International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 3, No. 1, January – March 2012, pp. 23 - 41

Antimagic Labelings of Graphs

N. Sridharan¹ and R. Umarani²

1 Department of Mathematics, Alagappa University, Karaikudi

2 umaprinci@yahoo.com

Abstract: Hartsfield and Ringel [1] introduced antimagic labeling. In this paper, we investigate the antimagic labeling of $C_n \nO_n$ *for* $n \geq 3$; $K_2 \nO_n$ *for* $n \geq 3$; C_a^* *for* $n \geq 3$; $S_a C_a^*$; the *generalized Peterson graph P(n,k); gear graphs ; Helm H_n for all* n ≥ 3 *; flower F_n for* n ≥ 3 *; shell graph H(n,n-3) for* $n \geq 4$ *; Banana tree BT (n₁,n₂) for all* $2 \leq n \leq n$ *, i friendship graph* $C_3^{(t)}$ for all $t \geq 2$; fan graph F_n for all $n \geq 2$; Lantern $K_2 + \overline{K_n}$ (for $n \geq 2$) and triangular *snakes.*

1. Introduction

Kotzig and Rosa [3] defined a magic labeling of a graph $G(V,E)$ as a bijection f from $V \cup E$ to $\{1,2,..., |V \cup E|\}$ such that for all edge xy, $f(x) + f(y) + f(xy)$ is constant.

They proved that (1) $k_{m,n}$ has a magic labeling for all m,n. (2) C_n has a magic labeling for all $n \geq 3$. (3) nP₂ has a magic labeling if and only if n is odd. (4) K_n has a magic labeling if and only if $n = 1,2,3,4,5$ and 6. Balakrishnan and Sampath Kumar [4] proved that the join of K_n and two disjoint copies of K_2 is magic if and only if $n = 3$. Hartsfield and Ringel [1] introduced antimagic graphs. A graph with q edges is called antimagic if its edges can be labeled with 1,2, …….q. so that the sum of the labels of the edges incident to each vertex are distinct. Paths P_n (n \geq 3) cycles C_n and K_n (n \geq 3)are antimagic. Hartsfield and Ringel Conjectured that every tree except P_2 is antimagic. . For an extensive survey on graph labeling we refer to Gallian[2].

In this paper, we investigate the antimagic labeling of C_n \odot P_3 for n ≥ 3 ; K₂ \odot C_n for $n \geq 3$; C_n^+ for $n \geq 3$; $S_1 C_n^+$; the generalized Peterson graph P(n,k); gear graphs; Helm H_n for all $n \geq 3$; flower F_n for $n \geq 3$; shell graph H(n,n-3) for $n \geq 4$; Banana tree BT (n_1,n_2) for all $2 \le n_1 \le n_2$; friendship graph $C_3^{(t)}$ for all $t \ge 2$; fan graph F_n for all $n \geq 2$; Lantern K, $+\overline{K_n}$ (for $n \geq 2$) and triangular snakes.

2. Main Results

Let C_n be the cycle with n vertices and P_3 be the path on 3 vertices. We obtain C_n [⊙] P₃ from C_n and n copies of P₃ by joining ith vertex of C_n to every vertex of ith copy

Received: 18 November, 2011; Revised: 12 February, 2012; Accepted: 08 March, 2012

of P_3 . C_n \odot P_3 has 4n vertices and 6n edges. In the following theorem, we prove that C_n \odot P_3 is antimagic.

Theorem 2.1 : The graph C_n \odot P_3 is antimagic, for all $n \geq 3$.

Proof: Let
$$
G = C_n \odot P_3
$$
;
\n
$$
V(G) = \{v_1, a_1, b_1, c_1 / 1 \le i \le n\} \text{ and}
$$
\n
$$
E(G) = \{a_1b_1, b_1c_1, v_1a_1, v_1b_1, v_1c_1 / 1 \le i \le n\}
$$
\n
$$
\cup \{v_n v_1, v_1 v_{i+1} / 1 \le i \le n-1\}
$$
\nWe define $f : E(G) \rightarrow \{1, 2, ..., 6n\}$ as follows :
\n
$$
f(v_i v_{i+1}) = 6n - i + 1, \text{ if } i = 1, 2, ..., n-1
$$
\n
$$
f(v_n v_1) = 5n + 1; \text{ and for all } i, 1 \le i \le n,
$$
\n
$$
f(v_i a_i) = i, f(v_i b_i) = 2n + i, f(v_i c_i) = n + i, f(a_i b_i) = 3n + i \text{ and } f(b_i c_i) = 4n + i,
$$
\nThe induced map $f^* \text{ on } V$ is given by
\n
$$
f^*(a_i) = 3n + 2i
$$
\n
$$
f^*(b_i) = 9n + 3i
$$
\nfor all $1 \le i \le n$
\n
$$
f^*(c_i) = 5n + 2i
$$
\n
$$
f^*(v_i) = 15n + i + 3 \text{ for all } 2 \le i \le n \text{ and } f^*(v_1) = 14n + 4.
$$
\nAs $3n + 2i < 5n + 2i < 9n + 3i < 14n + 4 < 15n + i + 3$, for all $i, 1 \le i \le n$, it

follows that f^* is injective and hence f is an antimagic labeling for C_n \odot P_3 . An antimagic labeling for C_9 \odot P_3 is illustrated in figure 2.1. The graph K_2 \odot C_n obtained from K_2 and two copies of C_n by joining ith vertex (i=1,2) of K_2 to each vertex of ith copy of C_n . It can also be obtained from two copies of wheel W_n by joining central vertices of the two copies by an edge.

