International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 3, No. 1, January – March 2012, pp. 23 - 41

# Antimagic Labelings of Graphs

N. Sridharan<sup>1</sup> and R. Umarani<sup>2</sup>

<sup>1</sup>Department of Mathematics, Alagappa University, Karaikudi

<sup>2</sup>umaprinci@yahoo.com

**Abstract:** Hartsfield and Ringel [1] introduced antimagic labeling. In this paper, we investigate the antimagic labeling of  $C_n \odot P_3$  for  $n \ge 3$ ;  $K_2 \odot C_n$  for  $n \ge 3$ ;  $C_n^+$  for  $n \ge 3$ ;  $S_1C_n^+$ ; the generalized Peterson graph P(n,k); gear graphs; Helm  $H_n$  for all  $n \ge 3$ ; flower  $F_n$  for  $n \ge 3$ ; shell graph H(n,n-3) for  $n \ge 4$ ; Banana tree BT  $(n_1,n_2)$  for all  $2 \le n_1 \le n_2$ ; friendship graph  $C_3^{(1)}$  for all  $t \ge 2$ ; fan graph  $F_n$  for all  $n \ge 2$ ; Lantern  $K_2 + \overline{K_n}$  (for  $n \ge 2$ ) and triangular snakes.

#### 1. Introduction

Kotzig and Rosa [3] defined a magic labeling of a graph G(V,E) as a bijection f from  $V \cup E$  to  $\{1,2,..., |V \cup E|\}$  such that for all edge xy, f(x) + f(y) + f(xy) is constant.

They proved that (1)  $k_{m,n}$  has a magic labeling for all m,n. (2)  $C_n$  has a magic labeling for all  $n \ge 3$ . (3)  $nP_2$  has a magic labeling if and only if n is odd. (4)  $K_n$  has a magic labeling if and only if n = 1,2,3,4,5 and 6. Balakrishnan and Sampath Kumar [4] proved that the join of  $K_n$  and two disjoint copies of  $K_2$  is magic if and only if n = 3. Hartsfield and Ringel [1] introduced antimagic graphs. A graph with q edges is called antimagic if its edges can be labeled with 1,2, ....q. so that the sum of the labels of the edges incident to each vertex are distinct. Paths  $P_n$  ( $n \ge 3$ ) cycles  $C_n$  and  $K_n$  ( $n \ge 3$ )are antimagic. Hartsfield and Ringel Conjectured that every tree except  $P_2$  is antimagic. . For an extensive survey on graph labeling we refer to Gallian[2].

In this paper, we investigate the antimagic labeling of  $C_n \odot P_3$  for  $n \ge 3$ ;  $K_2 \odot C_n$ for  $n \ge 3$ ;  $C_n^+$  for  $n \ge 3$ ;  $S_1C_n^+$ ; the generalized Peterson graph P(n,k); gear graphs; Helm  $H_n$  for all  $n \ge 3$ ; flower  $F_n$  for  $n \ge 3$ ; shell graph H(n,n-3) for  $n \ge 4$ ; Banana tree BT  $(n_1,n_2)$  for all  $2 \le n_1 \le n_2$ ; friendship graph  $C_3^{(t)}$  for all  $t \ge 2$ ; fan graph  $F_n$  for all  $n \ge 2$ ; Lantern  $K_2 + \overline{K_n}$  (for  $n \ge 2$ ) and triangular snakes.

#### 2. Main Results

Let  $C_n$  be the cycle with n vertices and  $P_3$  be the path on 3 vertices. We obtain  $C_n \odot P_3$  from  $C_n$  and n copies of  $P_3$  by joining i<sup>th</sup> vertex of  $C_n$  to every vertex of i<sup>th</sup> copy

Received: 18 November, 2011; Revised: 12 February, 2012; Accepted: 08 March, 2012

of  $P_3$  .  $C_n \odot P_3$  has 4n vertices and 6n edges. In the following theorem, we prove that  $C_n \odot P_3$  is antimagic.

Theorem 2.1 : The graph  $C_n \odot P_3$  is antimagic, for all  $n \, \geq \, 3$  .

follows that f<sup>\*</sup> is injective and hence f is an antimagic labeling for  $C_n \odot P_3$ . An antimagic labeling for  $C_9 \odot P_3$  is illustrated in figure 2.1. The graph  $K_2 \odot C_n$  obtained from  $K_2$  and two copies of  $C_n$  by joining i<sup>th</sup> vertex (i=1,2) of  $K_2$  to each vertex of i<sup>th</sup> copy of  $C_n$ . It can also be obtained from two copies of wheel  $W_n$  by joining central vertices of the two copies by an edge.



