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Abstract: For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. Let V(G) = 
{v : vV(G)} be a copy of V(G). The Super duplicate graph with respect to complementation Dc*(G) 
of G is the graph whose vertex set is V(G)V(G) and edge set is E(G)E(D(G)) where D(G) is the 
Duplicate graph of the complementG of G. In this paper, some basic properties of Dc*(G) are studied. 
Also a criterion for Dc*(G) to be Eulerian and a sufficient condition for Hamiltonicity are obtained. In 
addition, the parameters girth, connectivity, covering number, independence number, chromatic 
number determined for this graph. Finally, eccentricity properties of Dc*(G) are discussed.  

 

1. Introduction 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 
V(G) and E(G) denote its vertex set and edge set respectively. Eccentricity of a vertex 

uV(G) is defined as eG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance 
between u and v in G. If there is no confusion, then we simply denote the eccentricity of 
vertex v in G as e(v) and d(u, v) to denote the distance between two vertices u, v in G 
respectively. The minimum and maximum eccentricities are the radius   and   diameter  of  
G,   denoted   r(G)  and   diam(G)   respectively.  When diam(G) = r(G), G is called a self-

centered graph with radius r, equivalently G is r-self-centered. Ni(v) = {uV(G) : d(u, v) = 

i} is called the ith neighborhood of v. Let uNi(v).  A vertex wNj(v),  for   i < j    is  said   
to   be   the  jth  successor  of  u, if d(u, w) = j - i and  for j < i,  the vertex w is said to be jth 
predecessor, if d(u, w) =  i – j. An edge set e = uv is a dominating edge in a graph G, if 
every vertex of G is adjacent to at least one of u and v.  A dominating trail T of a graph G 
is a closed trail in G (which may be just a single vertex) such that every edge of G not in T 
is incident with T. 

 

 Let V(G) = {v : vV(G)} be a copy of V(G). Then the Duplicate graph D(G) of G is 

the graph whose vertex set is V(G)V(G)  and edge set is {uv and uv : uvE(G)}. This 
graph was first studied by Sampathkumar [3]. The Super duplicate graph with respect to 
complementation Dc*(G) of G is defined as the graph whose vertex set is as that of D(G) 
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and edge set is E(D(G))E(G), where D(G) andG are respectively, the Duplicate 
graph and the complement of G.  
  
 The concept of super duplicate graph with respect to complementation of a given 
graph  defines Boolean function of a graph based on the adjacency  of the vertices of the 
given graph. The important application of facility location on networks is based on 
various types of graphical centrality, all of which are defined using distance. The concept 
of distance and related concept of eccentricity in graph play a dominated role in the study 
of structural properties such as fault tolerant and extremal nature of links and nodes of the 
underlying graphs of the corresponding communication networks.  
  
 In this paper, some basic properties of Dc*(G) are studied. Also a criterion for Dc*(G) 
to be Eulerian and a sufficient condition for Hamiltonicity are obtained. In addition, the 
parameters girth, connectivity, covering number, independence number, chromatic 
number determined for this graph. Finally, eccentricity properties of Dc*(G) are discussed. 
The definitions and details not furnished in this paper may found in [2]. 
 

2. Prior Results 
 
 In this section, we list results with indicated references, which will be used in the 
subsequent main results. 
 

Theorem 2.1[2]: For any nontrivial connected graph G, 0 + 0 =  p = 1 + 1, where p is 
the number of vertices in G. 
 

Theorem 2.2 [1]: If G is a planar  (p, q) graph (p  3), then q  3p – 6. 
 

Corollary 2.3 [1]: If G is a planar graph, then (G)  5. 
 

 
3. Main Results 
  
The following elementary properties of a super duplicate graph with respect to 
complementation are immediate.  
 