Figure2.1 An antimagic labeling for C_9 \bigcirc P_3

Theorem 2.2 : The graph G = K_2 \odot C_n is antimagic, for all n \geq 3.

Proof:

Let
$$
V(G) = {u_1, u_2, v_i, w_i / 1 \le i \le n}
$$
 and
\n $E(G) = {u_1u_2, w_nw_1, v_nv_1} \cup {w_iw_{i+1}, v_i v_{i+1} / 1 \le i \le n-1}$
\n $\bigcup {u_iw_i, u_2v_i / 1 \le i \le n}$

We define $f : E(G) \longrightarrow \{1, 2, ... 4_n, 4_{n+1}\}\)$ as follows: $f(w_i w_{i+1}) = i$ for $i = 1,2,...n -1$ $f(w_n w_1) = n$ $f(u, w_i) = 2n - i + 1$ for $i = 1,2,.., n$ $f(v_i, v_{i+1}) = 2n + i$ for $i = 1,2,.., n - 1$ $f(v, v_1) = 3n$ $f(u, v_i) = 4n - i + 1$ for $i = 1,2,.., n$ $f(u, u, u) = 4n + 1$. The induced map f^* on $V(G)$ is obtained as follows : $f^*(w_i) = 2n + i$ for $2 \le i \le n$ $f^{*}(w_{1}) = 3n + 1;$ $f^{*}(v_{1}) = 9n + 1$ $f^*(v_i) = 8n + i$, for $2 \le i \le n$ 2 and $f^*(u_2) = \frac{7n^2 + n}{ }$ 2 $f'(u_1) = \frac{3n^2 + n}{2}$ and $f''(u_2) = \frac{7n^2}{2}$ 2 $f'(u_1) = \frac{3n^2 + n}{2}$ and $f'(u_2) = \frac{7n^2 + n}{2}$ $9n + 3$ 2 $18n + n$ 2 If $n \ge 6$, $f'(u_1) = \frac{3n^2 + n}{2}$ $\geq 6, f'(u_1) = \frac{3n^2 + n}{2} \geq \frac{18n + n}{2} \geq 9n +$ So if $n \ge 6$, we have $2n + i < 3n + 1 < 8n + i < 9n + 1 <$ 2 $3n^2 + n$ \langle 2 $\frac{7n^2 + n}{n}$, for all i, $1 \le i \le n$ and hence in this case ($n \ge 6$), f^* is injective. If $n = 5$, $f^*(u_1) = 40 \neq f^*(x)$ for all $x \neq u_1 \in V(G)$ and $f^*(u_2) \geq 18n$. If n = 4, $f^*(u_1) = 26 \neq f^*(x)$ for all $x \neq u_1 \in V(G)$, and $f^*(u_2) = 58 > 37 = 9n + 1.$ If $n = 3$, $f^*(u_1) = 15 = 5n \neq f^*(x)$ for all $x \neq u_1 \in V(G)$, and $f^*(u_2) > 10n$. Thus in all the cases, f^* is injective and hence *f* is an antimagic labeling for $K_2 \odot C_n$. An antimagic labeling for K₂ \odot C₇ is illustrated in the figure 2.2

Figure 2.2 An antimagic labeling for K_2 \odot C_7

Theorem 2.3 : The graph C_n^+ is antimagic, for all $n \ge 3$. **Proof :**

Let $V_1 V_2 ... V_n V_1$ be the cycle C_{n} , and let u_i be the pendant vertex attached to the vertex v_i , for all i, $1 \le i \le n$.

Define $f: E(G) \longrightarrow \{1, 2, ..., 2n\}$ as follows:

$$
f(u_i v_i) = i
$$
 for all $1 \le i \le n$; $f(u_i v_{i+1}) = 2n - i + 1$ for all $1 \le i \le n - 1$, and
 $f(u_i v_n) = n + 1$.

The induced map f^* on $V(G)$ is obtained as follows:

 $f^*(u_i) = i$ for all $i, 1 \le i \le n$; $f^*(v_1) = 3n + 2$ and $f^*(v_1) = 4n - i + 3$, for all $2 \le i \le n$ Clearly \mathbf{f}^\star is injective and hence is an antimagic labeling for $\boldsymbol{C}_{_{\mathrm{m}}}^{^{+}}$.

Figure 2.3 Antimagic labeling for C_{μ}^{\dagger}

Theorem 2.4 : The graph $s_1(C_n^+)$, obtained from C_{\square}^* by subdividing each edge of C_{\square}^* once, is antimagic.

Proof : Let $u_1u_2...u_n$ be the cycle C_n and $V_1, V_2, ..., V_n$ be the pendant vertices of C_i^* , u_i being adjacent to u_i . Subdivide the edge u_i u_{i+1} by introducing a new vertex y_i (for i

1≤i≤n-1), the edge u_1u_n by introducing a new vertex. y_n , and the edge $u_i v_{i}$, (1≤i≤n), by introducing a new vertex x_i . Let the resulting graph $S_1(C_n^+)$ be G.

