International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 2, No. 3, July – September 2011, pp. 139 - 149

On Chromatic Strong Dominating Sets in Graphs S. Balamurugan¹, G. Prabakaran² and V. Swaminathan³

 ¹Department of Mathematics, Sethupathy Government Arts College Ramanathapuram- 623 502, Tamilnadu, India. E-mail: balapoojaa2009@gmail.com
²Department of Mathematics, Thiagarajar College, Madurai 625 009 E-mail: tcmaths@yahoo.in
³Department of Mathematics, Ramanujan Research Center Saraswathi Narayanan College, Madurai 625 022, Tamilnadu, India.

Abstract: A subset D of V is said to be a **chromatic strong dominating set** (or csd- set) if D is strong dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of chromatic strong dominating set is called chromatic strong domination number and is denoted by $\gamma_s^c(G)$. In this paper we initiate a study of this parameter and we characterize $\gamma_s^c(G) = n$, where n is the order of G. **Key words:** Domination, Strong domination, Chromatic Number.

1 Introduction

Let G = (V, E) be a finite, simple and undirected graph neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. One of the fastest growing areas within graph theory is the study of domination and related problems. A subset D of the vertex set V of a graph G is said to be a dominating set of G if every vertex in V-D is adjacent to a vertex in D. The minimum cardinality of a dominating set is called the **domination number** of G and is denoted by $\gamma(G)$. A comprehensive treatment of the fundamentals of domination is given in the book by Haynes et al [1]. Sampathkumar and Pushpa Latha introduced the concept of strong domination in graphs in [2]. A set $D \subseteq V$ is called a strong dominating set if for every vertex $v \in V - D$, there exists a vertex $u \in D$ such that $uv \in E(G)$ and $deg(u) \ge deg(v)$. The minimum cardinality of a strong dominating set is called the strong domination number of G and is denoted by $\gamma_s(G)$. A strong dominating set of cardinality $\gamma_s(G)$ is called as γ_s -set of G. For $D \subseteq V$, the subgraph induced by D is denoted by $\langle D \rangle$. A set $D \subseteq V$ is said to be a chromatic preserving set if $\chi(\langle D \rangle) = \chi(G)$. It was defined by Janakiraman and Poobalaranjani [5]. A set $D \subseteq V$ is said to be a **dom-chromatic set** if D is a dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a dom-chromatic set is called the dom-chromatic number and is denoted by $\gamma_{ch}(G)$. This concept is also defined Janakiraman and Poobalaranjani [5]. A split graph is a graph G = (V, E) whose vertices can be partitioned into two sets V_1 and V_2 , where the vertices in V_1 form a complete

Received: 25 October, 2010; Revised: 02 March, 2011; Accepted: 09 April, 2011

graph and the vertices in V_2 form a null graph. A graph G is a **perfect graph** if $\chi(H) = \omega(H)$ for all induced subgraph H of G. The length of the smallest cycle (if any) of a graph G is called girth of G and is denoted by g(G) and the length of the smallest odd cycle (if any) is denoted by $g_0(G)$. A graph G is **planar** if it can be embedded in a plane, a plane graph has already been embedded in the plane. A set $D \subseteq V$ is said to be a **chromatic strong dominating set** if D is a strong dominating set and $\chi(< D >) = \chi(G)$. The minimum cardinality of a chromatic strong dominating set is called by $\gamma_s^c(G)$. A chromatic strong dominating set of cardinality $\gamma_s^c(G)$ is called as γ_s^c -set of G. A vertex v is said to be a **strong vertex** if d(v) > d(x) for all $x \in N(v)$. A graph G is called a vertex χ -**critical graph** if $\chi(G-v) < \chi(G)$ for all $v \in V(G)$.

2 Chromatic Strong Dominating Sets

The chromatic strong dominating set mentioned in the introduction is formally defined below.

Definition 2.1: Let G = (V, E) be a graph. A subset D of V is said to be a chromatic strong dominating set (or csd- set) if D is a strong dominating set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a chromatic strong dominating set in a graph G is called the chromatic strong domination number (or csd- number) and is denoted by $\gamma_s^c(G)$.

Proposition 2.2: Let G be a graph of order n. Then $1 \leq \gamma_s^c(G) \leq n$

Proposition 2.3: Let G be a graph. Then $\gamma_s^c(G) = 1$ if and only if $G = K_1$

Proposition 2.4 For $n \ge 1$, $\gamma_s^c(K_n) = n$.

Proof: Let D be any proper subset of $V(K_n)$. Then $\chi(\langle D \rangle) \langle n \rangle$. Therefore, D is not a chromatic strong dominating set. Therefore, $V(K_n)$ is the only chromatic strong dominating set. Therefore, $\gamma_s^c(G) = n$.

Proposition 2.5: For $2 \le r \le s$, $\gamma_s^c(D_{r,s}) = 2$, where $D_{r,s}$ denotes the double star. **Proof:** $\gamma_s(D_{r,s}) = 2$. Let D be a γ_s - set of $D_{r,s}$. Then $D = \{u_1, u_2\}$, where $d(u_1) \ge 2$ and $d(u_2) \ge 2$. Since $u_1 u_2 \in E(D_{r,s})$, $\chi(< D >) = 2$. Therefore, D is a chromatic strong dominating set of $D_{r,s}$. $2 = \gamma_s(D_{r,s}) \le \gamma_s^c(D_{r,s}) \le |D| = 2$. Therefore, $\gamma_s^c(D_{r,s}) = 2$ **Proposition 2.6:** For $n \ge 4$, $\gamma_s^c(F_n) = 3$, where F_n denotes a fan.

