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Abstract: In a graph G = (V, E), a set SV(G) is a distance closed set of G if for each vertex uS 
and for each wV – S, there exists at least one vertex vS such that d<S> (u, v) = dG (u, w). Also, S is 
said to be a distance closed dominating set of G if (i) <S> is distance closed and (ii) S is a dominating 
set. The critical concept in graphs plays an important role in the study of structural properties of graphs 
and hence it will be useful to study any communication model. The critical concept of distance closed 
domination which deals with those graphs that are critical in the sense that their distance closed 
domination number drops when any missing edge is added. The structural properties of k-distance 
closed domination critical graphs for k ≤ 4 are studied in [13]. In this paper, we analyze the structural 
properties of k- distance closed domination critical graphs for k = 5 and 6. 
 
Keywords: domination number, distance, eccentricity, radius, diameter, self-centered graph, 
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1. Introduction 
Graphs discussed in this paper are connected and simple graphs only. For a 

graph, let V(G) and E(G) denotes its vertex and edge set respectively. The degree of a 
vertex v in a graph G is denoted by degG(v) and minimum degree and maximum degree of 

G are indicated by δ(G) and Δ (G) respectively. The length of any shortest path between 
any two vertices u and v of a connected graph G is called the distance between u and v and 
it is denoted by dG(u, v). The distance between two vertices in different components of a 
disconnected graph is defined to be ∞. For a connected graph G, the eccentricity eG(v) = 
max {dG(u, v): u V(G)} and the eccentric set EG(v) = {u V(G):d(v, u) = eG(v)}. If 
there is no confusion, we simply use the notation deg (v), d(u, v), e(v) and E(v) to denote 
degree, distance, eccentricity and eccentric set respectively for a connected graph. The 
minimum and maximum eccentricities are the radius and diameter of G, denoted by r(G) 
and d(G) respectively. If these two are equal in a graph, that graph is called self-centered 
graph with radius r and is called an r self-centered graph. Such graphs are 2-connected 
graphs. A vertex u is said to be an eccentric vertex of v in a graph G, if d(u, v) = e(v) in 
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that graph. For vV(G), the neighborhood NG(v) of v is the set of all vertices adjacent to v 
in G. The set NG[v] = NG(v) {v} is called the closed neighborhood of v.  

One important aspect of the concept of distance and eccentricity is the existence 
of polynomial time algorithm to analyze them. The concept of distance and related 
properties are studied in [3], [6] and [15] and the structural properties of radius and 
diameter critical graphs are studied in [7] and [16] respectively. The new concepts such as 
ideal sets, distance preserving sub graphs, eccentricity preserving sub graphs, super 
eccentric graph of a graph, pseudo geodetic graphs are introduced and structural 
properties of those graphs are studied in [11].  

The concept of domination in graphs originated from the chess games theory and 
that paved the way to the development of the study of various domination parameters and 
its relation to various other graph parameters. A set DV(G) is called a dominating set 
of G if every vertex in V(G) – D is adjacent to some vertex in D and D is said to be a 
minimal dominating set if D – {v} is not a dominating set for any vD. The domination 

number γ(G) is the minimum cardinality of a dominating set. We call a set of vertices a   

γ-set if it is a dominating set with cardinality γ(G). Different types of dominating sets 
have been studied by imposing conditions on dominating sets. A dominating set D is 
called a connected dominating set if the induced sub graph <D> is connected. The list of 
survey of domination and connected domination papers are in [4], [5], [8], [9], [14] and 
[17]. Janakiraman and Alphonse [2] introduced and studied the concept of weak convex 
dominating sets, which mixes the concept of dominating set and distance preserving set. 
Using these, structural properties of various dominating parameters are studied.  

