International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 2, No. 4, October –December 2011, pp.209- 216

Excellent – Domination Dot Stable Graphs

M. Yamuna¹ and K. Karthika²

SAS, VIT University, Vellore, India – 632 014.

¹myamuna@vit.ac.in, ²karthikakumarasamy@gmail.com

Abstract: A graph G is said to be domination dot stable (DDS) if γ (G•uv) = γ (G), \forall u, $v \in V(G)$, u adjacent to v. In this paper we introduce a DDS graph. We have obtained a necessary and sufficient condition for a graph to DDS. We have initiated a study on DDS graph. We have discussed the properties of graph that are excellent and DDS.

Key words : domination dot stable, just excellent, very excellent.

1. Introduction

A set of vertices D in a graph G is a dominating set if every vertex of G – D is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set — abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and is denoted by γ (G). For graph theoretic terminologies refer to [4].

The private neighborhood of $v \in D$ is denoted by PN [v, D], is defined by PN [v, D] = N (v) – N (D – {v}). A vertex v is said to be a, down vertex if γ (G – u) $< \gamma$ (G), level vertex if γ (G – u) = γ (G), up vertex if γ (G – u) > γ (G). A vertex v is said to be selfish in the γ - set D, if v is needed only to dominate itself.

A vertex v is said to be good it there is a γ - set of G containing v. If there is no γ - set of G containing v, then v is said to be a bad vertex. A graph G is said to be excellent if every vertex of G is good. In [5] Yamuna. M had defined a graph G to be

- 1. Just excellent if it to each $u \in V$, there is a unique γ set of G containing u.
- 2. Very excellent if there is a γ set D of G such that, to each vertex u ∈ V D there exists a vertex v ∈ D such that (D v) ∪ {u} is a γ set of G. A γ set D of G satisfying this property is called a very excellent γ set of G. It has been proved that R₁. If G ≠ K_n is Just Excellent, then | PN (u, D) | ≥ 2 ∀u ∈ D where D is any γ set of G

For a pair of adjacent vertices u, v of G, we denote by $G_{\bullet}uv$ the graph obtained by identifying u and v. Let uv denote the identified vertex. In [1] Tamara Burton and David.

Received: 27 March, 2011; Revised: 16 August, 2011; Accepted: 10 September, 2011

P. Sumner defined a graph to be domination dot critical if γ (G•uv) < γ (G) \forall u, v. u adjacent to v denoted by u \perp v. They have been proved that

R₂. Let a, b ∈ V (G) for a graph G. Then γ (G• ab) < γ (G) if and only if either there exists an MDS S of G such that a, b ∈ S or atleast one of a or b is critical in G.

In this paper we introduce a new kind of graphs called domination dot stable graphs and initiate a study on them.

2. Domination Dot Stable Graphs

A graph G is said to be dominating dot stable (DDS) if γ (G•uv) = γ (G) \forall u, v \in V (G), u \perp v.

Eg: P_n , path with n vertices is DDS iff γ (P_{n-1}) = γ (P_n). C_n , cycle with n vertices is DDS iff γ (C_{n-1}) = γ (C_n). The complete graph K_n , Star graph S_n are DDS graphs.

Theorem2.1. A graph G is DDS iff every γ - set of G is an independent dominating set.

Proof. Let G be a DDS graph and D be a γ - set of G. Let u, $v \in D$ such that $u \perp v$. Then γ (G•uv) $\leq \gamma$ (G). [By (R₂)]. Hence D is an independent dominating set.

Conversely, let us assume that every γ - set of G is independent. If G is not DDS then \exists at least one pair of adjacent vertices u, v such that γ (G • uv) $< \gamma$ (G). Since γ - set of G is independent u, v does not belongs to a common MDS. [By (R₂)] either u or v is critical. Let us assume that u is critical. Let H = G - {u}. Then γ (H) = γ (G) - 1. Let D' be a γ - set for H.

Case 1 If N (u)
$$\notin$$
 D

Let $v \in N(u)$. Since $N(u) \notin D' \exists$ one x such that $x \in D'$ where $x \perp v, D'' = D' \cup \{v\}$ is a γ - set for G, where x, $v \in D''$ such that $x \perp v$ which is contradiction as D'' is not an independent dominating set.

Case 2 If there exists at least one vertex in N (u) $\in D'$.

Let $v \in N$ (u) such that $v \in D'$. Then $D' \cup \{u\}$ is a γ - set for G where $v \perp u$, which is contradiction as every γ - set of G is an independent dominating set.

ie., u is not critical. Also each γ - set of G is independent. Hence G is DDS.

Observation: Let G be DDS graph and let $D = \{u_1, u_2, ..., u_k\}$ be a γ - set for G. Let x, y $\in V (G), u \perp v$.

