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Abstract: Hartsfield and Ringel [1] introduced antimagic labeling. In this paper, we investigate the  

antimagic labeling of Cn ☉ P3  for n  3  ; K2 ☉ Cn for n  3  ;
+

nC  for n  3  ; 1 nS C
 ; the 

generalized Peterson graph P(n,k); gear graphs ; Helm Hn for all n  3  ; flower Fn for n  3  ; 
shell graph H(n,n-3) for n 4  ; Banana tree BT (n1,n2) for all 1 22 n n  ; friendship graph 

)t(
3C  for all 2t  ; fan graph Fn for all 2n   ; Lantern n2 K  K    (for 2n  ) and triangular 

snakes. 
 

1. Introduction 
Kotzig and Rosa [3] defined a magic labeling of a graph G(V,E) as a bijection f 

from V E  to } EV,...,2,1 {   such that for all edge xy, f(x) + f(y) +f(xy) is constant. 
They proved that (1) km,n has a magic labeling for all m,n. (2) Cn has a magic 

labeling for all n  3 . (3) nP2 has a magic labeling if and only if n is odd. (4) Kn has a 
magic labeling if and only if   n = 1,2,3,4,5 and 6. Balakrishnan and Sampath Kumar [4] 
proved that the join of Kn and two disjoint copies of K2 is magic if and only if n = 3. 
 Hartsfield and Ringel [1] introduced antimagic graphs. A graph with q edges is called 
antimagic if its edges can be labeled with 1,2, …….q. so that the sum of the labels of the 
edges incident to each vertex are distinct. Paths Pn ( n  3 ) cycles Cn and Kn ( n  3 )are 
antimagic. Hartsfield and Ringel Conjectured that every tree except P2 is antimagic. . For 
an extensive survey on graph labeling we refer to Gallian[2]. 
 

 In this paper,  we investigate the  antimagic labeling of Cn ☉ P3  for n  3  ;  K2 ☉ Cn 

for n  3  ; +

nC  for n  3  ; 1 nS C  ; the generalized Peterson graph P(n,k); gear graphs ; 

Helm Hn for all n  3  ; flower Fn for n  3  ; shell graph H(n,n-3) for n 4  ; Banana 

tree BT (n1,n2) for all 1 22 n n  ; friendship graph  t
3C  for all t 2 ; fan graph Fn for 

all n 2  ; Lantern 2 nK K  (for n 2 ) and triangular snakes. 
 

2. Main Results 
Let Cn be the cycle with n vertices and P3 be the path on 3 vertices. We obtain    

Cn ☉ P3 from Cn and n copies of P3 by joining ith vertex of Cn to every vertex of ith copy 
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of P3 .  Cn ☉ P3 has 4n vertices and 6n edges. In the following theorem, we prove that   

Cn ☉ P3 is antimagic. 

 

Theorem 2.1 : The graph Cn ☉ P3 is antimagic, for all n  3 . 

Proof :   Let G = Cn☉ P3;    

} ni1 / c,b,a, v{       )G(V iiii     and  

} 1-ni1 / vv,v v{                                                               

   } ni1 / cv,bv,av,cb,ba {      )G(E

1ii1n

iiiiiiiiii





 

We define f : E(G) → {1,2,……,6n} as follows :  
1-n1,2,...,  i if ,1in6)vv(f 1ii   

1n5)vv(f 1n  ; and for all i, ni1  ,   

,in4)cb(f and in3)ba(f ,in)cv(f ,in2)bv(f ,i)av(f iiiiiiiiii 
             The induced map f* on V is given by 

ni1 all for 

i2n5)c(*f

i3n9)b(*f

i2n3)a(*f

i

i

i














 

             .4n14)v(*f and  ni2 all for 3in15)v(*f 1i    
              As 3n + 2i < 5n + 2i < 9n + 3i < 14n + 4 < 15n + i + 3, for all i, ni1  , it 

follows that f* is injective and hence f is an antimagic labeling for  Cn ☉ P3. An antimagic 

labeling for   C9 ☉ P3  is illustrated in figure 2.1. The graph K2 ☉ Cn obtained from K2 

and two copies of Cn by joining ith vertex (i=1,2) of K2 to each vertex of  ith copy of Cn. It 
can also be obtained from two copies of wheel Wn by joining central vertices of the two 
copies by an edge. 