Define f : $E(G) \longrightarrow \{1, 2, ..., 4n\}$ as follows : $f(x_i v_i) = i$, for $1 \le i \le n$ $f(u_i x_i) = n + i$, for $1 \le i \le n$ $f(u_1 y_n) = 3n$ $f(y_{i-1}u_i) = 3n - i + 1$, for $2 \le i \le n$ $f(u_i y_i) = 4n - i$, for $1 \le i \le n - 1$ $f(u_n y_n) = 4n$

The induced map \mathbf{f}^{\star} is obtained as follows:

$$
f^{*}(v_{i}) = i
$$

\n
$$
f^{*}(x_{i}) = n + 2i
$$

\n
$$
f^{*}(u_{i}) = 8n - i + 1
$$

\n
$$
f^{*}(y_{i}) = 7n - 2i
$$

\n
$$
f^{*}(y_{n}) = 7n \text{ and } f^{*}(u_{n}) = 8n + 1.
$$

As $i < n + 2j < 7n-2k < 7n < 8n-s+1 < 8n+1$, for all $1 \le i, j \le n; 1 \le k,s \le n-1$, it follows that f^* is injective.

Thus f is an antimagic labeling for $S_1(C_n^+)$.

An antimagic labeling for $S_1(C_9^+)$ is illustrated in Figure 2.4.

Figure 2.4: An antimagic labeling for $S_1(C_g^+)$.

28 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Theorem 2.5: Let $n \ge 5$ be a prime and $k \ge 2$ be a positive integers such that $k <$ 2 n . The generalized Peterson graph P(n, k) is antimagic , for all prime n.

Proof:

Let $G = P(n, k)$ be the generalized Peterson graph.

Let $V(G) = \{v_i, u_i \mid 0 \le i \le n-1 \}$ and let $E(G) = \{u_i \, v_i \, ; \, v_i v_{i+1}, \, u_i u_{i+k} \mid 0 \le i \le n-1 \}$. (for suffixes, the addition i+k is under addition modulo n). As n and K are prime to each other, gcd(n, k) = 1 and k is a generator for the group Z_n . Hence each i = m_i k, for some unique integer m_i (0≤ m_i ≤n-1) in the group Z_n . It is clear that if $i \neq j$, then $m_i \neq m_j$ $(0≤ i, j≤ n-1).$

Define f: $E(G) \rightarrow \{1,2,...,3n\}$ as follows :

 $f(v_i v_{i+1}) = i+1$ for $0 \le i \le n-2$; $f(v_{n-1}v_0) = n$; $f(v_i u_i) = 2n-i$ for $0 \le i \le n-1$ $f(u_i u_{i+k}) = 3n-m_i$ for $0 \le i \le n-1$

Clearly, $i+1 \le n \le 2n-j \le 3n-s$ for all $0 \le i \le n-2$; $0 \le j,s \le n-1$ and hence the map f is bijective .

The induced map \boldsymbol{f} is obtained as follows:

 $f'(v_i) = 2n + i + 1$ for $1 \le i \le n-1$; $f'(v_0) = 3n+1$; $f'(u_0) = 7n+1$ and $f'(u_i) = 8n-2m_i - i + 1$ for $1 \leq i \leq n-1$.

As $f^*(v_i) < 4n < f^*(u_j)$ for all $0 \le i, j \le n-1$, $f^*(v_i) \ne f^*(v_j)$. Now if $1 \le i \le n-1$, $f^*(u_i) = f^*(u_j)$

$$
\Rightarrow 8n - 2m_i - i + 1 = 8n - 2m_j - j + 1
$$

$$
\Rightarrow 2m_i + i = 2m_i + j
$$

$$
\Rightarrow 2(m_i - m_j) + (i-j) = 0
$$

$$
\Rightarrow 2(m_i - m_j) + (m_i - m_j) k = 0 \text{ (mod n)}
$$

$$
\Rightarrow (k+2) (m_i - m_j) = 0 \text{ (mod n)}
$$

$$
\Rightarrow \text{either } m_i - m_j = 0 \text{ or } n \text{ divides } k+2,
$$

(as n is prime)

$$
\Rightarrow m_i = m_j \text{ as } k+2 < n
$$

$$
\Rightarrow i = j
$$

Figure 2.5 : An antimagic labeling for P (11,4).

 Remark : The antimagic labeling f defined in the theorem 2.5 also is an antimagic labeling for P (n,k) , Where $k <$ 2 n and both k and k+2 are prime to n. (The integer n need not be a prime).