Figure 2.1 An antimagic labeling for C<sub>9</sub>  $\odot$  P<sub>3</sub>

**Theorem 2.2 :** The graph  $G = K_2 \odot C_n$  is antimagic, for all  $n \ge 3$ . **Proof:** 

Let V(G) = {
$$u_1, u_2, v_i, w_i / 1 \le i \le n$$
} and  
E(G) = { $u_1 u_2, w_n w_1, v_n v_1$ }  $\cup$  { $w_i w_{i+1}, v_i v_{i+1} / 1 \le i \le n - 1$ }  
 $\cup$  { $u_1 w_i, u_2 v_i / 1 \le i \le n$ }

We define  $f: E(G) \longrightarrow \{1, 2, ..4_n, 4_{n+1}\}$  as follows:  $f(w_i w_{i+1}) = i$  for i = 1, 2, ..., n - 1 $f(w_n w_1) = n$  $f(u_1, w_i) = 2n - i + 1$  for i = 1, 2, ..., n $f(v_1 v_{i+1}) = 2n + i$  for i = 1, 2, ..., n - 1 $f(v_n v_1) = 3n$  $f(u_{2}, v_{i}) = 4n - i + 1$  for i = 1, 2, ..., n $f(u_1, u_2) = 4n + 1.$ The induced map  $f^*$  on V(G) is obtained as follows :  $f^*(w_i) = 2n + i$  for  $2 \le i \le n$  $f^{*}(w_{1}) = 3n+1; f^{*}(v_{1}) = 9n+1$  $f^{*}(v_{i}) = 8n + i$ , for  $2 \le i \le n$  $f^{*}(u_{1}) = \frac{3n^{2} + n}{2}$  and  $f^{*}(u_{2}) = \frac{7n^{2} + n}{2}$ If  $n \ge 6$ ,  $f^*(u_1) = \frac{3n^2 + n}{2} \ge \frac{18n + n}{2} \ge 9n + 3$ So if  $n \ge 6$ , we have  $2n + i < 3n + 1 < 8n + i < 9n + 1 < \frac{3n^2 + n}{2} < \frac{7n^2 + n}{2}$ , for all i,  $1 \le i \le n$  and hence in this case  $(n \ge 6)$ ,  $f^*$  is injective. If n = 5,  $f^*(u_1) = 40 \neq f^*(x)$  for all  $x \neq u_1 \in V(G)$  and  $f^*(u_2) \ge 18n$ . If n = 4,  $f^*(u_1) = 26 \neq f^*(x)$  for all  $x \neq u_1 \in V(G)$ , and  $f^{\star}(u_2) = 58 > 37 = 9n + 1.$ If n = 3,  $f^{*}(u_{1}) = 15 = 5n \neq f^{*}(x)$  for all  $x \neq u_{1} \in V(G)$ , and  $f^{*}(u_{2}) > 10n$ . Thus in all the cases, f<sup>\*</sup> is injective and hence f is an antimagic labeling for  $K_2 \odot C_n$ . An antimagic labeling for  $K_2 \odot C_7$  is illustrated in the figure 2.2



Figure 2.2 An antimagic labeling for  $K_2 \odot C_7$ 

**Theorem 2.3 :** The graph  $C_n^+$  is antimagic, for all  $n \ge 3$ . **Proof :** 

Let  $V_1 V_2...V_n V_1$  be the cycle  $C_{n,i}$  and let  $u_i$  be the pendant vertex attached to the vertex  $v_i$ , for all  $i, 1 \le i \le n$ .

Define  $f: E(G) \rightarrow \{1, 2, \dots, 2n\}$  as follows:

$$\begin{aligned} f(u_i v_i) &= i & \text{for all } 1 \le i \le n \text{;} & f(u_i v_{i+1}) = 2n \cdot i + 1 & \text{for all } 1 \le i \le n \cdot 1, & \text{and} \\ f(u_1 v_n) &= n + 1. \end{aligned}$$

The induced map f\* on V(G) is obtained as follows:

 $f^{*}(u_{i}) = i$  for all  $i, 1 \le i \le n$ ;  $f^{*}(v_{1}) = 3n + 2$  and  $f^{*}(v_{1}) = 4n - i + 3$ , for all  $2 \le i \le n$ Clearly  $f^{*}$  is injective and hence is an antimagic labeling for  $C_{s}^{+}$ .



Figure 2.3 Antimagic labeling for  $C_{\mu}^{+}$ 

**Theorem 2.4 :** The graph  $s_1(C_n^+)$ , obtained from  $C_s^+$  by subdividing each edge of  $C_s^+$  once, is antimagic.

**Proof**: Let  $u_1 u_2 ... u_n$  be the cycle  $C_n$  and  $V_1, V_2, ..., V_n$  be the pendant vertices of  $C_n^+$ ,  $u_i$  being adjacent to  $u_i$ . Subdivide the edge  $u_i u_{i+1}$  by introducing a new vertex  $y_i$  (for i

 $1 \le i \le n-1$ ), the edge  $u_1 u_n$  by introducing a new vertex.  $y_n$ , and the edge  $u_i v_{i,}$   $(1 \le i \le n)$ , by introducing a new vertex  $x_i$ . Let the resulting graph  $S_1(C_n^+)$  be G.

Define  $f: E(G) \rightarrow \{1, 2, \dots, 4n\}$  as follows:  $f(x_i v_i) = i$ , for  $1 \le i \le n$   $f(u_i x_i) = n + i$ , for  $1 \le i \le n$   $f(u_1 y_n) = 3n$   $f(y_{i-1}u_i) = 3n - i + 1$ , for  $2 \le i \le n$   $f(u_i y_i) = 4n - i$ , for  $1 \le i \le n - 1$  $f(u_n y_n) = 4n$ 

The induced map  $f^*$  is obtained as follows:

$$f^{*}(v_{i}) = i$$
  

$$f^{*}(x_{i}) = n + 2i$$
  
for  $1 \le i \le n$   

$$f^{*}(u_{i}) = 8n - i + 1$$
  

$$f^{*}(y_{i}) = 7n - 2i$$
  
for  $1 \le i \le n - 1$   

$$f^{*}(y_{n}) = 7n \text{ and } f^{*}(u_{n}) = 8n + 1.$$

As i < n + 2j < 7n-2k < 7n < 8n-s+1 < 8n+1, for all  $1 \le i$ ,  $j \le n$ ;  $1 \le k,s \le n-1$ , it follows that  $f^*$  is injective.