 
Figure2.1 An antimagic labeling for C9 ☉ P3  
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Theorem 2.2 : The graph G = K2 ☉ Cn is antimagic, for all n ≥ 3. 

Proof:  

Let } ni1w,v,u,u { )GV( ii21   and 

} ni1 / vu,w{u                                                                               

 } 1-ni1 / vv,ww {    } vv,ww,uu {      )G(E

i2i1

1ii1ii1n1n21


 

 

We define f : E(G) → {1,2,..4n,4n+1} as follows: 

1-1,2,..ni for i  )wf(w 1ii   

n  )w f(w 1n   

n1,2,..,i for     1i-2n  )w f(u i1   

1-n1,2,..,i for      i2n  ) vf(v 1i1   

3n  ) vv(f 1n   

n1,2,..,i for    1i-4n  ) vu(f i2   

14n  )u u(f 21  . 
The induced map f* on V(G) is obtained as follows : 

ni2  for      i2n )w(f i
*   

19n)v(*f     1;3n)w(f 11
*   

ni2 for   i,8n)v(f i
*   

2

n7n
)u(*f and 

2

n3n
)u(f

2

2

2

1
* 




  

39n
2

n18n

2

n3n
)u(f 6,n If

2

1
* 





  

So if n≥6, we have 2n + i < 3n + 1 < 8n + i < 9n+1 < 
2

n3n 2 
 < 

2

n7n 2 
, 

 for all i, 1≤ i ≤n and hence in this case (n ≥ 6), f* is injective. 

If n = 5, f* (u1) = 40 ≠ f* (x) for all x ≠ u1  V(G) and f* (u2) ≥ 18n. 

If n = 4, f* (u1) = 26 ≠ f* (x) for all x ≠ u1  V(G), and 
f* (u2) = 58 > 37 = 9n + 1. 

If n = 3, f* (u1) = 15 = 5n ≠ f* (x) for all x ≠ u1  V(G), and f* (u2) > 10n. 

Thus in all the cases, f* is injective and hence f is an antimagic labeling for K2 ☉ Cn. 

An antimagic labeling for K2 ☉ C7  is illustrated in the figure 2.2 
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Figure 2.2 An antimagic labeling for K2 ☉ C7 

 

Theorem 2.3 : The graph 
nC  is antimagic, for all n ≥ 3. 

Proof :  

Let 1n21 v...v vv  be the cycle Cn, and let ui be the pendant vertex attached to the 
vertex vi, for all i, 1 ≤ i ≤ n. 

Define f : E(G) → {1,2,….,2n} as follows: 
ni1 all for    i  )vu(f ii  ; 1-ni1 all for   1i-2n  )vu(f 1ii  , and 

1n  )vu(f n1  . 
The induced map f* on V(G) is obtained as follows: 

ni1 i, all for   i  )u(f i
*  ; 23n  )v(f 1

*   and ni2 all for 3,i-4n  )v(f 1
*   

Clearly f* is injective and hence is an antimagic labeling for 

n
C . 

 
Figure 2.3 Antimagic labeling for 

12
C  

 

Theorem 2.4 : The graph )(Cs n1
 , obtained from 

n
C  by subdividing each edge of 

n
C   

once, is antimagic. 

Proof :  Let n21 ..uuu  be the cycle Cn and n21 v,...., v,v  be the pendant vertices of 

n
C , 

ui being adjacent to ui. Subdivide the edge ui ui+1 by introducing a new vertex yi (for i 
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1≤i≤n-1), the edge u1un by introducing a new vertex. yn, and the edge ui vi, (1≤i≤n), by 

introducing a new vertex xi. Let the resulting graph )(CS n1
  be G. 