Thorem 2.6: Every gear graph is antimagic . **Proof:**

Let G be the gear graph obtained from a Wheel W_n by subdividing each edge on the cycle C_n once. Let $V(G) = \{v, v_i, u_i \mid 1 \le i \le n\}$. ($n \ge 3$) and let $E(G) = \{vu_{i}, v_{i}u_{i} \mid 1 \leq i \leq n\}$. $\bigcup \{u_{i}v_{i+1}, u_{n}v_{i} \mid 1 \leq i \leq n-1\}$. Define f: $E(G) \rightarrow \{ 1, 2, ..., 3n \}$ as follows : $f(v_i u_i) = i$ for $1 \le i \le n$ $f(u_i v_{i+1}) = n + i$ for $1 \le i \le n - 1$ $f(u_n v_1) = 2n$ $f(v v_i) = 3n - i + 1$ for $1 \le i \le n$ The induced map f on $V(G)$ is obtained as $f^*(u_i) = n+2i$ for $1 \le i \le n$ $f^*(v_i) = 4n + i$ for $2 \le i \le n$ $f^*(v_1) = 5n+1$ $f^*(v) =$ 2 $n(5n + 1)$

As
$$
n+2i < 4n +j < 5n+1 < \frac{n(5n+1)}{2}
$$
 for all $1 \le i \le n$; $2 \le j \le n$ (as $n \ge 3$),

The map f is injective and hence f is an antimagic labeling for G. Figure 2.6 illustrates an antimagic labeling for the gear graph G_{12}

Figure 2.6 : An antimagic labeling for the gear graph G_{12} .

The helm H_n the graph obtained from the Wheel W_n, (n \geq 3), by attaching a pendant edge at vertex of the n cycle of W_n . (H_n can also be obtained from C⁺ by joining all the vertices of C with degree 3 to a new vertex v).

Thorem 2.7: Helm H_n is antimagic, for all $n \ge 3$. **Proof:**

Let G =H_n and let n≥ 4. Let V(G) = {v,v_{i,}u_i | 1≤ i ≤ n }and

let $E(G) = \{v \, v_i, v_i \, u_i, v_n \, v_i / 1 \leq i \leq n \}$. $\cup \{v_i v_{i+1} | 1 \leq i \leq n-1\}$

G-v is the graph C_n^+ Let f be the antimagic labeling for C_n^+ as defined in the proof of the Theorem 2.3. Now we extend that map f to $E(G)$, by defining $f(vv_i) = 3n-i+2$, $2 \le i \le n$ and $f(vv_1) = 2n+1$

The induced map f on $V(G)$ is given by

f (u_i) = i
\nf (u_{n-i+1}) = 5n + 3 + 2i
\n
\nf * (v) =
$$
\frac{n(5n + 1)}{2}
$$
 for $1 \le i \le n$
\nAs $n \ge 4$,
$$
\frac{n(5n + 1)}{2} \ge 10n + 2 > 5n + 3 + 2i
$$
 for $1 \le i \le n$.

Hence f is injective and H_n , (n≥ 4) , is antimagic .

The helm H_3 is also antimagic, an antimagic labeling for H_3 is exhibited in the Figure 2.7 (a).

A flower F_n is the graph obtained from the helm H_n by joining each pendent vertex of H_n to the centrel vertex of H_n .

Thorem 2.8 : For $n \ge 3$, flower F_n is antimagic. **Proof :**

Let $G = F_n$, $V(G) = \{v, v_{i}, u_i / 1 \le i \le n\}$ and let $E(G) = \{vv_i, vu_{i}, v_iu_i / 1 \le i \le n\}$ ${v_n v_1, v_i v_{i+1} / 1 \le i \le n-1}$

Define f: $E(G) \rightarrow \{ 1, 2, ..., 4n \}$ as follows :

 $f(u_iv_j) = i$ for all $1 \le i \le n$; $f(v_iv_{i+1}) = 2n-i+1$, for all $1 \le i \le n-1$; $f(v_iv_n) = n+1$

 $f(vv_i) = 3n - i + 2$ for $2 \le i \le n$; $f(vv_i) = 2n + 1$; $f(vu_i)$ for all $1 \le i \le n$.

(The map f is an extension of the antimagic labeling for H_m , defined in the proof of the Theorem 2.7)

The induced map f on $V(G)$ is given by :

 $f^*(u_i) = 3n+2i$ for $1 \le i \le n$; $f^*(v_i) = 7n-2i+5$ for $2 \le i \le n-1$; $f^*(v_i) = 5n+3$, $f^*(v) = (6n+1)$

As $3n + 2i < 5n + 3 < 7n - 2j + 5 < (6n + 1)$ n, for all $n \ge 3$

 $1 \le i \le n$ and $2 \le j \le n$ -1, the map f^{*} is injective. So the flower F_n (n ≥ 3), is antimagic

Figure 2.7 (a) An antimagic labeling for H₃ and (b) An antimagic labeling for H₉

The shell graph of order n, $n \geq 4$, denoted by $H(n, n-3)$ is obtained from the cycle C_n of order n by adding (n-3) chords incident with a common vertex.

Theorem 2.9 : For every $n \ge 4$, the shell graph $H(n, n-3)$ is antimagic. **Proof :**

Let G = H(n,n-3). We assume that $n \ge 6$, (An antimagic labelings for H(4,1) and H(5,2) are shown in figure 2.8)

Let $V(G) = \{ v_i \mid 1 \le i \le n \}$ and $E(G) = \{ v_1 v_i \mid 2 \le i \le n \} \cup \{ v_{i+1} v_i \mid 2 \le i \le n-1 \}$

Define $f: E(G) \longrightarrow \{ 1, 2, ..., 2n-3 \}$ as follows :

 $f(v_1 v_i) = n - i$ for $3 \le i \le n - 1$; $f(v_1 v_{i+1}) = n - 3 + i$ for $1 \le i \le n$ -1and $f(v_n v_1) = 2n - 3$. The induced map f on $V(G)$ is given by

$$
f^{'}(v_1) = \frac{n^2 + n - 4}{2}
$$
; $f^{'}(v_2) = 2n - 3$; $f^{'}(v_i) = 3n + i - 7$ for $3 \le i \le n - 1$ and $f^{'}(v_n) = 4n - 7$

For some i, $3 \le i \le n - 1$, $f'(v_i) = f'(v_n) \implies 3n + i - 7 = 4n - 7 \implies i = n$, which is a contradiction.

