 1,2,....,4n} as follows :
f(yyv) =i forall1<i< n;f(vyv,,) =2n-i+1, forall 1<i < n-1; f(v,v,) = n+l
f(vwv) =3n-i+2 for 2<i<n;f(vv,) = 2n+l1; f(vu,) = 3n+i forall 1<i< n.
(The map f is an extension of the antimagic labeling for H,,, defined in the proof of the
Theorem 2.7)
The induced map f on V(G) is given by :
() = 3n+2i for 1<i<n;f(v) =7n-2i+5 for 2<i<n-1;f(v,) =5n+3, f(v) = (6n+1)
As3n+2i<5n+3<7n-2j+5<(6n+1)n,foralln>3

1<i<nand2<j<n-1,the map f is injective. So the flower F, (n > 3 ), is antimagic

Figure 2.7 (a) An antimagic labeling for H; and (b) An antimagic labeling for H,

The shell graph of order n, n > 4, denoted by H(n,n-3) is obtained from the cycle

C, of order n by adding (n-3) chords incident with a common vertex.

Theorem 2.9 : For every n 2 4, the shell graph H(n, n-3) is antimagic.
Proof :
Let G = H(n,n-3). We assume that n > 6, (An antimagic labelings for H(4,1) and H(5,2)

are shown in figure 2.8)

LetV(G)={Vi| 1<i<n }and E(G)={vv;|2<i<n }U{Vi+lvi|ZSiSn—1}

Define f: E(G) — { 1,2,....,2n-3} as follows :
f(vy;vp)=n-ifor3<i<n-1;f(v;v,;)=n-3+1i forl <i<n-land f(v, v;) = 2n - 3.
The induced map f on V(G) is given by

’+n
f(v) = n—;f(vz)=2n—3;f(vi)=3n+i—7for3£i£n—1andf(vn)=4n—7
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For somei,3<i<n-1, f(v)=f(v,) =>3n+i-7=4n-7 = i=n, whichisa

contradiction.
n°—5n+10
Wehave f(v;) #f(v,) forall2<i<n-1.Ifn>6, ——— = n, it follows that f(v,)
2
* F(Vl)
n2 + n—4
foralli,2<i<n-1.Alsoasn=6, ———— #4n-7.
2

Thus if n = 6, f(v,),... f(v,) are all distinct and hence f is an antimagic labeling for

H(n, n-3), YV n>e.

[S%]

w2

Figure 2.8 Antimagic labeling for H(4,1), H(5,2),and H(10,7).

BT(n,,n,) is the tree obtained by joining a new vertex w to one pendant vertex of each

stars k1 N and k1 e BT(n,,n,)is called a banana tree.
| 72

Theorem 2.10 : Banana tree BT(n;,n,) admits an antimagic labeling for all 2 < n, <n,

Proof :
Let V(G) = { vyuw,u,y; | 1<i<n;l1<i<n, }and

E(G) = {uy|1<i<n JU{vy[1<j<n U { wuy swuy,}

n:
Define f: E(G) — { 1,2,.....n;+ n, +2 } as follows :
fluw) =i for1<i<n;-1;

f(vv) =n,+j-1 forl<i<n,
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nl2 —3n, —6

>

or

n12—3n1 —6

. n, 3n1—a
n +nifn, #
2
n2—3n
f(uu )= qn +n, +lifn #—2*
' 2
n2—3n —4
n +n, +2ifn, #— 1
| 2
( n2—3n —6
n1+n2 -|-1ifn2 copan !
2
f(wa )= 1§ ,
' ) n —3n1—4
n1+n2 1fn2 * N
2
( n2—3n
n +n, +1lifn, zL1—1
2
f(wu )= ,
’ ] n, —3n1
n +n, ifn, ;tT

The induced map f on V(G) is given by

f(uw=iforl<i<n,

nf—?»n1
2n1-i-2n2-i-2ifn2 rF—
. 2
f(u)=
n; 2
n —3n1
2n, +2n, +3ifn, # ———
2
f(v)=n+j-1 forl1<j<n,-1
nf—?»n1
2n1—|-2n2 ifn2 £
« 2
f(v )=
2 2
n —3n1

. 1
2n, +2n, —lifn, -‘ﬁT

or

2
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-

2
n, 3n1 a

2n, +2n, +3 ifn, # —————a=0,40r6
2
. n12—3n1
f (v, )=42n +2n ifn, #F—
’ 2
nlz—3n—4 nlz—3n—6
2n1+2n2+1 ifn2¢ or +1
2 2
n (n, +1) nf —3n,—a
———+n, ifn, #—————a=0,4016
2 2
2
. n (n +1) n —3n
f'(u) =4 ———"+n, +1ifn, #—
2 2
2 2
n (n +1) n —3n —4 n —3n —6
;-l-nz-l-Zifnz-‘/-' ! ! or— !
2 2 2

fv) - n2(2n1 +n2—1)

2
Clearly (i) f(u;) < f(v) < F(Vnz) < f*(unl) forall1<i<n; -land1<j<n,-l So
f'(u), f(vj) 1 <i<n;and 1<j<n,, areall distinct. (i) f (u), £ (v), f(w),f (unl)’
f(vy,) €@, fv)[1<i<n-11<j<n,1}
It is enough to show that f (u), f (v), f(w).f (u n ) (v n ) are all distinct.