Define f : E(G) → {1,2,…,4n} as follows : 

ni1 for i,)vx(f ii   

ni1 for i,n)xu(f ii   

3n)yu(f n1   

ni2 for 1,i3n)uy(f i1-i   

1-ni1 for i,4n)yu(f ii   

4n)yu(f nn   
The induced map f* is obtained as follows: 

ni1 for
2in)x( f

i)v( f

i
*

i
*









 

1-ni1 for
2i-7n)y( f

1i8n)u( f

i
*

i
*









 

7n)y( f n
*   and  1n8)u( f n

*  . 
As i < n + 2j < 7n-2k < 7n < 8n-s+1 < 8n+1, for all 1≤i, j≤n; 1 ≤ k,s ≤ n-1, it follows that f* 
is injective. 

Thus f is an antimagic labeling for )C(S n1
 .  

An antimagic labeling for )C(S 91
  is illustrated in Figure 2.4. 

 
 
 
 
 
 
 
   
 
 
 
 
 

Figure 2.4: An antimagic labeling for  )C(S 91
 . 
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Theorem 2.5: Let n ≥ 5 be a prime and k ≥ 2 be a  positive integers such that k  
2

n
. The 

generalized Peterson graph P(n, k) is antimagic , for all prime n. 
 
Proof: 

 Let G =  P (n, k) be the generalized Peterson graph. 
Let V(G) = {vi,ui / 0 ≤ i ≤  n-1 }and let E(G) = {ui vi ; vivi+1, uiui+k / 0≤ i ≤  n-1 }. (for 
suffixes, the addition i+k is under addition modulo n). As n and K are prime to each 
other,    gcd(n, k) = 1 and k is a generator for the group Zn . Hence each i =  mi k, for 
some unique integer mi  (0≤ m i ≤n-1) in the group Zn . It is clear that if i ≠ j, then mi ≠ mj   

(0≤ i, j≤ n-1). 

Define f: E(G) → { 1,2,….,3n} as follows : 
f(vivi+1) = i+1 for  0≤ i ≤  n-2 ; f(vn-1v0) =  n ; f(viui) = 2n-i    for  0 ≤ i ≤  n-1 
f(uiui+k) = 3n-mi    for  0 ≤ i ≤  n-1 

Clearly, i+1  n  2n-j  3n-s    for all 0 ≤ i ≤  n-2 ; 0≤ j,s ≤  n-1 and hence the map f is 
bijective . 
The induced map f* is obtained as follows:  
f*(vi) = 2n + i +1for  1≤ i ≤  n-1 ; f*(v0) = 3n+1; f*(u0) = 7n+1 and f*(ui)  = 8n-2mi - i +1   for  
1≤ i ≤  n-1. 

As   f*(vi)  4n  f*(uj)   for all  0 ≤ i,j ≤  n-1 , f*(vi) ≠ f*(vj) . 
Now if 1≤ i ≤  n-1, f*(ui)   =  f*(uj)          

                                                          8n -2mi -i +1   = 8n-2mj - j +1    

 2mi + i  =  2mi + j 

 2(mi-mj) + (i-j) = 0  

 2(mi-mj) + (mi-mj) k = 0 (mod n) 

 (k+2) (mi-mj)  = 0 (mod n)  

 either mi - mj = 0 or n divides k+2, 
(as n is prime) 

 mi = mj    as k+2  n  

 i =j 
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Figure 2.5 : An antimagic labeling for P (11,4). 
 
 Remark : The antimagic labeling f defined in the theorem 2.5 also is an antimagic  

labeling for P (n,k ) , Where k 
2

n
 and both k and k+2 are prime to n. (The integer n 

need not be a prime ). 
 
Thorem 2.6:   Every gear graph is antimagic . 
Proof: 

Let G be the gear graph obtained from a Wheel Wn by subdividing each edge on 

the cycle Cn once. Let V(G) = {v, vi,, ui  1≤ i ≤  n }.(n ≥ 3) and   

let E(G) = {vui ,  vi ui  1≤ i ≤  n }. { uivi+1 , un v1 1≤ i ≤  n-1}. 