Case 1 $x \in D, y \notin D$. Let $x = u_i$. Then $D' = D - \{u_i\} \cup \{u_iy\}$ is γ - set for G• xy. Case 2 $x, y \notin D$. Then D itself is a γ - set for G• xy.

By the above cases we observe that if G is a DDS graph then $\forall x, y \in V (G)$ either D or D' is a γ - set for G• xy. This is true $\forall x, y \in V (G), u \perp v$.

Theorem 2.2. A DDS graph cannot have a down vertex.

Proof. Let G be DDS. Let D be a γ - set of G. Let u, $v \in V(G)$ such that $u \perp v$ and u is critical. Then $\gamma(G \cdot uv) < \gamma(G)$. Since by converse part of theorem [2.1], if u is critical then $\gamma(G)$ is not an independent. i.e., G has no down vertex.

Theorem 2.3. Let G be a DDS graph. Any vertex $v \in V$ (G) is not selfish.

Proof. Let $v \in V(G)$ such that v is selfish and let D be a γ - set for G. Let $u \in N(v)$. \exists one $w \in D$ such that $w \perp u$. $D - \{u\}$ is a γ - set for G• uv, since in G• uv, uv will be dominated by w ie., $\gamma(G• uv) = \gamma(G) - 1$, which is contradiction as G is DDS. Hence v is not a selfish vertex. ie., G has no selfish vertex.

Theorem 2.4. If G is DDS graph, u is a support vertex such that,

1. PN [u, D] = 1, then u is a level vertex $\forall \gamma$ - set D containing u.

2. PN [u, D] \geq 2, \forall possible γ - set D such that $u \in D$, then u is an up vertex.

- Let G be a DDS graph. Let D be a dominating set for G. Let u be a support vertex such that PN [u, D] = 1, say PN [u, D] = v, where v is a pendant vertex. Consider G u. Since PN [u, D] = v in G, N (u) v is 2 dominated. Hence (D u) ∪ { v } is a γ set for G u. ie., γ (G u) = γ (G). Hence u is a level vertex.
- 2. Let G a DDS graph and let D be a γ set for G. Let u be a support vertex in G such that PN [u, D] $\geq 2 \forall \gamma$ - set of G. Let x be a pendant vertex adjacent to u. We know that a DDS graph does not have a down vertex. If possible let u be a level vertex. Let D['] be a γ - set for G - u - x. Then D = D['] \cup { u } is a γ - set for G such that PN [u, D] = 1, which is contradiction. Hence u is an up vertex.

Theorem 2.5. If G is DDS, then a pendant vertex is always a level vertex.

Proof. Let G be a DDS graph. Let v be a pendant vertex and $e = (uv) \in E(G)$. Then G•uv = G - v as G is DDS graph. $\gamma(G) = \gamma(G \cdot uv) = \gamma(G - uv)$. Hence u is a level vertex. ie., In DDS graph a pendant vertex is always a level vertex.

Theorem 2.6. Let G be a graph such that γ (G) = γ_2 (G). Then G is not DDS.

Proof. Let G be a graph such that $\gamma (G) = \gamma_2 (G)$. Let D be a γ - set of G. We know that for any $u \in V - D \exists$ vertices x, $y \in D$ such that x, y dominates u. Now $D' = (D - x) \cup$ $\{u\}$ and $D'' = (D - y) \cup \{u\}$ are γ - sets of G such that y, $u \in D'$ where $y \perp u$ and x, $u \in D''$, where $x \perp u$ which are not independent γ - sets. Hence G is not DDS.

Theorem 2.7. Let G be DDS graph,

- 1. If PN[u, D] = 1 say PN[u, D] = v then $G \bullet uv$ is not DDS.
- 2. Let $u \in V (G)$ and D be a γ set for G. Let x, $y \in D$ such that $x \perp u$ and $y \perp u$. Then $(G \cdot ux)$ and $(G \cdot uy)$ are not DDS.
- 3. Let x, y \in V (G) such that PN [u, D] = 1 say PN [u, D] = x and PN [v, D] = 1 say PN [v, D] = y and x \perp y for some γ set D of G, then G• xy is not DDS.
- 4. Let PN [u, D] = 2 say PN [u, D] = { x, y } such that $x \perp y$. Let z be a 2 dominated vertex such that $z \perp u$, v, y. Where u, $v \in D$ then G• zy is not DDS.