Graphs which are critical with respect to a given property frequently play an 
important role in the investigation of that property. Not only are such graphs of 
considerable interest in their own right, but also a knowledge of their structure often aids 
in the development of general theory. In particular, when investigating any finite 
structure, a great number of results are proven by induction. Consequently, it is desirable 
to learn as much as possible about those graphs that are critical with respect to a given 
property so as to aid and abet such investigation. A graph G is said to be domination 

critical if for every edge eE(G), γ(G + e) < γ(G). If G is a domination critical graph with 

γ(G) = k, we will say  G is k-domination critical or just k-critical. The 1-critical graphs are 
Kn, for n ≥ 1. The concept of domination critical graphs and their structural properties are 
studied in [1], [10] and [18]. 
 In this paper, we studied the distance closed domination critical graphs through 
which the structural properties of those graphs are studied. Since this concept deals the 
reduction in the cardinality of distance closed dominating set for any addition of one new 
link in the original structure, it will be useful to study the communication model, which 
reduces it dominating parameters by simple addition of a link, which doesn’t exist in the 
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system. Hence this critical concept can be directly applied to the construction of a fault 
tolerant communication model. 

 
2. Prior Results 

The concept of ideal set is defined and studied in the doctoral thesis of 
Janakiraman [11] and the concept of ideal sets in graph theory is due to the related 
concept of ideals in ring theory in algebra. The ideals in a ring are defined with respect to 
the multiplicative closure property with the elements of that ring. Similarly, the ideal set in 
a graph is defined with respect to the distance property between the ideal set and the 
vertices of the graph. Thus, the ideal set of a graph G is defined as follows: 
Let I be a vertex subset of G. Then I is said to be an ideal set of G if  

(i) For each vertex uI and for each wV –  I, there exists at least one vertex vI 
such that d<I> (u, v) = dG(u, w). 

(ii)  I is the minimal set satisfying (i). 
Also, a graph G is said to be a 0-ideal graph if it has no non-trivial ideal set other than G. 
The ideal set without the minimality condition is taken as a distance closed set in the 
present work. Thus, the distance closed dominating set of a graph G is defined as follows: 
A subset SV(G) is said  to be a distance closed dominating (D.C.D) set, if 

(i) <S> is distance closed; 
(ii) S is a dominating set. 

          The cardinality of a minimum D.C.D set of G is called the distance closed 

domination number of G and is denoted by γdcl. 

          Clearly from the definition, 1 ≤ γdcl ≤ p and a graph with γdcl = p is called a            
0-distance closed dominating graph. If S is a D.C.D set of a graph G, then <S> need not be 
connected and also the complement V – S need not be a D.C.D set of G. The definition 
and the extensive study of the above said distance closed domination in graphs are studied 
in [12].  

A graph G is said to be a distance closed domination critical if for every edge      

eE(G), γdcl(G + e) < γdcl(G). If G is a D.C.D critical graph with γdcl(G) = k, then G is 
said to be k-D.C.D critical. There is no 2-D.C.D critical graph. The structural properties of 
k-distance closed domination critical graphs for k = 3 and 4 are studied in [13] and 
following are some of the results given in [13]. 
 
Theorem 2.1 [13]: A graph G is 3-D.C.D critical if and only if                                        
              (i) G is connected.                                                

 (ii) G has γdcl(G) = 3.  
(iii) G has exactly one vertex with eccentricity equal to 1.  
(iv) For every pair of non adjacent vertices at least one of them is of degree p – 2. 
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 Theorem 2.2 [13]: Any 3-D.C.D critical graph has diameter equal to two. 
 

Theorem 2.3 [13]: Any 3-D.C.D critical graph with δ ≥ 2 is a block. 
 
Theorem 2.4 [13]: A graph G is 4-D.C.D critical if and only if  

(i) G is connected. 

(ii) G has γdcl(G) = 4. 
(iii) For any two non adjacent vertices at least one of them is of degree p – 2. 

 
Theorem 2.5 [13]: Any 4-D.C.D critical graph is self centered of diameter 2. 
 
Theorem 2.6 [13]: Any 4-D.C.D critical graph is a block. 
 

3. Main Results 
  Continuing the above, we studied the structural properties of k-distance closed 
domination critical graphs for k = 5 and 6. There are many structures possible for a        
k-distance closed domination critical graph for k ≥ 5. Here, we analyzed the type (I) and 
type (II) structures of 5-D.C.D and 6-D.C.D critical graphs respectively.  
 