Define f: E(G) → { 1,2,….,3n} as follows : 
f(vi ui) =  i  for  1≤ i ≤  n 
f(ui vi+1) = n+ i     for  1≤ i ≤  n -1 

f(un v1) = 2n  
f(v vi) = 3n – i +1     for  1 ≤ i ≤ n 
The induced map f* on V(G) is obtained as  
f* (ui) = n+2i       for  1≤ i ≤ n 
f* (vi) = 4n+i        for  2≤ i ≤ n  
f* (v1) = 5n+1 

f* (v) = 
2

1)n(5n 
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 As n+2i  4n +j  5n+1   
2

1)n(5n 
 for all 1≤ i ≤ n ; 2≤ j ≤ n (as n ≥ 3), 

The map f*is injective and hence f is an antimagic labeling for G. 
Figure 2.6 illustrates an antimagic  labeling for the gear  graph G12  

 
Figure 2.6 : An antimagic  labeling for the gear  graph G12 . 

 
The helm Hn the graph obtained  from the Wheel  Wn, (n ≥ 3), by attaching a 

pendant edge at vertex of the n cycle of Wn .(Hn can also be obtained from C+ by joining 
all the vertices of C with degree 3 to a new vertex v).  
 
Thorem 2.7: Helm Hn is antimagic , for all n ≥ 3. 
Proof:  

 Let G =Hn and let  n≥ 4 . Let V(G) = {v,vi,,ui  1≤ i ≤  n }and  

let E(G) = {v vi , vi ui , vn v1/1≤ i ≤  n }.  { vi vi+1  1≤ i ≤  n-1} 

G-v is the graph Cn


 Let f be the  antimagic  labeling for Cn
  as defined in the proof of the   

Theorem 2.3. Now we extend that map f to E(G) , by defining  f(vvi) = 3n-i+2 ,    2≤ i ≤  n  
and f(vv1) = 2n+1 
 The induced map f* on V(G)  is given by  

'
i

'

n i 1

f (u ) i

f (u ) 5n 3 2i 

 


   
 for 1 i n   

f* (v) = 
n(5n 1)

2


 

As  n ≥ 4, 
2

1)n(5n 
 ≥ 10n+2  5n+3 +2i   for  1≤ i ≤ n. 

Hence f* is injective and Hn , (n≥ 4) , is antimagic .  
The helm H3 is also antimagic , an antimagic labeling for H3 is exhibited in the Figure    
2.7 (a).  
 A flower Fn is the graph obtained from the helm Hn by joining each pendent vertex of Hn 
to the centrel vertex of Hn . 
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Thorem 2.8 :  For n≥ 3 , flower Fn is antimagic  . 
Proof :  

 Let G = Fn,  V(G) = {v,vi,ui / 1≤ i ≤  n }  and let E(G) = {vvi, vui ,viui / 1≤ i ≤ n }  
{vnv1; vivi+1 / 1≤ i ≤  n-1} 

Define f: E(G) → { 1,2,….,4n} as follows : 
f(ui vi) = i     for all 1≤ i ≤  n ; f (vivi+1)  = 2n-i+1 , for all 1≤ i ≤  n -1; f(v1vn) = n+1 
f(vvi) = 3n - i+2     for  2≤ i ≤ n ; f(vv1) = 2n+1 ; f(vui) = 3n+i       for all 1≤ i ≤  n . 
(The map f   is an extension of   the antimagic labeling for Hm, defined   in the proof of the 
Theorem 2.7)  
The induced map f* on V(G)  is given by : 
f*(ui) = 3n+2i   for  1≤ i ≤ n ; f*(vi) = 7n-2i+5  for  2≤ i ≤ n -1; f*(v1) = 5n+3 , f*(v) = (6n+1)  

As 3n + 2i  5n +3  7n – 2j + 5  (6n + 1) n, for all n ≥ 3 
  1≤ i ≤ n and 2 ≤ j ≤ n -1, the map f* is injective. So the flower Fn (n ≥ 3 ), is antimagic 

 
 Figure 2.7 (a) An antimagic labeling for H3 and  (b) An antimagic labeling for H9 
 

The shell graph of order n, n ≥ 4, denoted by H(n,n-3) is obtained from the cycle 
Cn of order n by adding (n-3) chords incident  with a common vertex. 
 