Let G be a (p, q) graph. Then 

(a) Duplicate graph D(G) ofG is a spanning sub graph of Dc*(G) and Dc*(G) is a  (2p, 
p(p - 1) - q) graph. 
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(b) V(Dc*(G)) can be partitioned into two sets V(G) and V(G) such that the sub graph of 
Dc*(G) induced by the vertices in V(G) is G and that of Dc*(G) induced by the vertices in 

V(G) is totally disconnected. 

(c) For any vertex vV(G), there are two vertices v and v in Dc*(G),  such that 

degDc*(G)(v) = p - 1 and  degDc*(G)(v)= p –1– degG(v) and hence (Dc*(G)) =  p - 1 and 

(Dc*(G)) = p – 1 - (G). 

(d) For p  3, Dc*(G) contains pendant vertices if and only if there exists a vertex v in 
V(G) such that degG(v) = p-2. 

(e) For any graph G with (G)  1, Dc*(G) is biregular if and only if G is regular and 
Dc*(G) is regular if and only if G is totally disconnected. 
(f) Dc*(G) is disconnected if and only if either r(G) = 1 or G is disconnected with exactly 
two complete components. 
 
In the following, the solution for Dc*(G), which is bipartite is obtained. 
 
Theorem 3.1: Dc*(G) is bipartite if and only if G is complete bipartite. 
Proof:  Suppose G is a complete bipartite graph with bipartition [V1, V2]. Let V(Dc*(G)) = 

V(G)V(G), where V(G)  = V1V2  and  V(G)  =  V1V2.  Then [W1, W2], where 

Wi = ViVi  (i = 1, 2) is a bipartition of Dc*(G) and hence Dc*(G) is bipartite. 
Conversely, assume Dc*(G) is bipartite. Since G is an induced sub graph of Dc*(G), G is 
bipartite and let [V1, V2] be the bipartition of G. If G is not complete bipartite, then there 

exists a vertex say, v1V1, not adjacent to at least one vertex say, v2V2. Then  the  vertex  

v2  in  Dc*(G)  is  adjacent  to  v1 and v3,  where  v3V2  and (v, v3)E(G), thereby 
forming a triangle in Dc*(G). Hence, G is a complete bipartite graph. 
 
 
Theorem 3.2: Dc*(G) is not a tree, for any graph G.  
Proof: Since G is an induced sub graph of Dc*(G), Dc*(G) is not a tree, if G is not a tree. 

Assume G is a tree. If G contains K2K1 or K1,3 as an induced sub graph, then  Dc*(G)  

contains  C3 or C4  as  an induced sub graph respectively. Therefore, G  K2 or P3. But 
Dc*(K2) and Dc*(P3) are disconnected. Hence, Dc*(G) is not a tree.  
  
 A connected graph G is said to be geodetic, if a unique shortest path joins any two of 
its vertices. In the following, the geodetic graphs G for which Dc*(G) are also geodetic are 
characterized.                                  
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Theorem 3.3: For any geodetic graph G with r(G)  2, Dc*(G) is geodetic if and only if G 
is a path on four vertices.  

Proof: Let G be geodetic graph with r(G)  2. Therefore G is connected. Assume Dc*(G) 

is geodetic. If G contains K22K1 or P3K1 as an induced sub graph, then Dc*(G) 

contains K4e as an induced sub graph and hence not geodetic. Similarly, if G contains 
K1,3 (or C5) as an induced sub graph, then Dc*(G) contains C4 (or C6) as an induced sub 
graph and hence not geodetic. Consequently, G is a path on four vertices. Converse is 
obvious. 
 
Theorem 3.4: For any graph G having at least four vertices, girth of Dc*(G) is either 3 or 
4. 

Proof: Obviously girth of Dc*(G) is 3, if G contains either a triangle or K2K1 as an 
induced sub graph. If not, then either G is a star or G contains C4 as an induced sub 
graph. In both the cases Dc*(G) contains C4, which is the smallest cycle and hence girth of 
Dc*(G) is 4. 
 