3.1 5-D.C.D critical graphs: 
If G is a 5-D.C.D critical graph, then addition of an edge will reduce the D.C.D number of 
G by exactly 1. Also, if D is a minimum D.C.D set of a 5-D.C.D critical graph, then <D> 
need not be a path (it may contain cycle also). Thus, there are many structures possible for 
a 5-D.C.D critical graph depends on the structure of the induced sub graph of the 
minimum D.C.D set. For example, the structural design of 5-D.C.D critical graphs, in 
which the induced sub graph of every minimum D.C.D set is a path (type (I) structure), is 
given below in Figure 3.1 and hereafter this type of structure is represented by 5-D.C.D 
critical graphs with type (I) structure or simply 5-D.C.D type (I) critical graphs. 
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                   Figure 3.1 - Structural design of 5-D.C.D type (I) critical graphs 
 
The following theorems are based on the above 5-D.C.D type (I) critical graphs. 
Theorem 3.1.1: If G is a 5-D.C.D type (I) critical graph, then G has a unique pair of 
peripheral nodes. 
Proof: Let G be a 5-D.C.D type (I) critical graph and let D be a minimum D.C.D set of G. 
Then <D> is the diametral path on 5 vertices and it must contain exactly the two 

peripheral nodes, say v and v . Suppose if G has a third peripheral node w, then it must be 

adjacent to either v or v  (Otherwise addition of an edge between v and w (or) v  and w 
will not affect the D.C.D number of G). Now, addition of an edge between w to any of the 
central vertex of G will not reduce the D.C.D number of G. Hence, G has a unique pair of 
peripheral nodes and every D.C.D set of G must contain this pair of peripheral nodes. 
 
Lemma 3.1.1: If G is a 5-D.C.D type (I) critical graph, then diameter of G is equal to 4. 
Proof: If D is a minimum D.C.D set of a 5-D.C.D type (I) critical graph G, then D must 
contain the unique pair of peripheral nodes of G and the induced sub graph of D, <D> is 
the diametral path on 5 vertices. Since, it is the distance preserving sub graph of G having 
diameter 4, G must have diameter equal to 4. 
 
Corollary 3.1.1: If G is a 5-D.C.D type (I) critical graph, then radius of G is equal to 2. 
 
Lemma 3.1.2: If v is a vertex of a 5-D.C.D type (I) critical graph with e(v) = 2, then         
d(v) = p – 3. 
Proof: Let G be a 5-D.C.D type (I) critical graph and let v be vertex with e(v) = 2. Then, v 
must be adjacent to all the vertices u of eccentricity 2 and 3, otherwise addition of an edge 
between u and v will not affect the D.C.D number of G.  Hence, the only possibility is that 
v is non adjacent to the unique pair of peripheral nodes of G and hence d(v) = p – 3. 
 

Corollary 3.1.2: If G is a 5-D.C.D type (I) critical graph, then δ(G) ≥ 1 and Δ (G) = p – 3. 
 
Note 3.1.1: C5 is the smallest 5-D.C.D type (I) critical graph having the above bound. 
 
Theorem 3.1.2: Let G be a 5-D.C.D type (I) critical graph. Then for every pair of non 
adjacent vertices of G, there exists a minimum D.C.D set that contains both. 
Proof: Let G be a 5-D.C.D type (I) critical graph and let D = {x, u, v, w, y} be a minimum 
D.C.D set of G. Then, <D> is a path and x, y are the unique pair of peripheral nodes of G. 
Therefore, any vertex zV – D implies that e(z) = 2 or e(z) = 3. 
Claim: There exists a minimum D.C.D set different from D, containing the vertex z and 
the vertices non adjacent to z 
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Case (i): e(z) = 2 

If e(z) = 2, then d(z) = p – 3 and is adjacent to all the vertices of D except the two 
peripheral nodes x and y, i.e., z is adjacent to all the vertices of V(G) – {x, y}. Also, there 
exists a set {x, u, z, w, y}, which is also a minimum D.C.D set of G that contains both the 
pair of non adjacent vertices (z, x) and (z, y).  
Case (ii): e(z) = 3 

If e(z) = 3, then z must be adjacent to v and x (as z is of eccentricity 3 it must be 
adjacent to any one of the peripheral node, say x). Also, there exists a minimum D.C.D set 
{x, z, v, w, y} that contains the pair of non adjacent vertices (z, w) and (z, y).   