Theorem 2.9 : For every n ≥ 4, the shell graph H(n, n-3) is antimagic. 
Proof : 
 Let G = H(n,n-3). We assume that n ≥ 6, (An antimagic labelings for H(4,1) and H(5,2) 
are shown in figure 2.8) 

 Let V(G) = { vi  1 ≤ i ≤ n  } and  E(G) = { v1vi  2 ≤i ≤ n  }{ vi+1vi  2 ≤ i ≤ n-1 } 

Define f : E(G) → { 1,2,….,2n-3} as follows : 
f(v1 vi) = n – i for 3 ≤ i ≤ n -1; f(v1 vi+1) = n – 3 + i   for 1 ≤ i ≤ n -1and f(vn v1) = 2n – 3. 
The induced map f* on V(G) is given by 

f*(v1) = 
2

4nn2 
; f*(v2) = 2n – 3 ; f*(vi) = 3n + i – 7 for 3 ≤ i ≤ n -1 and f*(vn) = 4n – 7 
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For some i , 3 ≤ i ≤ n -1,  f*(vi) = f*(vn)  3n + i – 7 = 4n – 7  i = n , which is a 
contradiction. 

We have f*(vi) ≠ f*(vn) for all 2 ≤ i ≤ n -1. If n ≥ 6, 
2

105nn2 
  ≥ n, it follows that f*(vi) 

≠ f*(v1) 

for all i, 2 ≤ i ≤ n -1. Also as n ≥ 6, 
2

4nn2 
 ≠ 4n – 7. 

Thus if n ≥ 6, f*(v1),… f*(vn) are all distinct and hence f is an antimagic labeling for      

H(n, n-3) ,  n ≥ 6.  

 
Figure 2.8 Antimagic labeling for H(4,1), H(5,2),and H(10,7). 

  
BT(n1,n2) is the tree obtained by joining a new vertex w to one pendant vertex of each 

stars 
11,nk  and

21,nk . BT(n1,n2)is called a banana tree.  

 
Theorem 2.10 : Banana tree BT(n1,n2) admits an antimagic labeling for all 2 ≤ n1 ≤ n2. 
Proof :  

 Let V(G) = { v,u,w,ui,vj  1 ≤ i ≤ n1; 1 ≤ i ≤ n2      } and 

E(G) = { u ui  1≤ i ≤ n  }{ v vj  1 ≤ j ≤ n2 } { wun1
, wun2

} 

Define f : E(G) → { 1,2,…..n1+ n2 +2 } as follows :  
 f(u ui) = i             for 1 ≤ i ≤ n1 - 1; 
 f(v vj) = n1 + j – 1   for1≤i≤n2  
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The induced map f* on V(G) is given by  
f* (ui) = i  for 1 ≤ i ≤ n1 

1

2

1 1
1 2 2

*
n 2

1 1
1 2 2

n 3n
2n 2n 2if n

2
f (u )

n 3n
2n 2n 3if n

2

   
   



 

  
f*(vj) = n1+j-1   for 1 ≤ j ≤ n2 -1 

 

2

2

1 1
1 2 2

*
n 2

1 1
1 2 2

n 3n
2n 2n if n

2
f (v )

n 3n
2n 2n 1if n

2

  
   

  

1

2

1 1
1 2 2

2

1 1
n 1 2 2

2 2

1 1 1 1
1 2 2

n 3n a
n n if n

2

n 3n
f (uu ) n n 1if n

2

n 3n 4 n 3n 6
n n 2if n , or

2 2

   


   

    

  


1

2

1 1
1 2 2

n 2 2

1 1 1 1
1 2 2

n 3n 6
n n 1if n

2
f (wu )

n 3n 4 n 3n 6
n n if n , or

2 2

     
     



2

2

1 1
1 2 2

n 2

1 1
1 2 2

n 3n
n n 1if n

2
f (wu )

n 3n
n n if n

2

    
  