Thus f is an antimagic labeling for  $S_1(C_n^+)$ .

An antimagic labeling for  $S_1(C_9^+)$  is illustrated in Figure 2.4.



Figure 2.4: An antimagic labeling for  $S_1(C_9^+)$ .

International Journal of Engineering Science, Advanced Computing and Bio-Technology

**Theorem 2.5:** Let  $n \ge 5$  be a prime and  $k \ge 2$  be a positive integers such that  $k < \frac{n}{2}$ . The generalized Peterson graph P(n, k) is antimagic , for all prime n.

#### **Proof:**

Let G = P(n, k) be the generalized Peterson graph.

Let  $V(G) = \{v_i, u_i \mid 0 \le i \le n-1\}$  and let  $E(G) = \{u_i \mid v_i : v_i v_{i+1}, u_i u_{i+k} \mid 0 \le i \le n-1\}$ . (for suffixes, the addition i+k is under addition modulo n). As n and K are prime to each other, gcd(n, k) = 1 and k is a generator for the group  $Z_n$ . Hence each  $i = m_i k$ , for some unique integer  $m_i (0 \le m_i \le n-1)$  in the group  $Z_n$ . It is clear that if  $i \ne j$ , then  $m_i \ne m_j (0 \le i, j \le n-1)$ .

Define f:  $E(G) \rightarrow \{1, 2, \dots, 3n\}$  as follows :

 $\begin{array}{ll} f(v_iv_{i+1})=i+1 \mbox{ for } 0\leq i\leq \ n-2 \ ; \ f(v_{n-1}v_0)=\ n \ ; \ f(v_iu_i)=2n-i \quad \mbox{ for } \ 0\leq i\leq \ n-1 \\ f(u_iu_{i+k})=3n-m_i \quad \mbox{ for } \ 0\leq i\leq \ n-1 \end{array}$ 

Clearly, i+1 < n < 2n-j < 3n-s ~ for all 0  $\leq$  i  $\leq~$  n-2 ; 0  $\leq$  j,s  $\leq~$  n-1 and hence the map f is bijective .

The induced map  $f^*$  is obtained as follows:

 $f(v_i) = 2n + i + 1$  for  $1 \le i \le n-1$ ;  $f(v_0) = 3n+1$ ;  $f(u_0) = 7n+1$  and  $f(u_i) = 8n-2m_i - i + 1$  for  $1 \le i \le n-1$ .

As  $f^*(v_i) \leq 4n \leq f^*(u_j)$  for all  $0 \leq i,j \leq n-1$ ,  $f^*(v_i) \neq f^*(v_j)$ . Now if  $1 \leq i \leq n-1$ ,  $f^*(u_i) = f^*(u_j)$ 

$$\Rightarrow 8n -2m_i - i + 1 = 8n - 2m_j - j + 1$$
  

$$\Rightarrow 2m_i + i = 2m_i + j$$
  

$$\Rightarrow 2(m_i - m_j) + (i - j) = 0$$
  

$$\Rightarrow 2(m_i - m_j) + (m_i - m_j) k = 0 \pmod{n}$$
  

$$\Rightarrow (k+2) (m_i - m_j) = 0 \pmod{n}$$
  

$$\Rightarrow either m_i - m_j = 0 \text{ or } n \text{ divides } k+2$$
  
(as n is prime)  

$$\Rightarrow m_i = m_j \quad as \ k+2 < n$$
  

$$\Rightarrow i = j$$



Figure 2.5 : An antimagic labeling for P (11,4).

**Remark :** The antimagic labeling f defined in the theorem 2.5 also is an antimagic labeling for P (n,k), Where  $k < \frac{n}{2}$  and both k and k+2 are prime to n. (The integer n need not be a prime ).

# **Thorem 2.6:** Every gear graph is antimagic . **Proof:**

Let G be the gear graph obtained from a Wheel  $W_n$  by subdividing each edge on the cycle  $C_n$  once. Let  $V(G) = \{v, v_{i}, u_i \mid 1 \le i \le n \} . (n \ge 3)$  and let  $E(G) = \{vu_i, v_i u_i \mid 1 \le i \le n \} . (1 \ge i \le n + 1)$ . Define f:  $E(G) \rightarrow \{1, 2, ..., 3n\}$  as follows :  $f(v_i u_i) = i$  for  $1 \le i \le n$   $f(u_i v_{i+1}) = n + i$  for  $1 \le i \le n - 1$   $f(u_n v_1) = 2n$   $f(v v_i) = 3n - i + 1$  for  $1 \le i \le n$ The induced map f on V(G) is obtained as  $f^*(u_i) = n + 2i$  for  $1 \le i \le n$   $f^*(v_i) = 4n + i$  for  $2 \le i \le n$   $f^*(v_1) = 5n + 1$  $f^*(v) = \frac{n(5n + 1)}{2}$ 

As 
$$n+2i < 4n + j < 5n+1 < \frac{n(5n + 1)}{2}$$
 for all  $1 \le i \le n$ ;  $2 \le j \le n$  (as  $n \ge 3$ ),

The map f is injective and hence f is an antimagic labeling for G. Figure 2.6 illustrates an antimagic labeling for the gear graph  $G_{12}$ 



Figure 2.6 : An antimagic labeling for the gear graph  $G_{12}$ .