Proof. Let G be DDS graph,

- 1. If PN [u, D] = v, then D {u} \cup {uv} is γ set for G• uv ie., uv is a selfish vertex for G• uv. Hence by theorem [2.3] G• uv is not DDS.
- 2. Let $u \in V(G)$ and D be a γ set for G. Let $x, y \in D$ such that $x \perp u$ and $y \perp u$ and $D' = D \{u\} \cup \{ux\}$ is a γ set for G•ux, where $xu \perp y$ and $xu, y \in D'$. Similarly $D'' = D \{u\} \cup \{uy\}$ is a γ set for G•uv such that $uy \perp y$, $uy, y \in D''$. Hence G•ux and G•uy are not DDS.
- 3. Let x, $y \in V(G)$, x $\perp y$ and let D be a γ set for G such that PN [u, D] = { x } and PN [v, D] = { y }. As G is DDS, $\gamma(G) = \gamma(G \cdot xy)$. D' is a γ - set for G $\cdot xy$. PN [v, D'] = ϕ and PN [u, D'] = ϕ . Hence G $\cdot xy$ is not DDS.
- 4. Let PN [u, D] =2 say PN [u, D] = x, y such that $x \perp y$. Let z be 2 dominated vertex such that $z \perp u$, v, y where u, $v \in D$. In G• zy, $D' = D \{ u \} \cup \{ zy \}$ is a γ set for G• zy, where $yz \perp u$, x, v. Here v, $zy \in D'$ such that $v \perp zy$. Hence G•zy is not DDS.

Remark. If PN [u, D] = 1 for a DDS graph G, then G• uv has at least one selfish vertex.

2.1. Excellent and DDS Graphs

In this section, we discuss properties of graphs which are DDS and excellent.

Theorem 2.1.1. Let G be DDS and excellent, then G• uv is excellent, \forall u, v \in V (G), u \perp v.

Proof. Let G be DDS. So, γ (G•uv) = γ (G) \forall u, v \in V (G), u \perp v. Since G is excellent let D₁ be the γ - set for G containing u and D₂ be a γ - set for G containing v. In G•uv all the vertices that are dominated by u and v is now dominated by uv. Hence D₁ -{ u } \cup { uv } and D₂ - { v }) \cup { uv } will be a γ - sets for G• uv ie., all γ - sets of G including u or v will now be γ - sets for G• uv including uv instead of u or v. The remaining γ - set for G will be a γ - set for G• uv also. Every vertex of G• uv is included in some γ - set for G• uv. Hence G• uv is an excellent graph.

Remark. If G is not DDS ie., then if G is excellent, G. uv may or may not be excellent.

Theorem 2.1.2. If G is non – excellent and DDS graph then number of bad vertices in G• uv is at least one less than the number of bad vertices in G.

Proof. Let G be DDS and non – excellent graph. Let $D = \{u_1, u_2, ..., u_k\}$ be a γ - set for G. Let v be a bad vertex. Since v is a bad \exists one $u_i \perp v$. Then $\{u_1, u_2, ..., u_{i-1}, u_{i+1}, ..., u_k\} \cup \{u_iv\}$ is γ - set for G• u_iv . By observation u_iv is a good vertex ie., G• u_iv has at least one bad vertex less than the number of bad vertices in G.

Remark. If G is a DDS and non – excellent graph with exactly one bad vertex u, then we can generate N (u) excellent graphs.

Theorem 2.1.3. Let G be DDS and non – excellent graph. Let u be a bad vertex in G. Then uv is never a selfish vertex in G• uv $\forall v \in V(G)$ such that $u \perp v$.

Proof. Let G be a DDS and non – excellent graph. Let u be a bad vertex. Let $v \in V$ (G) such that $u \perp v$.

Case 1 v is a bad vertex. Consider G• uv. If uv is a selfish vertex then $\exists a \gamma - \text{set } D$ for G• uv such that N (uv) is 2 – dominated. Then D – {uv} \cup {u} or D – {uv} \cup {v} is a γ - set for G. ie., $\exists \gamma$ - sets for G containing u and v which is not possible, since u and v are bad vertices.

Case 2 v is a good vertex. $D' = D - \{uv\} \cup \{u\}$ is a γ - set for G, where D is a γ - set for G• uv where uv is a selfish vertex. Thus $\exists a \gamma$ - set for G containing u which is not possible.

Hence uv is never a selfish vertex in G• uv.

Theorem 2.1.4. Let G be a DDS and just excellent such that γ (G) \geq 2. Then G• uv is not just excellent \forall u, v \in V (G), u \perp v.

Proof. Let G be DDS and JE graph. Let u, $v \in V$ (G), $u \perp v$. Since G is excellent let D_1 be a γ - set containing u and D_2 be a γ - sets containing v. Since G is DDS, $D_1 \neq D_2$. By theorem [2.1], we know that G• uv is an excellent graph. Also $(D_1 - \{u\}) \cup \{uv\}$ and $(D_2 - \{v\}) \cup \{uv\}$ are two distinct γ - sets for G containing the vertex uv. Hence G• uv is not just excellent $\forall u, v \in V$ (G), $u \perp v$.