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2

2

1 1
1 2 2

2
* 1 1

n 1 2 2

2 2

1 1
1 2 2

n 3n a
2n 2n 3 if n a 0, 4or 6

2

n 3n
f (v ) 2n 2n if n

2

n 3n 4 n 3n 6
2n 2n 1 if n or 1

2 2

     


  

    

   


2

1 1 1 1
2 2

2
* 1 1 1

2 2

2 2

1 1 1 1 1 1
2 2

n (n 1) n 3n a
n if n a 0,4or 6

2 2

n (n 1) n 3n
f (u) n 1if n

2 2

n (n 1) n 3n 4 n 3n 6
n 2 if n or

2 2 2

     


    

     

  


 

 f*(v) = 
2

1)n(2nn 212 
 

Clearly (i) f*(ui)  f*(vj)  f*( v n2
)  f *( un1

) for all 1 ≤ i ≤ n1 -1 and 1 ≤ j ≤ n2 -1. So 

f*(ui), f*(vj) 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 , are all distinct.   (ii) f* (u), f* (v), f*(w),f ( un1
),  

f*( v n2
)   { f*(ui), f*(vj)  1 ≤ i ≤ n1-1, 1 ≤ j ≤ n2-1}. 

It is enough to show  that f* (u), f* (v), f*(w),f* ( un1
),f*( v n2

) are all distinct.  

Let  = 2n1 + 2n2.    

Thus 
1

2

1 1
2

*

n 2
1 1

2

n 3n
2if n

2
f (u )

n 3n
3 if n

2

 
 



 

      
2

2

1 1
2

*
n 2

1 1
2

n 3n
if n

2
f (v )

n 3n
1 if n

2

 
 


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2

1 1
2

2
* 1 1

2

2 2

1 1
2

n 3n a
3 if n a 0, 4 or 6

2

n 3n
f (w ) 2 if n

2

n 3n 4 n 3n 6
1 if n or

2 2

    


   

    
  

 

                     

              f*(v)  = 
2

1)n(2nn 212 
=

2

nnn2n 2
2
221 

≥ 
2

n5n10n 21 
 if n2 ≥ 5 

= 5n1 + 2n2 

=  +3n1+ ≥  +6 

If  n2 = 4, f* (v)  =  
2

44n8n 21 
 =  +2n1 -2 ≥  +4   as  (n1,n) ≠ (2,4) 

If  n2 =3 f* (v)  =  3n1+3 = (2n1+6) + (n1-3) =  -1 as (n1,n2)  ≠ (3,3). 

                            

2

*

2

1 2

6 if n 5

f (v) 4 if n 4

1 if (n ,n ) (2,3)

 
  
   

 

    As n1 ≤ n2, n2 =   
2

a3nn 1
2
1 

,a = 0 or 4 or 6  n1 ≥ 5. 

Hence in all the cases, f*(un1) , f*(un2) , f*(w) and f*(v) are all distinct  

f*(u) ≤ 
2

1)(nn 11 
+ n2 +2 = 

2

42nnnn 2111 
≤ 

2

1n(2nn 212 
= f*(v) 

As n1+4 ≤ 2n2 for all (n1,n2) ≠ (3,3) , we have  n1+3n2+4 ≤ 5n2 ≤ n2(n1+n2) 
n2

1 + n1+3n2+4 ≤ n2(2n1+n2) 
n2

1 + n1+2n2+4 ≤ n2(2n1+n2-1)] 

if n2 ≥ 5, then 5n2 ≤ n2(n1+n2) and if n2  5, then 

  n2 ≠ 
2

a3nn 1
2
1 

 , a = 0,4 or 6 or and f*(u) ≤ 
2

1)(nn 11 
+ n2 +2. 

Thus, in all the cases f*(u)  f*(v). Now it is enough to show that f*(u) ≠ f*( un1
), f( un2

), 

f*(w). 