The helm  $H_n$  the graph obtained from the Wheel  $W_n$ ,  $(n \ge 3)$ , by attaching a pendant edge at vertex of the n cycle of  $W_n$ . ( $H_n$  can also be obtained from C<sup>+</sup> by joining all the vertices of C with degree 3 to a new vertex v).

**Thorem 2.7:** Helm  $H_n$  is antimagic , for all  $n \ge 3$ . **Proof:** 

Let G = H<sub>n</sub> and let  $n \ge 4$ . Let V(G) = {v,v<sub>i</sub>, u<sub>i</sub> |  $1 \le i \le n$  } and

let  $E(G) = \{v v_i, v_i u_i, v_n v_1/1 \le i \le n\}$ .  $(v_i v_{i+1} | 1 \le i \le n-1\}$ 

G-v is the graph  $C_n^+$  Let f be the antimagic labeling for  $C_n^+$  as defined in the proof of the Theorem 2.3. Now we extend that map f to E(G), by defining  $f(vv_i) = 3n-i+2$ ,  $2 \le i \le n$  and  $f(vv_1) = 2n+1$ 

The induced map f on V(G) is given by

$$f'(u_{i}) = i$$
  

$$f'(u_{n-i+1}) = 5n + 3 + 2i \int \text{for } 1 \le i \le n$$
  

$$f^{*}(v) = \frac{n(5n+1)}{2}$$
  
As  $n \ge 4$ ,  $\frac{n(5n+1)}{2} \ge 10n+2 > 5n+3+2i$  for  $1 \le i \le n$ 

Hence  $f^{{}^{\ast}}$  is injective and  $H_{n}$  ,  $(n{\geq}\;4)$  , is antimagic .

The helm  $H_3$  is also antimagic , an antimagic labeling for  $H_3$  is exhibited in the Figure 2.7 (a).

A flower  $F_n$  is the graph obtained from the helm  $H_n$  by joining each pendent vertex of  $H_n$  to the centrel vertex of  $H_n$ .

**Thorem 2.8 :** For  $n \ge 3$ , flower  $F_n$  is antimagic . **Proof :** 

 $Let \ G = F_n, \ V(G) = \{v, v_{i,} u_i \ / \ 1 \le i \le n \ \} \ \text{ and let } E(G) = \{vv_i, vu_{i,} v_i u_i \ / \ 1 \le i \le n \ \} \ \bigcup \{v_n v_{1;}, v_i v_{i+1} \ / \ 1 \le i \le n - 1\}$ 

Define f:  $E(G) \rightarrow \{1, 2, \dots, 4n\}$  as follows :

 $f(u_i v_i) = i$  for all  $1 \le i \le n$ ;  $f(v_i v_{i+1}) = 2n-i+1$ , for all  $1 \le i \le n-1$ ;  $f(v_1 v_n) = n+1$ 

 $f(vv_i) = 3n - i + 2$  for  $2 \le i \le n$ ;  $f(vv_1) = 2n + 1$ ;  $f(vu_i) = 3n + i$  for all  $1 \le i \le n$ .

(The map f is an extension of the antimagic labeling for  $H_m$ , defined in the proof of the Theorem 2.7)

The induced map f on V(G) is given by :

 $f^{*}(u_{i}) = 3n+2i \quad \text{for} \ \ 1 \leq i \leq n \ ; \ f^{*}(v_{i}) = 7n-2i+5 \ \ \text{for} \ \ 2 \leq i \leq n \ -1; \ f^{'}(v_{i}) = 5n+3 \ , \ f^{'}(v) = (6n+1)$ 

As  $3n + 2i \le 5n + 3 \le 7n - 2j + 5 \le (6n + 1) n$ , for all  $n \ge 3$ 

 $1 \le i \le n$  and  $2 \le j \le n$  -1, the map f<sup>\*</sup> is injective. So the flower  $F_n$  ( $n \ge 3$ ), is antimagic



Figure 2.7 (a) An antimagic labeling for  $\rm H_3$  and (b) An antimagic labeling for  $\rm H_9$ 

The shell graph of order n,  $n \ge 4$ , denoted by H(n,n-3) is obtained from the cycle  $C_n$  of order n by adding (n-3) chords incident with a common vertex.

**Theorem 2.9 :** For every  $n \ge 4$ , the shell graph H(n, n-3) is antimagic. **Proof :** 

Let G = H(n,n-3). We assume that  $n \ge 6$ , (An antimagic labelings for H(4,1) and H(5,2) are shown in figure 2.8)

 $\begin{array}{l} \text{Let } V(G) = \{ \left. v_i \right| \ 1 \leq i \leq n \ \ \} \ \text{and } E(G) = \{ \left. v_1 v_i \right| \ 2 \leq i \leq n \ \ \} \bigcup \{ \left. v_{i+1} v_i \right| \ 2 \leq i \leq n-1 \ \} \\ \text{Define } f: E(G) \longrightarrow \{ \ 1,2,\ldots,2n-3 \} \ \text{as follows}: \\ f(v_1 v_i) = n - i \ \text{for } 3 \leq i \leq n-1; \ f(v_1 v_{i+1}) = n - 3 + i \ \ \text{for } 1 \leq i \leq n-1 \text{and } f(v_n v_1) = 2n - 3. \end{array}$ 