 In the following, a necessary and sufficient condition that a cut-vertex of G is also a 
cut-vertex of Dc*(G) is given. For simplicity, neighborhood of a vertex v in Dc*(G) is 
denoted by Nc*(v). 
 

Theorem 3.5:  Let G be a connected graph with r(G)  2. Then any cut-vertex v of G is 
also a cut-vertex of Dc*(G) if and only if 

(i). (Gv) = 2, where (G) is the number of components of G.  

(ii). Each of the components of Gv is complete 

(iii). v  is adjacent  to all  the vertices  of one of the components of Gv. 
Proof: Let v be a cut-vertex of G satisfying (i), (ii) and (iii). Let G1 and G2 be the two 

complete components of Gv such that v is adjacent to all the vertices in G1 (say). Then 

for all v1V(G1), Nc*(v1) = V(G2) and for all v2V(G2), Nc*(v2) = V(G1) and hence v in 
Dc*(G) is adjacent to vertices in G2 only. Since G is an induced sub graph of Dc*(G), 

Dc*(G)v is disconnected and hence v is a cut-vertex of Dc*(G). Conversely, assume v is a 
cut-vertex of both G and Dc*(G). 

(i).  If Gv contains at least three components say, G1,  G2, …, Gn (n  3), then for all 

uiV(Gi), (1  i  n), Nc*(ui) contains  vertices in V(Gi), for at least one i and hence 

Gv is connected. This is a contradiction. Hence, n=2. 



 
 

 

202 On Super Duplicate Graphs With Respect to Complementation 

(ii). Let G1 and G2 be the two components of Gv with G2 be not complete. Then there 

exists at least one vertex say, uV(G2) such that Nc*(u) contains V(G1) and at least one 

vertex in G2  and hence Gv is connected. 

By (i) and (ii), Gv contains exactly two components each of which is complete. 

(iii). If v is not adjacent to all the vertices in say, G1, then vV(Dc*(G)) is  adjacent  to  

vertices  in  both G1 and G2  and hence Gv is connected, which is a contradiction.  
 

Remark 3.1: The cut vertices v1, v2, …, vk (k  1) of G are also cut vertices of Dc*(G) if 

and only if G{v1, v2, .., vk} contains exactly  two  components,  each  of  which  is  
complete  and  vi’ s (i = 1, 2,...,k) are adjacent to all the vertices in one of the components. 
 

Remark 3.2:  (Dc*(G)) = 1,  if  there   exists  a  vertex  of  degree  p-2   in  G and 

(Dc*(G)   p – 1 - (G). This is sharp, because for G  C5 or C6, the equality holds. 
 
Note 3.1: Similar results hold for graphs having a cut-edge. 
  
In the following, a criterion for Dc*(G) being Eulerian is established. 
 
Theorem 3.6:  Let G be any (p, q) graph such that Dc*(G) is connected. Then Dc*(G) is 
Eulerian if and only if p is odd and each vertex in G is of even degree. 

Proof: The degree of the vertices v and v in Dc*(G) are p - 1 and p – 1 - degG(v) 
respectively. Assume Dc*(G) is Eulerian. Then it is clear that p is odd and each vertex in G 
is of even degree. Conversely, assume the given conditions. Then each vertex in Dc*(G) is 
of even degree and hence, Dc*(G) is Eulerian. 
 

Theorem 3.7: Let G be a connected graph with r(G)  2. IfG contains an odd 
Hamiltonian cycle, then Dc*(G) is Hamiltonian. 

Proof: Since G is connected and  r(G)  2,  Dc*(G) is connected. Let v1 v2…vn v2n+1 v1 (n  

2) be an odd Hamiltonian cycle inG. Then v1 v2 v3… v2n-1 v2n v2n+1 v1 v2 v3 … v2n-1 v2n 

v2n+1 v1 is a Hamiltonian cycle in Dc*(G) and hence Dc*(G) is Hamiltonian.  
 