Theorem 2.1.5. A JE graph ($\neq K_n$) is not DDC.

Proof. It is enough to prove the result for graphs with $\gamma(G) \neq 1$ (i.e., G is not K_n , $n \geq 2$). Let G be JE and DDC.

Claim 1. A JE graph does not have a selfish vertex.

Let G be just excellent. Suppose \exists a selfish vertex say u. Let D be a γ - set for G including u. Then PN [u, D] = ϕ . Also D₁ = D - {u} \cup {v}, where v \in N (u) is also a γ - set for G, i.e., D, D₁ are two distinct γ - sets for G containing D – u which is contradiction as G is just excellent. Hence G has no selfish vertex.

Claim 2. A JE graph has no down vertex.

Suppose a JE graph G has a down vertex u, then γ (G – u) = γ (G) – 1. Let D' be a γ - set for G – u. Then D' \cup { u } is a γ - set for G where u is selfish , which is not possible by Claim 1ie., a JE graph does not have a down vertex.

G is DDC and has no down vertex. [By R_2] \forall u, $v \in V$ (G), $u \perp v \exists a \gamma$ - set containing u and v ie., if $v_1, v_2, ..., v_n \in N$ (u), $\exists \gamma$ - sets containing $uv_1, uv_2, ..., uv_n$. Since G is JE \exists a unique γ - set containing u which implies N [u] belongs to a common MDS set say D. In D, PN [u, D] = ϕ , which is not possible by R_1 . ie., \exists no common MDS set containing $uv \forall u, v \in V$ (G). ie., a JE graph is not DDC.

Theorem 2.1.6. Let G be a very excellent graph. Let D be γ - set of G. Each one of the following conditions implies that G is not DDS graph.

1. If $v \in D$ is selfish,

2. If $v \in D$ is not used for vertex exchange,

214

3. If $w \in V - D$ is 2 – dominated,

Proof

- 1. If v is selfish then G is not DDS by theorem [2.3].
- 2. If $v \in D$ is not used for vertex exchange. Let $u \in N(v)$. Now as G is very excellent \exists one $w \in D$ such that $D \{w\} \cup \{u\}$ is a γ set. Hence \exists one γ set for G where u and v are adjacent. Hence G is not DDS.
- 3. Suppose x is 2 dominated say x is dominated by u and v. \exists one y \in D such that D { y} \cup {x} is a γ - set for G. But G is not DDS as u \perp x \perp v (y may be one of u or v). Hence G is not DDS.

Remark

If G is DDS and VE, then G

- a. Cannot have a selfish vertex.
- b. \exists no vertex that cannot be used for vertex exchange.
- c. \exists no vertex that is 2 dominated.
- d. Any vertex can be interchanged only with the vertex dominating it ie., PN [u, D] =
 - N (u) and N (u) is complete for every γ set of G.

Conclusion

From theorem [2.1.6] and its remark we conclude that, K_n is the only DDS and VE connected graph $\forall n \ge 2$.

Acknowledgment

We thank Dr. N. Sridharan, for his constructive suggestions which helped to improve the quality of the paper.

References

- [1] Burton, T and Sumner, D. (2006). Domination dot critical graphs, *Discrete Math.* 306, pp. 11–18.
- [2] Janakiraman, T. N and Alphonse, P. J. A. (2010). Weak Convex domination in graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 1, pp. 1 – 13.
- [3] Janakiraman, T. N., Banumathi, M and Muthammai. (2010). Domination parameters of Hypercubes, International Journal of Engineering Science, Advance Computing and Bio - Technology, Vol. 1, No. 1, pp. 19 – 28.

216 International Journal of Engineering Science, Advanced Computing and Bio-Technology

- [4]Haynes, T. W., Hedetniemi, S. T., Slater, P. J. (1998). Fundamentals of Domination in Graphs, Marcel Dekker, New York.
- [5] Karthika, K. (2011). Domination Dot Stable - domatic dot dot stable - domination Subdivision Stable graphs, M. Phil thesis, VIT University, Vellore, India.
- [6] West, D. B. (2001). Introduction to Graph Theory, second ed., Prentice - Hall, Englewood Cliffs, NJ.
- [7] Yamuna, M and Sridharan, N. (2010). Just excellent graphs, International Journal of Engineering Science, Advance Computing and Bio - Technology, Vol - 1, No - 3. pp. 129 - 136.
- [8] Yamuna, M. (2003). Excellent - Just Excellent - Very Excellent graphs, Ph. D thesis, Alagappa University, Karaikudi, India.