Let A = 2n, + 2n,

.
7\,+21fn2¢nl_—3n1

Thus f (u, )= i 2
7\,+3ifn2-¢nl_—3nl

2

:

A ifnz;tﬂ

f(v,)= i 2
A—1 ifnz:nl_—3nl

2
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2

n 3n. —a
A+3 ifn, #———— a=0,4 or 6
2
2
2
. n. —3n
f(w)=4A+2 ifn, =——+
2
2 2
n —3n—4 n —3n—6
A+1 ifn2= ! or —
2 2

— 2 +5n —n

n,(2n, +n, —1) 2nn, +n, —n 10n, 2

f(v) = =—- 2 =—12 2 Z> ifn,>5
2 2 2

=5n,+ 2n,

=7\,+3n1+27\,+6

8n, -i-4n2 —4

If n,=4,f (v) = =\ +2n;-2 2 A+4 as (ny,n) = (2,4)

2
If n,=3f (v) = 3n,43 = (2n,46) + (n,-3) = A -1 as (n,,n,) = (3,3).

>A+6ifn, =5
f(v)=9 2A+4 ifn, =4
=A—1if (n,n,)=(2,3)

2
n, —3n —a
Asn €<n,n,= — ,a=0o0r4o0r6 —=n,>5.
2

Hence in all the cases, f'(u,,) , f(u,,) , f (W) and f'(v) are all distinct

n (n, +1 nn +n +2n,+4 n_(2n, +n,6 —1
pye D, D e, T2, T 0, G0, T,
2 2 2

As n,;+4 < 2n, for all (n;,n,) # (3,3) , we have n,+3n,+4 < 5n, < n,(n,;+n,)

=f(v)

n + n,+3n,+4 < n,(2n,+n,)

n + n,+2n,+4 < n,(2n,+n,-1)]
if n,> 5, then 5n, < nlz(n1+n2) and if n, < 5, then

nl2 —3n, —a n (n, +1)
n# —————— ,a=04o0r6orand f(u) < ———+ n, +2.
2 2

Thus, in all the cases f*(u) < f*(v). Now it is enough to show that f*(u) = f*( u, ), f( up, ),
f'(w).
n (n, +1)

Now ————+42=2nl+2n,+k=A +k (k=2,3,0) <> 5 + n,+2n, =4n,+ 4n,+2k
2
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2

n —3n —2k
<>n,=
2
2
n (n, +1) n, —3n, —2k
41 in,=A+k(k=23,0) iffn,= ———
2 2
2
n —3n
=A+1ifn =——+
2
2
n —3n —4
=A+4ifn =——"—
‘ 2
f (u)= ,
n —3n —6
=h+sifn = M7
2
nf—3n1—a
=MA+2,A+3if n, =————— a=0,4 0r6
2

So f'(u) #, £( up, 1E( up ), £*(w). in all the cases.
Thus, if (n,,n,) # (2,2),(2,4),(3,3) , f is an injective map and so f is an antimagic labeling

for BT(n,n,), V (n,n,) # (2,2), (3,3) ,(2,4).

3 5 L3
} - S RIS DU
_1:;"__ l'l ;:.2 L2 b j.rz u |.r||_
nd
-
- )
1 - .___‘:__.-
— —_— —————— e
E_F.-"::- - _n.:- e
- T
(i)
3
=] X g
T
T =4
i}

-
_ 3_-:“"-h-_ [E S E I . S
S
b
Figure: 2. 9 Antimagic Labeling for (a) BT (2,2), (b) BT( 3,3) , (c) BT(2,4) and (d)
BT(6,7).

So we assume that (n;,n,) # (2,2),(2,4),(3,3).

Thorem 2.11: Friendship graph C(;) is antimagic for all t > 2.
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Proof:

Let G = C(;)) t > 2, and let V(G) = { v,u,v/ 1< i < t} and E(G) = {wyv, vu, vvy/
i=1,.....t}
The vertex v is common to the t-triangles {v, u, v;},1<i<t. -
Define f: E(G) —{1,2,...,3t} as follows:
For all i=1,2,...,t, f(vv,) = 3i; f(vu,) = 3i-2; f(uv,) = 3i-1.
Then the induced map f an V(G) is obtained as follows :
For all i=1,2,...,t, f (u,) = 6i-3; f (v,) = 6i-1; and f (v ) =t (3t+1).
As t > 2, t (3t+1) > 7t, it follows that f is injective and the map f defines an antimagic

labeling for C(;)

Theorem 2.12: Fan graph F, admits an antimagic labeling, for all positive integers n > 2.
Proof:
Let v,v,.....v, be the path P, and the fan graph F, be obtained from P, by introducing a
new vertex and joining it with every vertex of P, .
So V(G) = {v,v;/ 1< i< n} and E(G) = {vv;, V;v;,,/ 1 <i<n;1<j<n-1}
Define f: E(G) — {1,2,....,2n-1} as follows :
f(v,v,,,;) =ifor 1 <i < n-1, and
f(vv, =2n-i for 1 <i<n.