We have $f'(v_i) \neq f'(v_n)$ for all $2 \leq i \leq n$ -1. If $n \geq 6$, 2 $\frac{n^2 - 5n + 10}{n \ge n}$, it follows that $f'(v_i)$ $\neq f'(v_1)$

for all i, $2 \le i \le n - 1$. Also as $n \ge 6$, 2 $\frac{n^2 + n - 4}{n} \neq 4n - 7.$

Thus if $n \ge 6$, $f'(v_1),... f'(v_n)$ are all distinct and hence f is an antimagic labeling for $H(n, n-3)$, $\forall n \ge 6$.

Figure 2.8 Antimagic labeling for H(4,1), H(5,2),and H(10,7).

 $BT(n_1,n_2)$ is the tree obtained by joining a new vertex w to one pendant vertex of each stars k_{1,n_i} and k_{1,n_i} . $BT(n_1,n_2)$ is called a banana tree.

Theorem 2.10 : Banana tree $BT(n_1,n_2)$ admits an antimagic labeling for all $2 \le n_1 \le n_2$. **Proof :**

Let $V(G) = \{ v, u, w, u_i, v_j \mid 1 \leq i \leq n_1; 1 \leq i \leq n_2 \}$ and $E(G) = \{ u u_i \mid 1 \le i \le n \} \cup \{ v v_j \mid 1 \le j \le n_2 \} \cup \{ w u_{n_1}, w u_{n_2} \}$ Define f : $E(G) \rightarrow \{ 1, 2, \ldots, n_1 + n_2 + 2 \}$ as follows : $f(u u_i) = i$ for $1 \le i \le n_1 - 1$; f(v v_j) = n₁ + j − 1 for1≤i≤n₂

$$
f(uu_{n_1}) = \begin{cases} n_1 + n_2 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1 - a}{2} \\ n_1 + n_2 + 1 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ n_1 + n_2 + 2 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1 - 4}{2}, \quad \text{or } \frac{n_1^2 - 3n_1 - 6}{2} \end{cases}
$$

$$
f(wu_{n_1}) = \begin{cases} n_1 + n_2 + 1 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1 - 6}{2} \\ n_1 + n_2 & \text{if } n_2 \neq \frac{n_1^2 - 3n_1 - 4}{2}, \quad \text{or } \frac{n_1^2 - 3n_1 - 6}{2} \\ 2 \end{cases}
$$

$$
f(wu_{n_2}) = \begin{cases} n_1 + n_2 + 1 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ n_1 + n_2 & \text{if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \end{cases}
$$

The induced map f on $V(G)$ is given by $f'(u_i) = i$ for $1 \le i \le n_1$

$$
f^{*}(u_{n_{1}}) = \begin{cases} 2n_{1} + 2n_{2} + 2if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ 2n_{1} + 2n_{2} + 3if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \end{cases}
$$

$$
f'(v_j) = n_1 + j - 1
$$
 for $1 \le j \le n_2 - 1$

$$
f^{*}(v_{n_{2}}) = \begin{cases} 2n_{1} + 2n_{2} & \text{if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ 2n_{1} + 2n_{2} - 1 & \text{if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \end{cases}
$$

$$
f^{*}(v_{n_{2}}) = \begin{cases} 2n_{1} + 2n_{2} + 3 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} \text{ a = 0,4or } 6 \\ 2n_{1} + 2n_{2} \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ 2n_{1} + 2n_{2} + 1 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n - 4}{2} \text{ or } \frac{n_{1}^{2} - 3n - 6}{2} + 1 \\ 2n_{1} + 2n_{2} + 1 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} \text{ a = 0,4or } 6 \\ f^{*}(u) = \begin{cases} \frac{n_{1}(n_{1} + 1)}{2} + n_{2} \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ \frac{n_{1}(n_{1} + 1)}{2} + n_{2} + 1 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 4}{2} \end{cases} \text{ or } \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ f(v) = \frac{n_{2}(2n_{1} + n_{2} - 1)}{2} \end{cases}
$$

Clearly (i) $f'(u_i) < f'(v_j) < f'(v_{n_2}) < f''(u_{n_1})$ for all $1 \le i \le n_1 - 1$ and $1 \le j \le n_2 - 1$. So $f'(u_i)$, $f'(v_j)$ 1 \leq i \leq n_1 and 1 \leq j \leq n_2 , are all distinct. (ii) $f'(u)$, $f'(v)$, $f'(w)$, $f(u_{n_1})$, $f(v_{n_2}) \notin \{ f(u_i), f(v_j) \mid 1 \le i \le n_1-1, 1 \le j \le n_2-1 \}.$

It is enough to show that f' (u), f' (v), f'(w),f' (u_{n_1}),f' (v_{n_2}) are all distinct.