Hence, the theorem. 
 
Corollary 3.1.3: If G is a 5-D.C.D type (I) critical graph, then every vertex must be in at 
least one minimum D.C.D set of G. 
 
Theorem 3.1.3: If G is a 5-D.C.D type (I) critical graph, then for every peripheral vertex v 
of G, <Ni(v)> is a clique for i = 1 to 4 and also < Ni(v) Ni+1(v) > is a clique for  i = 1 to 
3. 
Proof: Let G be a 5-D.C.D type (I) critical graph and let D be a minimum D.C.D set of G. 

Then G has a unique pair of peripheral nodes (say v, v ) and D must contain these 

peripheral nodes. Also, the eccentric node of each vertex in G is either v or v . Therefore, 
each Ni(v) for i = 1 to 4 has vertices with same eccentricity and D must contain exactly 
one vertex from each Ni(v) for i = 1 to 4, as <D> is a path. 
 Suppose that, if x and y are any two non adjacent vertices of Ni(v) for i = 1 to 4, 
then e(x) = e(y) and also it means that x and y are in different D.C.D sets of G, a 
contradiction.  Hence every pair of vertices in Ni(v), for i = 1 to 4 are adjacent and hence 
each Ni(v), for i = 1 to 4 is a clique.  Also, every vertex with eccentricity equal to 2 must be 

adjacent to all the (p – 3) vertices (except v and v ) of G and a vertex with eccentricity 
equal to 3 must be adjacent to all the vertices with eccentricity equal to 2. Hence for a 
peripheral vertex v of G, <Ni(v) Ni+1(v)> is a clique, for i = 1 to 3. 
 
Proposition 3.1.1: If G is a 5-D.C.D type (I) critical graph, then G can have at most 2 
pendant vertices. 
Proof: Let G be a 5-D.C.D type (I) critical graph. Then every vertex u in G belongs to at 
least one minimum D.C.D set D of G. Also, <D> is the diametral path and it contains 

exactly the two peripheral vertices {v, v } of G. Therefore, d(u) ≥ 2, for every vertex u in 
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V(G) – {v, v }. Hence, the vertices {v, v } can be the pendant vertices of G and hence G can 
have at most 2 pendant vertices. 
 
Theorem 3.1.4: If G is a 5-D.C.D type (I) critical graph, then G can have at most 3 cut 
vertices. 
Proof: If u is a cut vertex of a 5-D.C.D type (I) critical graph G, then u must be in every 

D.C.D set {v, u1, u2, u3, v } of G, where u1A, u2B and u3C and also u cannot be a 
peripheral node of G. Hence, u can be any one of the vertex in the set {u1, u2, u3} and 
hence G can have at most 3 cut vertices. 
 
Theorem 3.1.5: If u is a cut vertex of a 5-D.C.D type (I) critical graph, then 

(i) G – u can have at most two components and 
(ii) One of the components is a clique. 

Proof: Let u be a cut vertex of a 5-D.C.D type (I) critical graph G. Then, u must be in 

every D.C.D set {v, u1, u2, u3, v } of G, where u1A, u2B and u3C. Also, u can be any 
one of the vertex in {u1, u2, u3}. 
Case (i): u = u1 

If u = u1, then e(u) = 3 and u is the only vertex in A. Also, G – u has two 

components C1 and C2 such that C1 = {v} and C2 = B C { v }. Hence, in this case G – u 
has two components and one of them is a clique. 
Case (ii): u = u2 

If u = u2, then e(u) = 2 and u is the only vertex in B. Also, G – u has two 

components C1 and C2 such that C1 = {v} A and C2 = C { v }. Hence, in this case          
G – u has two components and both of them are cliques. 
Case (iii): u = u3 

If u = u3, then e(u) = 3 and u is the only vertex in C. Also, G – u has two 

components C1 and C2 such that C1 = {v}  A  B and C2 = { v }. Hence, in this case G – u 
has two components and one of them is a clique. 
 Hence from all the three cases, we have the theorem. 
 