Remark 3.3: 1. Let G be a disconnected graph such that at least one of its components is 
not complete. Then Dc*(G) is Hamiltonian, if the complement of each of the component 
of G contains an odd Hamiltonian cycle.  

2. If (G)  p - 2, then Dc*(G) is not Hamiltonian. 
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Theorem 3.8: Let G be any connected graph with (G)  2 and (G)  p-3. Then each 
edge of Dc*(G) lies on a triangle if and only if  
(i). For each edge (u, v) in G not lying in any triangle, there exists at least one vertex in G 
not adjacent to both u and v; and  

(ii). For any two vertices v1 and v2 at distance 2 in G, NG(v1)NG(v2)   and 

NG(v1)NG(v2)  . 
Proof: Assume each edge of Dc*(G) lies on a triangle in G. Edges lying on a triangle in G, 
also lie on a triangle in Dc*(G), since G is an induced sub graph of Dc*(G). Let e = (u, v) 

be an edge in G not lying in any triangle in G, where u, vV(G). By the assumption, e = 

(u, v) lies on a triangle in Dc*(G). Hence, there exists a vertex wV(G) such that w in 

Dc*(G) is adjacent to both u and v. That is, there exists a vertex wV(G) not adjacent to 
both u, v in G, which proves (i). Let v1 and v2 be two nonadjacent vertices in G. If dG(v1, 

v2) = 2, then the edges v1v2, v1v2 in Dc*(G) lie on a triangle in Dc*(G) by the assumption. 

Hence, there must exist vertices x, y in G   such   that   xNG(v1)NG(v2)    and    

yNG(v1)NG(v2),    which  proves   (ii).  If dG(v1,v2)  3, then the edges v1v2, v1v2 in 
Dc*(G) lie on a triangle in Dc*(G). Conversely, if the conditions (i) and (ii) are true, then 
each edge of Dc*(G) lies on a triangle. 
 
Remark 3.4: If each edge of Dc*(G) lies on a triangle, then Dc*(G) has a dominating trail 
and hence L(Dc*(G)) is Hamiltonian. 
 
Theorem 3.9: Let G be any (p, q) graph. Then Dc*(G) is non-planar, if one of the 
following holds. 
(i). G contains K1,5 as an induced sub graph.  

(ii). p  (G) + 6  and  (iii). q   p - 1 and p  7. 

Proof: If (i) holds,  then  Dc*(G)  contains  K3,3  as  a  sub graph  and if (ii) holds, then ( 

Dc*(G))  6. Assume qp-1 and p  7. Since  Dc*(G)  contains  2p  vertices  and p(p-1)- 

q edges, q  3p- 6, where p = 2p and         q= p(p - 1) - q. Thus, Dc*(G) is non-planar. 
 
Observation:  
3.1: Since G is an induced sub graph of Dc*(G), Dc*(G) is non-planar if G is non-planar. 

3.2: Dc*(Cn) (n  7) has a sub graph homoeomorphic to K3,3 and hence non-planar. 

3.3: Dc*(Cn) (3  n  6) and Dc*(Km) (m  5) are planar graphs. 
  
In the following, covering, independence and chromatic numbers for Dc*(G) are 
determined. 
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Theorem 3.10: Let G be any graph such that Dc*(G) is connected. Then 

(i). 0(Dc*(G)) =  p = 0(Dc*(G)); and 

(ii). 1(Dc*(G) = 21(G) and 1(Dc*(G)) = 21(G), where p is the number of vertices 
in G. 

Proof: Let V be the vertex set of G and V be the set of new points introduced in the 

construction of Dc*(G).  Since V is an independent  set  with  p  points, 0(Dc*(G))  p. 

Since Dc*(G) is connected, each vertex in V is adjacent to at least one vertex in V and 

hence any independent set in Dc*(G) can have at most p points. Thus, 0(Dc*(G)) = p.  