Now 
2

1)(nn 11 
+2 = 2n1+ 2n2 + k =  + k (k = 2, 3, 0)   n2

1 + n1+2n2  = 4n1+ 4n2+2k   
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  n2 = 
2

2k3nn 1
2
1 

 

2

1)(nn 11 
+n2 =  + k (k = 2, 3, 0)  iff n2 = 

2

2k3nn 1
2
1 

 

2

1 1
2

2

1 1
2

*

2

1 1
2

2

1 1
2

n 3n
1 if n

2

n 3n 4
4 if n

2
f (u)

n 3n 6
5 if n

2

n 3n a
, 2, 3if n a 0, 4 or6

2

  


   
 

   

       


 

So f*(u) ≠, f*( un1
),f*( un2

), f*(w). in all the cases. 

Thus, if (n1,n2) ≠ (2,2),(2,4),(3,3) , f*  is an injective map and so f is an antimagic labeling 

for BT(n1,n2),   (n1,n2) ≠ (2,2), (3,3) ,(2,4). 

 
Figure: 2. 9 Antimagic Labeling for (a) BT (2,2), (b) BT( 3,3) , (c) BT(2,4) and (d) 

BT(6,7). 
So we assume that (n1,n2) ≠ (2,2),(2,4),(3,3). 
 

Thorem  2.11:  Friendship  graph (t)
3C   is antimagic  for  all t ≥ 2. 

 
 



 
 

37 Antimagic Labelings of Graphs 

Proof: 

        Let   G =  
(t)
3C ,  t ≥ 2, and let V(G) = { v,ui,vi/ 1≤ i ≤ t} and E(G)  = {uivi, vui, vvi/ 

i=1,….,t}. 
The vertex v is common to the t-triangles {v, ui, vi},1≤ i ≤ t.   . 

Define f : E(G) →{1,2,…,3t} as follows: 
For all i=1,2,…,t, f(vvi) = 3i; f(vui) = 3i-2; f(uivi) = 3i-1. 
Then the induced map f*  an  V(G)  is obtained  as follows : 
For all i=1,2,…,t, f* (ui) = 6i-3; f* (vi) = 6i-1; and f*(v ) =t (3t+1). 
As t ≥ 2, t (3t+1) ≥ 7t, it follows that f* is injective and the map f defines an antimagic 

labeling for (t)
3C    

 
Theorem 2.12: Fan graph Fn admits an antimagic labeling, for all positive integers n ≥ 2. 
Proof: 
     Let  v1v2.....vn  be the path Pn  and the fan graph Fn be obtained from Pn by introducing a 
new vertex and joining it with every vertex of Pn .  
So V(G) = {v,vi / 1≤ i ≤ n} and E(G) = {vvi , vj vj+1/ 1 ≤ i ≤ n ; 1 ≤ j ≤ n-1}. 

Define f: E(G) → {1,2,….,2n-1} as follows : 
f(vivi+1 ) = i for 1 ≤i ≤ n-1, and  
f(vvi)  = 2n-i   for 1 ≤i ≤ n. 
Then the induced map f* is given by  
f* (vi) = 2n+i-1  for i ==  1,2,…,n-1 
f* (un) =2n-1 

f* (v) =
2

1)n(3n 
. 

As n ≥ 2,  f* (v) =
2

1)n(3n
≥ 3n-1  f* (vi), for all i = 1,2,….,n-1. 

So f induces an antimagic labeling for Fn(n ≥ 2). 
 

 
Figure 2.10 antimagic labeling for (a) C(5)

3 and (b) F8 
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A graph G is said to be a Lantern if it has two adjacent vertices u and v such that all  the 
other vertices of G are adjacent  to both u and v and G has no other edges . In fact G = 

n2 K  K  , for some (n ≥ 2). 
 

Theorem 2.13: Lantern  G = n2 K  K  , ( n ≥ 2 ) , is antimagic . 

Proof: Let G = n2 K  K  , ( n ≥ 2 ).  
Let   V(G) = { u,v,ui,  / 1≤ i ≤ n} and E(G)  = {uv, uui, vui / i = 1≤ i ≤ n }. 