Proposition 3.1.2: If G is a 5-D.C.D type (I) critical graph G, then we have the following: 

(i) If u is a unique central vertex (cut vertex with e(u) = 2) of G, then |N2(u)| = 2 and 
<N2(u)> is independent.  

(ii)  If u is cut vertex of G with e(u) = 3, then |N3(u)| = 1. 
Proof: Let G be a 5-D.C.D type (I) critical graph. 

(i) If u is a unique central vertex of G, then d(u) = p – 3 and u is non adjacent to 
only the unique pair of peripheral nodes (v, v ) of G. Hence, |N2(u)| = 2 and 
<N2(u)> is independent (as v and v  are non adjacent).  
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(ii) If u is a cut vertex with e(u) = 3, then u must be in either A or C.  If uA then 

N3(u) = { v } and if  uC then N3(u) = {v}.  Hence in both the cases, |N3(u)| = 1.  
 

Proposition 3.1.3: Any 5-D.C.D type (I) critical graph G, which is also a block, is 
Hamiltonian. 
Proof: For any vertex v in G, <Ni(v)>, i = 1 to 4 is a clique and also |A|, |B| and |C| ≥ 2 (as 
G is a block). Hence, we can have a cycle that covers all the vertices of G (refer Figure 3.1) 
and hence G is Hamiltonian. 
 
Proposition 3.1.4: Every 5-D.C.D type (I) critical graph with a unique central vertex has 
an eccentricity preserving spanning tree. 

Proof: Let G be a 5-D.C.D type (I) critical graph and let D = {v, u1, u2, u3, v }, where      
u1A, u2B and u3C be a minimum D.C.D set of G. Then, <D> is a path in which u2 is 

the unique central vertex and (v, v ) is the unique pair of peripheral nodes of G. Also, 
d(u2) = p – 3 and u2 is adjacent to all the vertices of V(G) – D. Thus, the induced sub 
graph of D together with the edges from u2 to the vertices of V(G) – D will form an 
eccentricity preserving spanning tree of G. 
 
Theorem 3.1.6: Any 5-D.C.D type (I) critical graph is diameter edge (addition) critical. 
Proof: Let G be a 5-D.C.D type (I) critical graph.  Then G is of diameter 4 and radius 2. 
In G, for every pair of non adjacent vertices (u, v), there exists a minimum D.C.D set D 
that contains both (u, v) and also <D> is the diametral path of G. Hence, addition of an 
edge between any pair of non adjacent vertices in G will reduce the diameter of G to 3 or 
2 and hence G is diameter edge (addition) critical. 
                           

Proposition 3.1.5: There exists no graph G for which both G and G  are 5-D.C.D type (I) 
critical.      
Proof: Without loss of generality, assume that G is a 5-D.C.D type (I) critical graph. Then, 

the diameter of G is 4 and G  contains a dominating edge. Hence, γdcl( G ) = 4 and hence 

G  cannot be 5-D.C.D type (I) critical. 
 
3.2 6-D.C.D critical graphs: 
If G is a 6-D.C.D critical graph, then addition of an edge will reduce the D.C.D number of 
G by at most 2. Also, if D is a minimum D.C.D set of a 6-D.C.D critical graph, then <D> 
cannot be a path (as addition of an edge between the two peripheral nodes of that path 
will not reduce the D.C.D number of G). Thus, <D> may contain a cycle of length less 
than or equal to 6. The structural design of 6-D.C.D critical graphs, in which the induced 
sub graph of every minimum D.C.D set is a cycle C6 (type (II) structure), is given below 
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and hereafter this type of structure is represented by 6-D.C.D critical graphs with type (II) 
structure or simply 6-D.C.D  type (II) critical graphs. 
 