Since Dc*(G) has 2p points and 0(Dc*(G)) + 0(Dc*(G)) = 2p, 0(Dc*(G)) = p. It remains 

to prove that 1(Dc*(G)) = 21(G). It is to be observed that corresponding to each edge 

uv ofG, there are two independent edges uv and uv in Dc*(G). Thus, each edge ofG 

gives rise to two independent edges in Dc*(G). So 1(G) independent edges of G give 

21(G) independent edges in Dc*(G) and this is the maximum number of independent 

edges in Dc*(G). Hence, 1(Dc*(G)) = 21(G).  From the equation 1(Dc*(G)) + 

1(Dc*(G)) = 2p = 21(G) + 21(G), it follows that 1(Dc*(G)) = 21(G). 
 

Theorem 3.11: For any graph G, (Dc*(G)) = (G) or (G) + 1. 

Proof: Since G is an induced sub graph of Dc*(G), (Dc*(G))  (G). Let (G) = k. Then 
V(G) can be partitioned into k sets V1, V2, …, Vk such that no two vertices  in Vi (i = 1, 2, 

…, k) are adjacent. Hence, the vertices in V(G)V(Dc*(G)) can be colored by k colors. 
Let v be any vertex in G. If v is adjacent to all the vertices in Vj for at least one j, then 

color the vertex v  in Dc*(G) by the color j and hence Dc*(G) is k-colorable. Thus, 

(Dc*(G))   (G). If there exists no Vj (j = 1, 2, ... , k) such that vV(G) is adjacent to 

all the vertices in Vj, then color the vertex v in Dc*(G) by a new color say, k + 1. Since the 

sub graph of Dc*(G) induced by V(G) is independent, Dc*(G) is  (k + 1)-colorable.  

Hence, ( Dc*(G)) = (G) + 1. 
 

Example 3.1: ( Dc*(Cn))  =  (Cn) + 1, if n  6 or n = 3; and 

                                      = (Cn),       if n = 4, 5. 
  
In the following, the eccentricity properties of Dc*(G) are discussed. First, all self-centered 
graphs G with radius 2 for which Dc*(G) is self-centered with radius 3 are characterized. 
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For simplicity, eDc*(v) and dDc*(u, v) are used to denote the eccentricity of a vertex v and 
the distance between u and v in Dc*(G) respectively. 
 
Theorem 3.12: Let G be self-centered with radius 2. Then Dc*(G) is self-centered with 
radius 3 if and only if G has no dominating edge. 
Proof: Assume G is self-centered with radius 2 and has no dominating edge. For each 

vertex v in Dc*(G), there is a vertex v in Dc*(G). Let vi, vjV(G). Since G is an induced 

sub graph of Dc*(G), dDc*(vi, vj)  2. 

(i). Since e(vi) = 2, there exists a vertex vi
(2)  N2(vi) with d(vi, vi

(2)) = 2 in G. Then dDc*(vi, 

vi) = 3, since vi vi
(1) vi

(2) vi is geodesic in Dc*(G), where vi
(1)  N1(vi). 

(ii). If (vi, vj)E(G), then  dDc*(vi, vj) = 1.  Let (vi, vj)E(G).  If  there  exists  a vertex vi
(1) 

 N1(vi)  not  adjacent  to  vj,  then  vi vi
(1) vj  is  geodesic  in  Dc*(G)  and  hence dDc*(vi, 

vj) = 2. If not, there exists a vertex vi
(2)  N2(vi) not adjacent to vj, since G has no 

dominating edge, then vi vi
(1) vi

(2) vj is geodesic and hence dDc*(vi, vj) = 3. Thus, it follows 
that eDc*(vi) = 3. 

(iii)(a). Let (vi, vj)E(G). Since G has no dominating edge, there exists a vertex vkV(G) 

not adjacent to both  vi and vj and hence dDc*(vi, vj) = 2.  