Define  f : E(G) →{1,2,…,2n+1 } as follows: 
 f(uui) = 2i-1; f(vui) = 2i;  for 1≤ i ≤ n and f(uv) = 2n+1. 
Then the mapping f*  on  V(G)  is obtained  as follows : 
 f* (ui) = 4i-1  for 1≤ i ≤n ; f* (u) = n2 and f* (u) = n2+ n. 

 Clearly f*   is injective if n =2 or 3. If n ≥ 4, then n2+ n  n2  4n-1 and hence f* is 

injective in all the cases. Thus, f defines an antimagic for  n2 K  K  , for n ≥ 2. 

                       
Figure 2.11 : an antimagic labeling for 52 K  K   

A triangular snake is obtained from a path Pn, u1u2……,un,(n ≥3), by introducing new 
vertices v1,v2,…..,vn-1  and joining vi ,(1≤ i ≤n-1), with the vertices ui and ui+1.  
 
Theorem 2.14: Every triangular snake is antimagic.  
Proof:  
     Let G be the triangular snake obtained from the path Pn.  
Let   V(G) = { ui, uj  / 1≤ i ≤ n; 1≤ j ≤ n -1} and E(G)  = {uiui+1,uivi,ui+1ui / i = 1≤ i ≤ n-1 }. 

Define f : E(G) →{1,2,…,3n-3 } as follows: 

      
i i

i 1 i

f (u v ) i
for i 1,2 ,...,n 1

f (u , v ) n i 1

 
    

  

1 2

2n if n is odd
f (u u )

2n 1 if n is even


 
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2 3

2n 1 if n is odd
f (u u )

2n if n is even





 

f(uiui+1)   = 2n +(i-2) for 3 ≤ i ≤ n-1. 
The induced map f*  is obtained as f* (v1) = n+i for 1 ≤ i ≤ n-1. 

*

1

2n if n is even
f (u )

2n 1 if n is odd


 

 

 
f* (u2) =5n+1 

 

*

3

5n 5 if n is even
f (u )

5n 4 if n is odd


 

 

 
f* (ui) = 5n+4i-7    for 4 ≤ i ≤ n-1. 
f* (un) = 5n-5. 
Clearly, f* is injective and f is an antimagic labeling for G. 

 
Figure 2.12 : An antimagic labeling for a triangular snake ,(n is even ). 

 
Theorem2.15: Let {ui, vi wiui ; 1≤ i ≤ n} be a collection of n disjoint triangles . Let G be the 
graph obtained  by joining wi to ui+1, 1≤ i ≤ n-1 and joining ui to ui+1 and vi+1, 1≤ i ≤ n-1. Then 
the graph G is antimagic .  
Proof:    The order and size of G are 3n and 6n-3 respectively. 

Assume that n ≥ 3.  Define f: E(G) →{1,2,…,6n-3 } as follows: 

i i

n 1 n 4
i if i ,

3 3
n 1

f (u v ) i 1 if i
3

n 4
i 1 if i

3

  
   


  
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i i

i i

f (v w ) n i
for i 1,2 ,...,n

f (u ,w ) 2n i

  
  

 

i i 1

i i 1

i i 1

f (u v ) 3n i

f (w u ) 4n i 1 for1 i n 1

f (u u ) 5n i 2







  
     
   

 

Then the induced map f* an V(G) is obtained as:  
f*(v1) = n+2 ;    f*(vn) = 7n-1 

*
i

n 1 n 4
4n 3i 1 for 2 i n 1 but i ,

3 3
n 1

f (v ) 4n 3i if i
3

n 4
4n 3i 2 if i

3

       
   


   

 

 
f*(u1) = 10n+2 ;  f*(un) = 15n-5.  
 

*
i

n 1 n 4
19n 6i 7 for 2 i n 1 but i ,

3 3
n 1

f (v ) 19n 6i 6 if i
3

n 4
19n 6i 8 if i

3

       
    


   

 

 

*

i

7n 3i 1 for 1 i n 1
f (w )

5n if i n

    
 

                                         

           The map f is an antimagic labeling for G. 

 
Figure 2.13: An antimagic labelling for G (Theorem 2.15) when n = 8. 
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