 
 
 
 

 
 
 
 
 

 
 
  

  
 

 
 
 
 
 

      Figure 3.2 - Structural design of 6-D.C.D type (II) critical graphs 
        

The following theorems are based on the above structure. 
Theorem 3.2.1: Let G be a 6-D.C.D type (II) critical graph. If u and v are any two non 
adjacent vertices of G, then there exists a minimum D.C.D set that contains both u and v. 
Proof: Let G be a 6-D.C.D type (II) critical graph and let D = {x, u, v, y, v1, u1} where      
u, u1N1(x); v, v1N2(x) and yN3(x) be a minimum D.C.D set of G. Then, <D> is a 
cycle and a vertex zV – D, which is non adjacent to x implies that either zN2(x) or 
zN3(x). 
Claim: There exists a minimum D.C.D set different from D, that contains both x and z 
Case (i): zN2(x) 
 If zN2(x), then z must be adjacent to y and it is adjacent to exactly one vertex of 
{u, u1}, say u1. Now, the set of vertices {x, u, v, y, z, u1} forms a minimum D.C.D set of G 
in which x and z are non adjacent. 
Case (ii): zN3(x) 
 If zN3(x), then z must be adjacent to y and it is adjacent to both the vertices of   
{v, v1}.  Now, the set of vertices {x, u, v, z, v1, u1} forms a minimum D.C.D set of G in 
which x and z are non adjacent. 
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 Therefore from cases (i) and (ii), we have the result. 
 
Corollary 3.2.1: If G is a 6-D.C.D type (II) critical graph, then every vertex must be in at 
least one minimum D.C.D set of G. 
 
Lemma 3.2.1: Any 6-D.C.D type (II) critical graph is self centered of diameter 3. 
Proof: If G is a 6-D.C.D type (II) critical graph, then the induced sub graph of any 
minimum D.C.D set of G is a cycle C6 and every vertex of G must lies in at least one C6. 
Hence, G must be self centered of diameter 3. 
 
Corollary 3.2.2: If G is a 6-D.C.D type (II) critical graph, then G is a block. 
Proof: As any 6-D.C.D type (II) critical graph is self centered of diameter 3, G must be a 
block. 
 

Proposition 3.2.1: If G is a 6-D.C.D type (II) critical graph, then δ(G) ≥ 2 and               
Δ (G) ≤ p – 4. 

Proof: As G is 3-self centered, δ(G) ≥ 2. Also, every vertex v of G must lies in at least one 
C6. Hence, v must be non adjacent at least three vertices of G and hence Δ (G) ≤ p – 4. 
 
Note 3.2.1: C6 is the smallest 6-D.C.D type (II) critical graph having the above bound. 
  
Theorem 3.2.2: If G is a 6-D.C.D type (II) critical graph, then for every vertex vV(G),                    
           (i) <N3(v)> is complete. 
           (ii) Every vertex in N2(v) is adjacent to all the vertices of N3(v). 
Proof: Let G be a 6-D.C.D type (II) critical graph and let v be a vertex in G.  

(i) Suppose that, if x and y are any two non adjacent vertices of N3(v), then 
addition of an edge between x and y will not affect the D.C.D number of G (as they are 
eccentric nodes of v), a contradiction to G is 6-D.C.D critical. Hence, every pair of vertices 
x and y in <N3(v)> are adjacent and hence <N3(v)> is complete. 

(ii) Suppose, if a vertex u in N2(v) is not adjacent to a vertex w in N3(v), then  u 
and w must lie on a C7 in which addition of an edge uw will not reduce the D.C.D 
number of G, a contradiction to G is 6-D.C.D critical. Hence, the vertices u and w are 
adjacent and hence every vertex in N2(v) is adjacent to all the vertices of N3(v). 
 