Let
$$
\lambda = 2n_1 + 2n_2
$$
.
\nThus $f'(u_{n_1}) = \begin{cases} \lambda + 2 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ \lambda + 3 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \end{cases}$
\n $f'(v_{n_2}) = \begin{cases} \lambda & \text{if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ \lambda - 1 & \text{if } n_2 = \frac{n_1^2 - 3n_1}{2} \end{cases}$

$$
f'(w) = \begin{cases} \lambda + 3 & \text{if } n_2 \neq \frac{n_1^2 - 3n_1 - a}{2} & a = 0, 4 \text{ or } 6\\ \lambda + 2 & \text{if } n_2 = \frac{n_1^2 - 3n_1}{2} \\ \lambda + 1 & \text{if } n_2 = \frac{n_1^2 - 3n - 4}{2} & \text{or } \frac{n_1^2 - 3n - 6}{2} \end{cases}
$$

$$
f'(v) = \frac{n_2(2n_1 + n_2 - 1)}{2} = \frac{2n_1n_2 + n_2^2 - n_2}{2} \ge \frac{10n_1 + 5n_2 - n_2}{2}
$$
 if $n_2 \ge 5$
= $5n_1 + 2n_2$
= $\lambda + 3n_1 + \ge \lambda + 6$

If
$$
n_2 = 4
$$
, $f'(v) = \frac{8n_1 + 4n_2 - 4}{2} = \lambda + 2n_1 - 2 \ge \lambda + 4$ as $(n_1, n) \ne (2, 4)$

If $n_2 = 3$ f' (v) = $3n_1 + 3 = (2n_1 + 6) + (n_1 - 3) = \lambda - 1$ as $(n_1, n_2) \neq (3, 3)$.

$$
f'(v) = \begin{cases} \n\geq \lambda + 6 & \text{if } n_2 \geq 5 \\ \n\geq \lambda + 4 & \text{if } n_2 = 4 \\ \n= \lambda - 1 & \text{if } (n_1, n_2) = (2, 3) \n\end{cases}
$$
\n
$$
\text{As } n_1 \leq n_2, n_2 = \frac{n_1^2 - 3n_1 - a}{2}, a = 0 \text{ or } 4 \text{ or } 6 \implies n_1 \geq 5.
$$

Hence in all the cases, $f(u_{n1})$, $f'(u_{n2})$, $f'(w)$ and $f'(v)$ are all distinct

$$
f^{*}(u) \leq \frac{n_{1}(n_{1} + 1)}{2} + n_{2} + 2 = \frac{n_{1}n_{1} + n_{1} + 2n_{2} + 4}{2} \leq \frac{n_{2}(2n_{1} + n_{2} - 1)}{2} = f'(v)
$$

As $n_{1} + 4 \leq 2n_{2}$ for all $(n_{1}, n_{2}) \neq (3, 3)$, we have $n_{1} + 3n_{2} + 4 \leq 5n_{2} \leq n_{2}(n_{1} + n_{2})$
 $n_{i}^{2} + n_{1} + 3n_{2} + 4 \leq n_{2}(2n_{1} + n_{2})$
 $n_{i}^{2} + n_{1} + 2n_{2} + 4 \leq n_{2}(2n_{1} + n_{2} - 1)$
if $n_{2} \geq 5$, then $5n_{2} \leq n_{2}^{1}(n_{1} + n_{2})$ and if $n_{2} < 5$, then

$$
n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2}, \quad a = 0, 4 \text{ or } 6 \text{ or and } f^{*}(u) \leq \frac{n_{1}(n_{1} + 1)}{2} + n_{2} + 2.
$$

Thus, in all the cases $f^*(u) < f^*(v)$. Now it is enough to show that $f^*(u) \neq f^*(u_{n_1})$, $f(u_{n_2})$, $f'(w)$.

Now
$$
\frac{n_1(n_1 + 1)}{2} + 2 = 2n_1 + 2n_2 + k = \lambda + k (k = 2, 3, 0) \iff n_1^2 + n_1 + 2n_2 = 4n_1 + 4n_2 + 2k
$$

$$
\Leftrightarrow n_{2} = \frac{n_{1}^{2} - 3n_{1} - 2k}{2}
$$
\n
$$
\frac{n_{1}(n_{1} + 1)}{2} + n_{2} = \lambda + k (k = 2, 3, 0) \text{ iff } n_{2} = \frac{n_{1}^{2} - 3n_{1} - 2k}{2}
$$
\n
$$
\begin{bmatrix}\n= \lambda + 1 \text{ if } n_{2} = \frac{n_{1}^{2} - 3n_{1}}{2} \\
= \lambda + 4 \text{ if } n_{2} = \frac{n_{1}^{2} - 3n_{1} - 4}{2} \\
= \lambda + 5 \text{ if } n_{2} = \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\
= \lambda, \lambda + 2, \lambda + 3 \text{ if } n_{2} = \frac{n_{1}^{2} - 3n_{1} - a}{2} \text{ a = 0, 4 or 6}\n\end{bmatrix}
$$

So $f'(u) \neq f'(u_{n_1})$, $f'(u_{n_2})$, $f^*(w)$. in all the cases.