The induced map  $f^*$  on V(G) is given by

$$f^{*}(v_{1}) = \frac{n^{2} + n - 4}{2}; f^{*}(v_{2}) = 2n - 3; f^{*}(v_{i}) = 3n + i - 7 \text{ for } 3 \le i \le n - 1 \text{ and } f^{*}(v_{n}) = 4n - 7$$

For some i ,  $3\leq i\leq n$  -1,  $f^{'}(v_i)=f^{'}(v_n)\Longrightarrow 3n+i$  – 7 = 4n – 7  $\Longrightarrow i$  = n , which is a contradiction.

We have  $f'(v_i) \neq f'(v_n)$  for all  $2 \le i \le n$  -1. If  $n \ge 6$ ,  $\frac{n^2 - 5n + 10}{2} \ge n$ , it follows that  $f'(v_i) \ne f'(v_1)$ 

for all i,  $2 \le i \le n$  -1. Also as  $n \ge 6$ ,  $\frac{n^2 + n - 4}{2} \ne 4n - 7$ .

Thus if  $n \ge 6$ ,  $f'(v_1), \ldots f'(v_n)$  are all distinct and hence f is an antimagic labeling for H(n, n-3),  $\forall n \ge 6$ .



Figure 2.8 Antimagic labeling for H(4,1), H(5,2), and H(10,7).

 $BT(n_1,n_2)$  is the tree obtained by joining a new vertex w to one pendant vertex of each stars  $k_{1,n_1}$  and  $k_{1,n_2}$ .  $BT(n_1,n_2)$  is called a banana tree.

**Theorem 2.10 :** Banana tree  $BT(n_1,n_2)$  admits an antimagic labeling for all  $2 \le n_1 \le n_2$ . **Proof :** 

 $\begin{array}{l} \text{Let } V(G) = \{ \ v, u, w, u_i, v_j \ \Big| \ 1 \leq i \leq n_1; 1 \leq i \leq n_2 \ \ \ \} \text{ and} \\ \\ E(G) = \{ \ u \ u_i \ \Big| \ 1 \leq i \leq n \ \} \bigcup \{ \ v \ v_j \ \Big| \ 1 \leq j \leq n_2 \ \} \bigcup \{ \ wu_{n_1}, wu_{n_2} \ \} \\ \\ \\ \text{Define } f: E(G) \longrightarrow \{ \ 1, 2, \dots, n_1 + n_2 + 2 \ \} \text{ as follows} : \\ f(u \ u_i) = i \qquad \text{for } 1 \leq i \leq n_1 - 1; \\ f(v \ v_j) = n_1 + j - 1 \quad \text{for} 1 \leq i \leq n_2 \end{array}$ 

 $f(uu_{n_{1}}) = \begin{cases} n_{1} + n_{2}if n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} \\ n_{1} + n_{2} + 1if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ n_{1} + n_{2} + 2if n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 4}{2}, & \text{or} \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ f(wu_{n_{1}}) = \begin{cases} n_{1} + n_{2} + 1if n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ n_{1} + n_{2} & \text{if} n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 4}{2}, & \text{or} \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ n_{1} + n_{2} & \text{if} n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 4}{2}, & \text{or} \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ f(wu_{n_{2}}) = \begin{cases} n_{1} + n_{2} + 1if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ n_{1} + n_{2} & \text{if} n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ n_{1} + n_{2} & \text{if} n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \end{cases} \end{cases}$ 

The induced map  $f^{*}$  on V(G) is given by  $f^{*}\left(u_{i}\right)=i \text{ for } 1\leq i\leq n_{1}$ 

$$f^{*}(u_{n_{1}}) = \begin{cases} 2n_{1} + 2n_{2} + 2if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ \\ 2n_{1} + 2n_{2} + 3if n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \end{cases}$$

 $f(v_j) = n_1 + j - 1$  for  $1 \le j \le n_2 - 1$ 

$$f^{*}(v_{n_{2}}) = \begin{cases} 2n_{1} + 2n_{2} & \text{if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ \\ 2n_{1} + 2n_{2} - 1 & \text{if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \end{cases}$$

$$f^{*}(v_{n_{2}}) = \begin{cases} 2n_{1} + 2n_{2} + 3 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} a = 0, \text{ 4or } 6 \\ 2n_{1} + 2n_{2} \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1}}{2} \\ 2n_{1} + 2n_{2} + 1 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n - 4}{2} \text{ or } \frac{n_{1}^{2} - 3n - 6}{2} + 1 \\ 1 \\ f^{*}(u) = \begin{cases} \frac{n_{1}(n_{1} + 1)}{2} + n_{2} \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} a = 0, \text{ 4or } 6 \\ \frac{n_{1}(n_{1} + 1)}{2} + n_{2} + 1 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - a}{2} \\ \frac{n_{1}(n_{1} + 1)}{2} + n_{2} + 2 \text{ if } n_{2} \neq \frac{n_{1}^{2} - 3n_{1} - 4}{2} \text{ or } \frac{n_{1}^{2} - 3n_{1} - 6}{2} \end{cases}$$