Theorem 3.2.3: Let G be a 6-D.C.D type (II) critical graph and let vV(G). If a vertex u 
in N1(v) has no successors in N2(v) then we have the following: 
            (i) u is adjacent to all the vertices of N1(v) and 
           (ii) E(u) = N3(v).  
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Proof Let G be a 6-D.C.D type (II) critical graph and for a vertex vV(G), let u be a 
vertex in N1(v) which has no successors in N2(v). 

(i) Suppose that, if u is not adjacent to a vertex w in N1(v), then the vertices u, v 
and w lie on a C7 (as u has no successors and N1(v) has at least one pair of non adjacent 
vertices), in which addition of an edge uw will not reduce the D.C.D number of G, a 
contradiction to G is 6-D.C.D critical. Hence, the vertices u and w are adjacent and hence 
every vertex in N2(v) is adjacent to all the vertices of N3(v). 

(ii) By result (i), the vertex u is adjacent to all the vertices of N1(v). Thus the 
distance between u to any vertex x in N2(v) must be equal to 2. That is d(u, x) = 2, for all 
xN2(v). Also every vertex in N2(v) is adjacent to all the vertices of N3(v) and <N3(v)> is a 
clique in G. Hence, d(u, y) = 3 for every vertex yN3(v) and hence the eccentric set of u is 
N3(v). 
 
Theorem 3.2.4: Let v be a vertex of a 6-D.C.D type (II) critical graph and let S be the set 
of vertices in N1(v) having no successors. Then we have the following: 

(i) <N1(v) –  S> and <N2(v)> has exactly two components A1, A2 and B1, B2  
respectively such that each <Ai >, <Bi>, i = 1 to 2 is a clique; 

(ii)  <A1∪ B1>and <A2∪ B2> are also cliques. 
Proof: Let v be a vertex of a 6-D.C.D type (II) critical graph and let S be the set of vertices 
in N1(v) having no successors.              

(i) Now, let u and w are any two non adjacent vertices of N1(v) –  S. Then, every 
vertex in N1(v) –  S∪ {u, w} is adjacent to exactly one vertex of {u, w}. Hence, the set of 
vertices in N1(v) – S has two components A1 and A2 where A1 is the set of vertices in   
N1(v) – S which are adjacent to u and A2 is the set of vertices in N1(v) – S which are 
adjacent to w. Since u and w are non adjacent, their corresponding successors are also pair 
wise non adjacent. Hence <N2(v) has exactly two components B1 and B2, where B1 is the set 
of vertices in N2(v) which are the successors of A1 and B2 is the set of vertices in N2(v) 
which are the successors of A2. 
 The vertices of B1 and B2 are adjacent to all the vertices of N3(v) and <N3(v)> is a 
clique. Also, the eccentric set of each vertex in A1 is the set B2 and vice versa. Hence <A1> 
and <B2> are cliques. Similarly the eccentric set of each vertex in A2 is the set B1 and vice 
versa. Hence <A2> and <B1> are cliques.  
 (ii) As every vertex u in B1 has N2(u) = B2 and N3(u) = A2, every vertex in B2 is 
adjacent to all the vertices of A2 and also every vertex w in A1 has N2(u) = A2 and         
N3(u) = B2, every vertex in A2 is adjacent to all the vertices of B2. Hence, <A2  B2> is a 
clique. Similarly we can prove <A1  B1> is also a clique. 

Therefore, we have the results (i) and (ii). 
 



 
 

12 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Theorem 3.2.5: Let v be any vertex of a 6-D.C.D type (II) critical graph and let u and w be 
any two non adjacent vertices of N1(v). Then, every vertex in N1(v) – {u, w} which is 
having successors in N2(v) is adjacent to exactly one vertex of {u, w}. 
Proof: Let v be any vertex of a 6-D.C.D type (II) critical graph and let u and w be any two 
non adjacent vertices of N1(v). If x is a vertex of N1(v), which has a successor in N2(v), 
then we need to prove the following. 
Claim 1: x must be adjacent to at least one of vertex of {u, w} 
 Suppose that, if x is not adjacent to both u and w then addition of an edge 
between (u, x) or (w, x) will not affect the D.C.D number of G, as {u, x} is the eccentric set 
of w1 and {w, x} is the eccentric set of u1, where u1 and w1 are the successors of u and w 
respectively in N2(v). Hence, x must be adjacent to at least one vertex of {u, w}. 
Claim 2: x cannot be adjacent to both the vertices of {u, w} 
 If x is adjacent to both u and w, then x is a common vertex of two cycles each of 
length 5, namely {u, x, x1, y, u1} and {x, w, w1, y, x1} where u1, w1 and x1 are the successors 
of u w and x respectively in N2(v). Hence, the eccentricity of x will be 2, a contradiction to 
G is 3-self centered and hence x cannot be adjacent to both the vertices of {u, w}. 
 Therefore, every vertex in N1(v) – {u, w} which is having successors in N2(v) is 
adjacent to exactly one vertex of {u, w}. 
 