Then the induced map f is given by

f (v;) = 2n+i-1 fori== 1,2,...,n-1
f (u,) =2n-1
n(3n —1)

fv)=—"-.

2

n(3n —1)
Asn=2, f (v)=—23n-1>f (v), foralli=12,....,n-1.
2

So f induces an antimagic labeling for F (n = 2).

™,

",
(]

Ghudds

1
5 [ r
({a) (b

Figure 2.10 antimagic labeling for (a) C®, and (b) F
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A graph G is said to be a Lantern if it has two adjacent vertices u and v such that all the

other vertices of G are adjacent to both u and v and G has no other edges . In fact G =

K, +K_n, for some (n > 2).

Theorem 2.13: Lantern G = K, + K , (n=>=2),is antimagic .

Proof: Let G = K, +K_n, (n=2).
Let V(G) ={uv,y, /1<i<n}and E(G) ={uv,uy, vy;/i=1<i<n}.
Define f: E(G) —{1,2,...,2n+1 } as follows:

f(uw,) = 2i-1; f(vu;) = 2i; for 1< i < n and f(uv) = 2n+1.
Then the mapping f on V(G) is obtained as follows :
f (u,) = 4i-1 for 1<i<n;f (u) = n*and f (u) = n*+ n.

Clearly f is injective if n =2 or 3. If n > 4, then n’+ n > n>> 4n-1 and hence f is

injective in all the cases. Thus, f defines an antimagic for K, + K , for n = 2.

Figure 2.11 : an antimagic labeling for K, + K_5

A triangular snake is obtained from a path P, uu, u,(n 23), by introducing new

vertices v, v, v, and joining v, ,(1< i <n-1), with the vertices u; and u,,;,

Theorem 2.14: Every triangular snake is antimagic.
Proof:
Let G be the triangular snake obtained from the path P,.

Let V(G)={uy/1<i<n;1<j<n-1}and E(G) = {uyu,, uv,u,,u;/i=1<i<n-1}
Define f: E(G) —{1,2,...,3n-3 } as follows:

f(u,v,) =i

fori =1,2,..,n—1
f(u,,v,)=n+i—1

2n if n is odd
fluu,)= o
2n—1if n is even
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2n—1 if nis odd
fu,u,)= .
2n if n is even

f(wu,,) =2n+@{-2)for3<i<n-1.
The induced map f* is obtained as f (v,) = n+i for 1 <i < n-1.

2n if n is even

£ (u)= o
2n+1if nis odd
f (u,) =5n+1
) 5n+5 if n is even
f(u)=

3

5n+4 if nis odd

f () = 5n+4i-7 for4<i<n-1.
f (u,) = 5n-5.

Clearly, { is injective and f is an antimagic labeling for G.

Figure 2.12 : An antimagic labeling for a triangular snake ,(n is even ).

Theorem2.15: Let {u; v, w;u;, 1< i < n} be a collection of n disjoint triangles . Let G be the
graph obtained by joining w;to u,,, 1< i < n-1 and joining u;to u;,; and v;,; 1<i < n-1. Then
the graph G is antimagic .

Proof: The order and size of G are 3n and 6n-3 respectively.

Assume that n > 3. Define f: E(G) —{1,2,...,6n-3 } as follows:

-

n+l n+4
i ifi # s
3 3
n+1
fluv)=qitlifi=——
3
n+4
i—1ifi=
3
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f(v,w,)=n+i
fori =1,2,...,n
f(u,w,)=2n+i

f(uv,,)=3n+i
f(wu, )=4n+i—1 for1<i<n—1
f(uu,)=5n+i—2

Then the induced map f an V(G) is obtained as:
f(v)=n+2; f(v,)=7n-1

n+1 nt+4
an+3i—1 for 2<i<n—1buti # ,
3 3
. n+1
f (v,)=94n+3i ifi=
3
n+4
4n+3i—2ifi=
3
f(u,) = 10n+2; *(u,) = 15n-5.
n+l nt+4
19n+6i—7 for 2<i<n—1buti # ,
3 3
. n+1
f(v)=<19n+6i—6 ifi=
3
n+4
19n+6i—8 ifi=
3

) 7n+3i—1for1<i<n—1
f(w,)=
5nifi=n

The map f is an antimagic labeling for G.

Figure 2.13: An antimagic labelling for G (Theorem 2.15) when n = 8.
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