$$f^{*}(v) = \frac{n_{2}(2n_{1} + n_{2} - 1)}{2}$$

Clearly (i)  $f(u_i) < f(v_j) < f(v_{n_2}) < f(u_{n_1})$  for all  $1 \le i \le n_1 - 1$  and  $1 \le j \le n_2 - 1$ . So  $f^{`}(u_{i}), \ f^{`}(v_{j}) \ 1 \leq i \leq n_{1} \ \text{and} \ 1 \leq j \leq n_{2} \ \text{, are all distinct.} \quad (ii) \ f^{`}(u), \ f^{`}(v), \ f^{`}(w), f^{`}(u), f^{`}(w), f^{`}($  $f^{'}(v_{n_{2}}) \notin \{ f^{'}(u_{i}), f^{'}(v_{j}) \mid 1 \leq i \leq n_{1}\text{-}1, 1 \leq j \leq n_{2}\text{-}1 \}.$ 

It is enough to show that f (u), f (v), f (w), f ( $u_{n_1}$ ), f ( $v_{n_2}$ ) are all distinct.

Let 
$$\lambda = 2n_1 + 2n_2$$
.  
Thus  $f^*(u_{n_1}) = \begin{cases} \lambda + 2 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ \lambda + 3 \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \end{cases}$   
 $f^*(v_{n_2}) = \begin{cases} \lambda & \text{ if } n_2 \neq \frac{n_1^2 - 3n_1}{2} \\ \lambda - 1 & \text{ if } n_2 = \frac{n_1^2 - 3n_1}{2} \end{cases}$ 

$$f'(w) = \begin{cases} \lambda + 3 & \text{if } n_2 \neq \frac{n_1^2 - 3n_1 - a}{2} & a = 0, 4 \text{ or } 6 \\ \lambda + 2 & \text{if } n_2 = \frac{n_1^2 - 3n_1}{2} \\ \lambda + 1 & \text{if } n_2 = \frac{n_1^2 - 3n - 4}{2} & \text{or } \frac{n_1^2 - 3n - 6}{2} \end{cases}$$

$$f'(v) = \frac{n_2(2n_1 + n_2 - 1)}{2} = \frac{2n_1n_2 + n_2^2 - n_2}{2} \ge \frac{10n_1 + 5n_2 - n_2}{2} \text{ if } n_2 \ge 5$$
$$= 5n_1 + 2n_2$$
$$= \lambda + 3n_1 + \ge \lambda + 6$$

If 
$$n_2 = 4$$
,  $f'(v) = \frac{8n_1 + 4n_2 - 4}{2} = \lambda + 2n_1 - 2 \ge \lambda + 4$  as  $(n_1, n) \ne (2, 4)$ 

If  $n_2=3$  f'(v) =  $3n_1+3 = (2n_1+6) + (n_1-3) = \lambda - 1$  as  $(n_1,n_2) \neq (3,3)$ .

$$f^{*}(v) = \begin{cases} \geq \lambda + 6 \text{ if } n_{2} \geq 5 \\ \geq \lambda + 4 \text{ if } n_{2} = 4 \\ = \lambda - 1 \text{ if } (n_{1}, n_{2}) = (2, 3) \end{cases}$$
  
As  $n_{1} \leq n_{2}, n_{2} = \frac{n_{1}^{2} - 3n_{1} - a}{2}$ ,  $a = 0 \text{ or } 4 \text{ or } 6 \Longrightarrow n_{1} \geq 5.$ 

Hence in all the cases,  $f^{{}^{\ast}}(u_{_{n1}})$  ,  $f^{{}^{\ast}}(w_{_{n2}})$  ,  $f^{{}^{\ast}}(w)$  and  $f^{{}^{\ast}}(v)$  are all distinct

$$f^{*}(u) \leq \frac{n_{1}(n_{1}+1)}{2} + n_{2} + 2 = \frac{n_{1}n_{1} + n_{1} + 2n_{2} + 4}{2} \leq \frac{n_{2}(2n_{1}+n_{2}-1)}{2} = f^{*}(v)$$
As  $n_{1}+4 \leq 2n_{2}$  for all  $(n_{1},n_{2}) \neq (3,3)$ , we have  $n_{1}+3n_{2}+4 \leq 5n_{2} \leq n_{2}(n_{1}+n_{2})$   
 $n_{1}^{2} + n_{1}+3n_{2}+4 \leq n_{2}(2n_{1}+n_{2})$   
 $n_{1}^{2} + n_{1}+2n_{2}+4 \leq n_{2}(2n_{1}+n_{2}-1)]$   
if  $n_{2} \geq 5$ , then  $5n_{2} \leq n_{2}^{1}(n_{1}+n_{2})$  and if  $n_{2} < 5$ , then

$$n_2 \neq \frac{n_1^2 - 3n_1 - a}{2}$$
,  $a = 0,4$  or 6 or and  $f^*(u) \leq \frac{n_1(n_1 + 1)}{2} + n_2 + 2$ .