(b). If (vi, vj)E(G),  then  vjN2(vi).  If there exists a vertex vk in  N2(vi) such that d(vj, vk) 

= 2, then vi vk vj is geodesic in Dc*(G)  and hence dDc*(vi, vj) = 2. If not, <N2(vi)>G has 

radius one and there exists at least one vertex vlN1(vi), having eccentric  point  vj.  Let  

vm  be  a  vertex  in  N2(vi)  adjacent   to  both vl  and  vj,  then vi vm vl vj is geodesic in 

Dc*(G) and hence dDc*(vi, vj) = 3. Thus, eDc*(vi) = 3.  Hence,  each  vertex  in  Dc*(G)  has  
eccentricity  3  and  Dc*(G)  is  self-centered with radius 3.  
Conversely, assume G and Dc*(G) are self-centered with radii 2 and 3 respectively.  If G 
has a dominating edge, then there exists at least one pair of vertices vi, vj in G with d(vi, vj) 

= 2  and dDc*(vi, vj) = 4. This is a contradiction. Thus, G has no dominating edge. 
 
Corollary 3.12.1: If G is self-centered with radius 2 and has a dominating edge, then 
Dc*(G) is bi-eccentric with radius 3. 
 
 Next, the radius and diameter of  Dc*(G)  are  determined, where G is bi-eccentric 
with radius 2. 
 

Theorem 3.13: If G is a bi-eccentric graph with radius 2 and (G)  2, then Dc*(G) has 
radius 3 and diameter 3 or 4. 
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Proof: Let G be any bi-eccentric graph with radius 2 and (G)  2. Let vi, vjV(G).   

Since G is an induced sub graph of Dc*(G), dDc*(vi, vj)  3. By Theorem 3.1.(i)., dDc*(vi, vi) 
= 3.   

(i)(a). Let (vi, vj)E(G).  If e(vi) = 3,  then  vi vi
(3) vj  is  geodesic  in  Dc*(G),  where  vi

(3) 

 N3(vi)  in  G. If  e(vi) = 2,  since  (G)  2,  there  exists  either  vi
(1)  N1(vi)  or vi

(2)  

N2(vi), not adjacent to vj. Then either vi vi
(1)  vj or vi vi

(1) vi
(2)  vj is geodesic in Dc*(G), 

where vi
(1)  vj  and (vi

(1), vi
(2))E(G). Thus, dDc*(vi, vi) = 2 or 3. 

(b). Let (vi, vj)E(G), then dDc*(vi, vj) = 1. 

(ii)(a). Let (vi, vj)E(G). Then  either  there  exists  a  vertex  w  in  N2(vi)  such  that  d(vj, 

w)  2 or all the vertices of N2(vi) are adjacent to vj. In the first case, vi w vj is geodesic 

and hence, dDc*(vi, vj) = 2. In the second case, G has a dominating edge. If w1 is an 

eccentric point of vj in N1(vi)  and  is  a  predecessor of w, then vi w w1 vj is geodesic and 

hence dDc*(vi, vj) = 3. 

(b). Let (vi, vj)E(G). Then d(vi, vj) = 2 or 3. If e(vi) = e(vj) = 3, then either vj is an 
eccentric point of vi or there exists a vertex vk in G not adjacent to both vi and vj. In the 

first case, dDc*(vi, vj) = 3,  since  vi vi
(2) vi

(1) vj  is  geodesic  in  Dc*(G),  where (vi
(2), 

vi
(1))E(G)  and  in   the   second  case,  dDc*(vi, vj) = 2. Let e(vi) = 2, e(vj) = 3. If   there 

exist vertices vi
(1)N1(vi), vi

(2)N2(vi)  with (vi
(1), vi

(2))E(G)  and  (vi
(1), vj)E(G), then vi 

vi
(2) vi

(1) vj is geodesic in Dc*(G) and hence, dDc*(vi, vj) = 4. If e(vi) = e(vj) = 2, then  there  

exists  a  vertex  vk  not  adjacent  to  both  vi  and  vj  and  hence  dDc*(vi, vj) = 2. Thus, it 

follows that eDc*(vi) = 3 and eDc*(vi) = 3 or 4. Hence, Dc*(G) has radius 3 and diameter 3 
or 4. 
 