Thus, if $(n_1,n_2) \neq (2,2),(2,4),(3,3)$, f^{*} is an injective map and so f is an antimagic labeling for BT(n_1, n_2), \forall (n_1, n_2) \neq (2,2), (3,3), (2,4).

Figure: 2. 9 Antimagic Labeling for (a) BT (2,2), (b) BT(3,3) , (c) BT(2,4) and (d) BT(6,7).

So we assume that $(n_1, n_2) \neq (2,2), (2,4), (3,3)$.

Thorem 2.11: Friendship graph $C_3^{(t)}$ is antimagic for all $t \ge 2$.

Proof:

Let $G = C_3^{(t)}$, $t \ge 2$, and let $V(G) = \{ v, u_i, v_i / 1 \le i \le t \}$ and $E(G) = \{ u_i v_i, v u_i, v v_i / 1 \le i \le t \}$ i=1,….,t}. The vertex v is common to the t-triangles $\{v, u_i, v_i\}$, $1 \le i \le t$. Define $f : E(G) \longrightarrow \{1, 2, ..., 3t\}$ as follows: For all $i=1,2,...,t$, $f(vv_i) = 3i$; $f(vu_i) = 3i-2$; $f(u_iv_i) = 3i-1$. Then the induced map f^* an $V(G)$ is obtained as follows : For all i=1,2,...,t, $f'(u_i) = 6i-3$; $f'(v_i) = 6i-1$; and $f'(v) = t(3t+1)$. As t \geq 2, t (3t+1) \geq 7t, it follows that f^{*} is injective and the map f[†] defines an antimagic labeling for $C_3^{(t)}$

Theorem 2.12: Fan graph F_n admits an antimagic labeling, for all positive integers $n \ge 2$. **Proof:**

Let $v_1v_2....v_n$ be the path P_n and the fan graph F_n be obtained from P_n by introducing a new vertex and joining it with every vertex of P_n .

So
$$
V(G) = \{v, v_i / 1 \le i \le n\}
$$
 and $E(G) = \{vv_i, v_j v_{j+1} / 1 \le i \le n; 1 \le j \le n-1\}$.

Define f: $E(G) \rightarrow \{1, 2, ..., 2n-1\}$ as follows :

 $f(v_i v_{i+1}) = i$ for $1 \le i \le n-1$, and

 $f(vv_{i}) = 2n-i$ for $1 \le i \le n$.

Then the induced map $\mathbf f^*$ is given by $f'(v_i)$ for $i = 1, 2, ..., n-1$

$$
f'(u_n) = 2n-1
$$

$$
f'(v) = \frac{n(3n-1)}{2}.
$$

As $n \ge 2$, $f'(v) =$ 2 $n(3n - 1)$ $\geq 3n-1$ > f^{*} (v_i), for all i = 1,2,....,n-1.

So f induces an antimagic labeling for $F_n(n \ge 2)$.

Figure 2.10 antimagic labeling for (a) $C^{(5)}$ ₃ and (b) F_8

A graph G is said to be a Lantern if it has two adjacent vertices u and v such that all the other vertices of G are adjacent to both u and v and G has no other edges . In fact G = $K_2 + \overline{K_n}$, for some (n ≥ 2).

Theorem 2.13: Lantern $G = K_2 + \overline{K_n}$, ($n \ge 2$), is antimagic.

Proof: Let G = $K_2 + \overline{K_n}$, ($n \ge 2$). Let $V(G) = \{ u, v, u_{i} / 1 \le i \le n \}$ and $E(G) = \{ uv, uu_{i}, vu_{i} / i = 1 \le i \le n \}$. Define $f: E(G) \rightarrow \{1,2,...,2n+1\}$ as follows:

 $f(uu_i) = 2i-1$; $f(vu_i) = 2i$; for $1 \le i \le n$ and $f(uv) = 2n+1$.

Then the mapping f^* on $V(G)$ is obtained as follows :

 $f'(u_i) = 4i-1$ for $1 \le i \le n$; $f'(u) = n^2$ and $f'(u) = n^2 + n$.

 Clearly f* is injective if n = 2 or 3. If $n \ge 4$, then $n^2 + n > n^2 > 4n-1$ and hence f^{*} is injective in all the cases. Thus, f defines an antimagic for $K_2 + \overline{K_n}$, for $n \ge 2$.

Figure 2.11 : an antimagic labeling for $K_2 + K_5$

A triangular snake is obtained from a path P_{n_1} u₁u₂, u_n, (n ≥3), by introducing new vertices $v_1, v_2, \ldots, v_{n-1}$ and joining v_i , (1≤ i ≤n-1), with the vertices u_i and u_{i+1} .

Theorem 2.14: Every triangular snake is antimagic.

Proof:

Let G be the triangular snake obtained from the path P_n .