Thus, in all the cases  $f^*(u) \le f^*(v)$ . Now it is enough to show that  $f^*(u) \ne f^*(u_{n_1})$ ,  $f(u_{n_2})$ ,  $f^{*}(w).$ 

Now 
$$\frac{n_1(n_1+1)}{2} + 2 = 2n1 + 2n_2 + k = \lambda + k \ (k = 2, 3, 0) \iff n_1^2 + n_1 + 2n_2 = 4n_1 + 4n_2 + 2k$$

$$\Leftrightarrow n_{2} = \frac{n_{1}^{2} - 3n_{1} - 2k}{2}$$

$$\frac{n_{1}(n_{1} + 1)}{2} + n_{2} = \lambda + k \ (k = 2, 3, 0) \ \text{iff} \ n_{2} = \frac{n_{1}^{2} - 3n_{1} - 2k}{2}$$

$$\begin{cases} = \lambda + 1 \ \text{if} \ n_{2} = \frac{n_{1}^{2} - 3n_{1}}{2} \\ = \lambda + 4 \ \text{if} \ n_{2} = \frac{n_{1}^{2} - 3n_{1} - 4}{2} \\ = \lambda + 5 \ \text{if} \ n_{2} = \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ = \lambda, \lambda + 2, \lambda + 3 \ \text{if} \ n_{2} = \frac{n_{1}^{2} - 3n_{1} - 6}{2} \\ a = 0, 4 \ \text{or6} \end{cases}$$

So  $f(u) \neq$ ,  $f(u_{n_1})$ ,  $f(u_{n_2})$ ,  $f^*(w)$ . in all the cases.

Thus, if  $(n_1,n_2) \neq (2,2),(2,4),(3,3)$ , f is an injective map and so f is an antimagic labeling for BT( $n_1, n_2$ ),  $\forall$  ( $n_1, n_2$ )  $\neq$  (2,2), (3,3),(2,4).



Figure: 2. 9 Antimagic Labeling for (a) BT (2,2), (b) BT( 3,3) , (c) BT(2,4) and (d) BT(6,7).

So we assume that  $(n_1, n_2) \neq (2, 2), (2, 4), (3, 3)$ .

**Thorem 2.11:** Friendship graph  $C_3^{(t)}$  is antimagic for all  $t \ge 2$ .

#### **Proof:**

Let  $G = C_{3}^{(t)}$ ,  $t \ge 2$ , and let  $V(G) = \{v,u_i,v_i/1 \le i \le t\}$  and  $E(G) = \{u_iv_i, vu_i, vv_i/i \le 1, ..., t\}$ . The vertex v is common to the t-triangles  $\{v, u_i, v_i\}, 1 \le i \le t$ . Define  $f : E(G) \longrightarrow \{1, 2, ..., 3t\}$  as follows: For all i=1, 2, ..., t,  $f(vv_i) = 3i$ ;  $f(vu_i) = 3i-2$ ;  $f(u_iv_i) = 3i-1$ . Then the induced map f an V(G) is obtained as follows : For all i=1, 2, ..., t,  $f'(u_i) = 6i-3$ ;  $f'(v_i) = 6i-1$ ; and f'(v) = t (3t+1). As  $t \ge 2$ , t (3t+1)  $\ge$  7t, it follows that f' is injective and the map f defines an antimagic labeling for  $C_3^{(t)}$ 

**Theorem 2.12**: Fan graph  $F_n$  admits an antimagic labeling, for all positive integers  $n \ge 2$ . **Proof:** 

Let  $v_1v_2....v_n$  be the path  $P_n$  and the fan graph  $F_n$  be obtained from  $P_n$  by introducing a new vertex and joining it with every vertex of  $P_n$ . So  $V(G) = \{v_iv_i / 1 \le i \le n\}$  and  $E(G) = \{vv_i, v_iv_{i+1} / 1 \le i \le n; 1 \le j \le n-1\}$ .

Define f:  $E(G) \rightarrow \{1, 2, \dots, 2n-1\}$  as follows :

 $f(v_iv_{i+1}) = i \text{ for } 1 \leq i \leq n-1, \text{ and }$ 

 $f(vv_{i)} = 2n \text{-}i \qquad \text{for } 1 \leq i \leq n.$ 

Then the induced map f is given by  $f(v_i) = 2n+i-1$  for i == 1,2,...,n-1

$$f(u_n) = 2n - 1$$

$$f^*(v) = \frac{n(3n-1)}{2}.$$

As  $n \ge 2$ ,  $f'(v) = \frac{n(3n-1)}{2} \ge 3n-1 > f'(v_i)$ , for all i = 1, 2, ..., n-1.

So f induces an antimagic labeling for  $F_n (n \ge 2)$ .



Figure 2.10 antimagic labeling for (a)  $C_{3}^{(5)}$  and (b)  $F_{8}$ 

A graph G is said to be a Lantern if it has two adjacent vertices u and v such that all the other vertices of G are adjacent to both u and v and G has no other edges. In fact  $G = K_2 + \overline{K_n}$ , for some  $(n \ge 2)$ .

**Theorem 2.13: Lantern**  $G = K_2 + \overline{K_n}$ ,  $(n \ge 2)$ , is antimagic.

**Proof:** Let  $G = K_2 + \overline{K_n}$ ,  $(n \ge 2)$ . Let  $V(G) = \{u,v,u_i, / 1 \le i \le n\}$  and  $E(G) = \{uv, uu_i, vu_i / i = 1 \le i \le n\}$ . Define  $f : E(G) \longrightarrow \{1,2,...,2n+1\}$  as follows:  $f(uu_i) = 2i-1$ ;  $f(vu_i) = 2i$ ; for  $1 \le i \le n$  and f(uv) = 2n+1. Then the mapping f on V(G) is obtained as follows :

 $f^{*}(u_{i}) = 4i-1$  for  $1 \le i \le n$ ;  $f^{*}(u) = n^{2}$  and  $f^{*}(u) = n^{2} + n$ .