Example 3.2: If G  K2 + K1 + K1 + K2, then G is bi-eccentric with radius 2 and Dc*(G) has 
radius 3 and diameter 4. 
 

Corollary 3.13.1: Let G be bi-eccentric with radius 2 and (G)  2. Then Dc*(G) is self-
centered with radius 3 if and only if one of the following holds. 
(i). For every pair of non-adjacent vertices u, v in G there exists a vertex in G, not adjacent 
to both u and v; and 
(ii). For every pair of vertices u, v in G, with e(u) = 2 and e(v) = 3, v is an eccentric point 
of u. 

Observation 3.4:  Let G be bi-eccentric with radius 2 and (G) = 1. 
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(a). If G has a dominating edge, then Dc*(G) has radius 3 and diameter 4 or 5. For 
example, Dc*(P4) has radius 3 and diameter 5, where P4 is a path on four vertices and 
Dc*(B) is bi-eccentric with radius 3, where B is the Bull graph. 
(b). If G has no dominating edge and for every pair of non-adjacent vertices u, v in G 
there exists a vertex in G adjacent to both u and v, then Dc*(G) is self-centered with radius 
3. Otherwise, Dc*(G) is bi-eccentric with radius 3. 
 
Observation 3.5: let G be any graph radius 2 and diameter 4. Then Dc*(G) is self-centered 
with radius 3 if and only if one of the following holds. 
(i). For every pair of non-adjacent vertices u, v in G, there exists a vertex in G, not 
adjacent to both u and v; and 
(ii). For every pair of vertices u, v in G with e(u) = 2 and e(v) = 3, v is an eccentric point 
of u. 
 

Theorem 3.14: If  G  is  any  connected  graph  with  r(G)  3,  then  Dc*(G)  is  self-
centered with radius 3. 

Proof: Assume G is a connected graph with r(G)  3. Let vi, vjV(G).  

(i). If d(vi, vj)  3, then, since G is an induced sub graph of Dc*(G), dDc*(G)(vi, vj)  3. If 

d(vi, vj)  4, then  dDc*(vi, vj) = 2. 

(ii). Since eG(vi)  3, dDc*(vi, vi) = 3. 

(iii). dDc*(vi, vj) = 1, if  (vi, vj)E(G); and 

                       = 2, if  (vi, vj)E(G). 

(iv)(a). If (vi, vj)E(G), then dDc*(vi, vj) = 2, since r(G)  3. 

(b). Let  (vi, vj)E(G).  If dG(vi, vj) = 2,  then  dDc*(vi,, vj) = 2  and   if dG(vi, vj)  3, then 

dDc*(vi, vj) = 2 or 3.  

From (i), (ii), (iii) and (iv), it follows that eDc*(vi) = eDc*(vi) = 3 for all viV(G). Hence, 
Dc*(G) is self-centered with radius 3. 
 
Corollary 3.14.1: Let G be a disconnected graph. Then Dc*(G) is self-centered with radius 
3 if and only if one of the following is true. 
(i). G contains at least three components. 
(ii). If G contains exactly two components, then radius of at least one of the components is 
at least 2. 
 
Corollary 3.14.2: Let G be a disconnected graph with exactly two components, at least one 
of them is not complete. Then Dc*(G) is bi-eccentric with radius 3 if and only if both the 
components have radius one. 
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Note 3.2: The complementDc*(G) of Dc*(G) is self-centered with radius 2, if one of the 
following holds. 
(i). G is self-centered with radius 2; 

(ii). (G)  2 and G is bi-eccentric with radius 2; and 

(iii). G is connected and r(G)  3. 
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