Proposition 3.2.2: Let G be a 6-D.C.D type (II) critical graph and let vV(G). For a pair 
of non adjacent vertices u and w of N1(v) define the sets X and Y as follows: 
             X = {xN2(v) | x is a successor of u} and                 
                         Y = {yN2(v) | y is a successor of w}. 
Then every pair of vertices (x, y) where xX and yY are non adjacent. 
Proof: Let G be a 6-D.C.D type (II) critical graph and let vV(G). Suppose that, if a 
vertex xX and yY are non adjacent, then the set of vertices { v, u, x, y, w} forms a C5 
in G, a contradiction to G is 3-self centered. Hence, every pair of vertices (x, y) where 
xX and yY are non adjacent. 
 
Theorem 3.2.6: Any 6-D.C.D type (II) critical graph is radius edge (addition) critical. 
Proof: Let G be a 6-D.C.D type (II) critical graph. Then G is self centered of   diameter 3. 
If x and y are any two non adjacent vertices of G, then there exists a D.C.D set D that 
contains both x and y. Also addition of the edge xy in G will reduce the eccentricity of x 
and y to 2 and at least one pair of vertices in V(G) – {x, y} must have the same eccentricity 
3 in (G + xy). Hence, for every pair of non adjacent vertices x and y, (G + xy) is of 
diameter 3 and radius 2 and hence G is radius edge (addition) critical.  
 
Theorem 3.2.7: Any 6-D.C.D type (II) critical graph G is Hamiltonian. 
Proof: If G is a 6-D.C.D type (II) critical graph and if v is a vertex of G, then each 
component of <Ni(v)>, for i = 1 to 3 is a clique. Hence, we can have a cycle             
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(v→ S→A2→ B2→N3(v)→ B1→A1→ v) that covers all the vertices of G (refer 
Figure 3.2) and hence G is Hamiltonian.  
 
Proposition 3.2.3: Let G be a 6-D.C.D type (II) critical graph. If v is a vertex with degree 

δ and if it has k eccentric nodes, then q = 1 + δ(G) + { 

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
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2

m
+ 
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
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



2
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} + rk, where           

m = |A1∪ B1|, n = |A2∪ B2| and r = |B1∪ B2 | = |N2(v)|. 
 

Proof: Let G be a 6-D.C.D type (II) critical graph and let v be a vertex with degree δ. 
Also, |E(v)| = k. Then we have 

(i) <N1(v) – S>, where S is the set of vertices in N1(v) having no successors and 
<N2(v)> has exactly two components {A1, A2} and {B1, B2} respectively such 
that each <Ai>, <Bi>, i = 1 to 2 is a clique. 

(ii)  <A1∪ B1> and <A2∪ B2> are also cliques. 
(iii) Every vertex in N2(v) is adjacent to all the k vertices of N3(v). 
(iii) < N3(v)> is a clique. 

Therefore,  
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   q = 1 + δ(G)+ { 
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






2
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} + rk, 

where m = |A1∪  B1|, n = |A2∪ B2| and r = |N2(v)|. 
               

Open Problems 
1. Find the structures other than the type (I) and type (II) of k-distance closed 

domination critical graphs for k ≥ 5. 
2. Analyze the structural properties of distance closed domination critical graphs 

with respect to edge deletion. 
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