Clearly f is injective if n =2 or 3. If  $n \ge 4$ , then  $n^2 + n > n^2 > 4n-1$  and hence f is injective in all the cases. Thus, f defines an antimagic for  $K_2 + \overline{K_n}$ , for  $n \ge 2$ .



## Figure 2.11 : an antimagic labeling for $K_2 + \overline{K_5}$

A triangular snake is obtained from a path  $P_{n, u_1u_2,...,u_n}$ ,  $(n \ge 3)$ , by introducing new vertices  $v_{1,v_2,...,v_{n-1}}$  and joining  $v_i$ ,  $(1 \le i \le n-1)$ , with the vertices  $u_i$  and  $u_{i+1}$ .

#### Theorem 2.14: Every triangular snake is antimagic.

#### **Proof:**

Let G be the triangular snake obtained from the path P<sub>n</sub>.

Let  $V(G) = \{ u_{i}, u_{j} / 1 \le i \le n; 1 \le j \le n - 1 \}$  and  $E(G) = \{ u_{i}u_{i+1}, u_{i}v_{i}, u_{i+1}u_{i} / i = 1 \le i \le n - 1 \}$ . Define  $f : E(G) \longrightarrow \{1, 2, ..., 3n - 3 \}$  as follows:

$$f(u_i v_i) = i$$
  

$$f(u_{i+1}, v_i) = n + i - 1$$
 for  $i = 1, 2, ..., n - 1$   

$$f(u_1 u_2) = \begin{cases} 2n & \text{if } n \text{ is odd} \\ 2n - 1 \text{ if } n \text{ is even} \end{cases}$$

39

$$f(u_2u_3) = \begin{cases} 2n-1 & \text{if n is odd} \\ 2n & \text{if n is even} \end{cases}$$

$$f(u_iu_{i+1}) = 2n + (i-2) \text{ for } 3 \le i \le n-1.$$
The induced map f\* is obtained as f' (v<sub>1</sub>) = n+i for  $1 \le i \le n-1.$ 

$$f^{*}(u_1) = \begin{cases} 2n & \text{if n is even} \\ 2n+1 \text{ if n is odd} \end{cases}$$

 $f^{*}(u_{2}) = 5n+1$ 

$$f^{i}(u_{3}) = \begin{cases} 5n+5 & \text{if n is even} \\ 5n+4 & \text{if n is odd} \end{cases}$$

$$\begin{split} f^*\left(u_i\right) &= 5n{+}4i{-}7 \quad \text{for } 4 \leq i \leq n{-}1.\\ f^*\left(u_n\right) &= 5n{-}5. \end{split}$$

Clearly, f is injective and f is an antimagic labeling for G.



Figure 2.12 : An antimagic labeling for a triangular snake ,(n is even ).

**Theorem2.15:** Let  $\{u_{i,} v_i w_i u_{i}, 1 \le i \le n\}$  be a collection of n disjoint triangles . Let G be the graph obtained by joining  $w_i$  to  $u_{i+1}, 1 \le i \le n-1$  and joining  $u_i$  to  $u_{i+1}$  and  $v_{i+1}, 1 \le i \le n-1$ . Then the graph G is antimagic .

**Proof:** The order and size of G are 3n and 6n-3 respectively.

Assume that  $n \ge 3$ . Define f: E(G)  $\rightarrow \{1, 2, ..., 6n-3\}$  as follows:

$$f(u_i v_i) = \begin{cases} i & \text{if } i \neq \frac{n+1}{3}, \frac{n+4}{3} \\ i+1 & \text{if } i = \frac{n+1}{3} \\ i-1 & \text{if } i = \frac{n+4}{3} \end{cases}$$

 $f^{*}(u_{1}) = 10n+2$ ;  $f^{*}(u_{n}) = 15n-5$ .

$$f'(v_i) = \begin{cases} 19n + 6i - 7 \text{ for } 2 \le i \le n - 1 \text{ but } i \ne \frac{n+1}{3}, \frac{n+4}{3} \\ 19n + 6i - 6 \text{ if } i = \frac{n+1}{3} \\ 19n + 6i - 8 \text{ if } i = \frac{n+4}{3} \end{cases}$$

$$f^{*}(w_{i}) = \begin{cases} 7n + 3i - 1 \text{ for } 1 \le i \le n - 1 \\ 5n \text{ if } i = n \end{cases}$$

The map f is an antimagic labeling for G.



Figure 2.13: An antimagic labelling for G (Theorem 2.15) when n = 8.

### References

- [1] N. Hartsfield and G. Ringel, Pearls in Graph Theory Academic Press, SanDego,1990.
- [2] J.A. Gallian A Dynamic Survey of Graph Labeling, Electronic J.Combinatorics, 5(1998) # DS6, 1 42.
- [3] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull., 13 (1970)451 461.
- [4] R.Balakrishnan and R. Kumar, Eistance and nonexistence of certain labelings for the graph  $K_n^c V 2K_2$ , Utilitas Math. 46(1994) 97 102.
- [5] R.Umarani, A Study on graph labelings k-Equitable and strong  $\alpha$  labelings, Ph.D. Thesis, 2003.