Let $V(G) = \{ u_{i,} u_{j} / 1 \le i \le n; 1 \le j \le n - 1 \}$ and $E(G) = \{ u_{i} u_{i+1,} u_{i} v_{i}, u_{i+1} u_{i} / i = 1 \le i \le n - 1 \}$. Define $f : E(G) \rightarrow \{1, 2, \ldots, 3n-3\}$ as follows:

$$
f(u_i v_i) = i
$$

\n
$$
f(u_{i+1}, v_i) = n + i - 1
$$
 for i = 1, 2, ..., n - 1
\n
$$
f(u_i u_2) = \begin{cases} 2n & \text{if } n \text{ is odd} \\ 2n - 1 & \text{if } n \text{ is even} \end{cases}
$$

$$
f(u_2u_3) = \begin{cases} 2n-1 & \text{if } n \text{ is odd} \\ 2n & \text{if } n \text{ is even} \end{cases}
$$

$$
f(u_iu_{i+1}) = 2n + (i-2) \text{ for } 3 \le i \le n-1.
$$

The induced map f^{*} is obtained as f

$$
\begin{cases} 2n & \text{if } n \text{ is even} \end{cases}
$$

$$
f^{*}(u_{1}) = \begin{cases} 2n & \text{if } n \text{ is even} \\ 2n+1 & \text{if } n \text{ is odd} \end{cases}
$$

 $f'(u_2) = 5n+1$

$$
f^{*}(u_{3}) = \begin{cases} 5n+5 & \text{if } n \text{ is even} \\ 5n+4 & \text{if } n \text{ is odd} \end{cases}
$$

 $f'(u_i) = 5n+4i-7$ for $4 \le i \le n-1$. $f'(u_n) = 5n-5.$

Clearly, f* is injective and f is an antimagic labeling for G.

 $(v_1) = n+i$ for $1 \le i \le n-1$.

Figure 2.12 : An antimagic labeling for a triangular snake ,(n is even).

Theorem2.15: Let $\{u_{i, v_i} w_i u_i, 1 \le i \le n\}$ be a collection of n disjoint triangles . Let G be the graph obtained by joining w_i to u_{i+1} , $1 \le i \le n-1$ and joining u_i to u_{i+1} and v_{i+1} , $1 \le i \le n-1$. Then the graph G is antimagic .

Proof: The order and size of G are 3n and 6n-3 respectively.

Assume that $n \geq 3$. Define f: E(G) \rightarrow {1,2,...,6n-3 } as follows:

$$
f(u_i v_i) = \begin{cases} i & \text{if } i \neq \frac{n+1}{3}, \frac{n+4}{3} \\ i+1 & \text{if } i = \frac{n+1}{3} \\ i-1 & \text{if } i = \frac{n+4}{3} \end{cases}
$$

 $n + 4$

3 3

$$
f(v_i w_i) = n + i
$$

\n
$$
f(u_i, w_i) = 2n + i
$$

\n
$$
f(u_i v_{i+1}) = 3n + i
$$

\n
$$
f(w_i u_{i+1}) = 4n + i - 1
$$

\n
$$
f(u_i u_{i+1}) = 5n + i - 2
$$

\nThen the induced map f an V(G) is obtained as:
\n
$$
f'(v_1) = n + 2; \quad f'(v_n) = 7n - 1
$$

\n
$$
\begin{cases}\n4n + 3i - 1 \text{ for } 2 \le i \le n - 1 \text{ but } i \neq \frac{n + 1}{3}, \frac{n + 1}{3} \\
4n + 3i - 1 \text{ for } 2 \le i \le n - 1 \text{ but } i \neq \frac{n + 1}{3}, \frac{n + 1}{3} \\
4n + 3i - 1 \text{ for } 2 \le i \le n - 1 \text{ but } i \neq \frac{n + 1}{3}, \frac{n + 1}{3} \\
5n + 1 \text{ for } 2 \le i \le n - 1 \text{ but } i \neq \frac{n + 1}{3}.\n\end{cases}
$$

$$
f^*(v_i) = \begin{cases} 4n + 3i & \text{if } i = \frac{n+1}{3} \\ 4n + 3i - 2 & \text{if } i = \frac{n+4}{3} \end{cases}
$$

 $f'(u_1) = 10n+2$; $f^*(u_n) = 15n-5$.

$$
f^{*}(v_{i}) = \begin{cases} 19n + 6i - 7 \text{ for } 2 \leq i \leq n - 1 \text{ but } i \neq \frac{n+1}{3}, \frac{n+4}{3} \\ 19n + 6i - 6 \text{ if } i = \frac{n+1}{3} \\ 19n + 6i - 8 \text{ if } i = \frac{n+4}{3} \end{cases}
$$

$$
f^{\dagger}(w_i) = \begin{cases} 7n + 3i - 1 \text{ for } 1 \leq i \leq n - 1 \\ 5n \text{ if } i = n \end{cases}
$$

The map f is an antimagic labeling for G.

Figure 2.13: An antimagic labelling for G (Theorem 2.15) when n = 8.

References

- [1] N. Hartsfield and G. Ringel, Pearls in Graph Theory Academic Press, SanDego,1990.
- [2] J.A. Gallian A Dynamic Survey of Graph Labeling, Electronic J.Combinatorics, 5(1998) # DS6, 1 42.
- [3] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull., 13 (1970)451 461.
- [4] R.Balakrishnan and R. Kumar, Eistance and nonexistence of certain labelings for the graph $K_{_n}^c$ $V2K_{_2}$, Utilitas Math. 46(1994) 97 – 102.
- [5] R.Umarani, A Study on graph labelings k-Equitable and strong α labelings, Ph.D. Thesis, 2003.