Proof: $\gamma_s(F_n) = 1$ and $\chi(F_n) = 3$. Let u be a vertex of F_n with deg(u) = n - 1. Let $x, y \in V(F_n) - \{u\}$ such that $xy \in E(F_n)$. Let $D = \{u, x, y\}$. Then $\chi(\langle D \rangle) = 3 = \chi(F_n)$. Therefore, D is a chromatic strong dominating set of F_n . Therefore, $3 = \chi(F_n) \leq \gamma_s^c(F_n) \leq |D| = 3$. Therefore, $\gamma_s^c(F_n) = 3$

Proposition 2.7: For $n \ge 5$,

$$\gamma_{s}^{c}(W_{n}) = \begin{cases} n & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$$

Proof: Let D be a γ_s^c - set of W_n . Let u be a vertex of W_n with deg(u) = n - 1. Then $u \in D$.

Case (i): Let n be even. Then $\langle V(W_n) - \{u\} \rangle$ is a cycle on n-1 vertices. Since n is even, n-1 is odd. Therefore, $\chi(W_n - \{u\}) = 3$. Therefore, $\chi(W_n) = 4$. Since $\chi((W_n) - \{x\}) \leq 3$ for all $x \in V(W_n)$, $V(W_n)$ is the only γ_s^c - set of W_n . Therefore, $\gamma_s^c(W_n) = n$.

Case (ii): Let n be odd. Then $\langle V(W_n) - \{u\} \rangle$ is an even cycle. Therefore, $\chi(\langle V(W_n) - \{u\} \rangle) = 2$. Therefore, $\chi(W_n) = 3$. Let $x, y \in V(W_n) - \{u\}$ and $xy \in E(W_n)$. Then $\{u, x, y\}$ is a chromatic strong dominating set. Therefore, $3 = \chi(W_n) \leq \gamma_s^c(W_n) \leq |\{u, x, y\}| = 3$. Therefore, $\gamma_s^c(W_n) = 3$

Proposition 2.8: For $m, n \ge 2$,

$$\gamma_{s}^{c}(K_{m,n}) = \begin{cases} \min\{m,n\}+1 & \text{if } m \neq n \\ \\ 2 & \text{if } m = n \end{cases}$$

Proof: Let D be a γ_s - set of $K_{m,n}$.

Case (i): Let m = n. Then $\gamma_s(K_{m,n}) = 2$. Let $D = \{u, v\}$ where $uv \in E(K_{m,n})$. Since $K_{m,n}$ is bipartite, $\chi(K_{m,n}) = 2$. Since $uv \in E(K_{m,n})$, D is a chromatic strong dominating set of $K_{m,n}$. Therefore, $2 = \chi(K_{m,n}) \leq \gamma_s^c(K_{m,n}) \leq |D| = 2$. Therefore, $\gamma_s^c(K_{m,n}) = 2$. **Case (ii):** Let $m \neq n$. Without lose of generality assume that m > n. Let D be a independent set of cardinality n. Then $\chi(< D >) = 1$. Therefore, D is a not a chromatic strong dominating set. But $D \cup \{u\}$ is a chromatic strong dominating set where $u \in V(K_{m,n}) - D$. Therefore, $|D| < \gamma_s^c(K_{m,n}) \leq |D \cup \{u\} |= |D| + 1$. Therefore, $\gamma_{s}^{c}(K_{m,n}) = |D| + 1 = n + 1 = \min\{m,n\} + 1.$

Proposition 2.9: For $n \ge 2$, $\gamma_s^c(P_n) = 4$

$$\begin{bmatrix} \frac{n}{3} \\ \frac{n}{3} \end{bmatrix}$$
 if $n \equiv 1 \pmod{3}$
$$\begin{bmatrix} \frac{n}{3} \\ \frac{n}{3} \end{bmatrix} + 1$$
 if $n \equiv 0 \text{ or } 2 \pmod{3}$

Proof: Let D be a γ_s - set of P_n .

Case (i) Let $n \equiv 1 \pmod{3}$. Let $P_n : u_1, u_2, ..., u_n$ be a path on n vertices. Consider a path $P_{n-1} : u_1, u_2, ..., u_{n-1}$. Since $n \equiv 1 \pmod{3}$; $n-1 \equiv 0 \pmod{3}$. Therefore, $D = \{u_2, u_5, u_8, ..., u_{n-2}\}$ is a unique γ_s - set of P_{n-1} . Therefore, $D \cup \{u_{n-1}\}$ is a γ_s - set of P_n . Since $D \cup \{u_{n-1}\}$ is not independent $\chi(D \cup \{u_{n-1}\}) = 2 = \chi(P_n)$. Therefore, $D \cup \{u_{n-1}\}$ is a chromatic strong dominating set.

Therefore,
$$\left\lceil \frac{n}{3} \right\rceil = \gamma_s(P_n) \le \gamma_s^c(P_n) \le |D \cup \{u_{n-1}\}| = \left\lceil \frac{n}{3} \right\rceil$$
. Therefore, $\gamma_s^c(P_n) = \left\lceil \frac{n}{3} \right\rceil$.

Case (ii): Let $n \equiv 0 \pmod{3}$. Let n = 3k. Then $\gamma_s(P_{3k}) = k$ and P_n has unique γ_s -set. Let $D = \{u_2, u_5, u_8, ..., u_{3k-1}\}$. Then D is independent. Therefore, $\chi(\langle D \rangle) = 1$. Therefore, D is not a chromatic strong dominating set. Since $\chi \langle D \cup \{u_1\} \rangle = 2$, $D \cup \{u_1\}$ is a chromatic strong dominating set, $\chi \langle D \cup \{u_1\} \rangle = 2$, $\gamma_s \langle \gamma_s^c(P_n) = |D \cup \{u_1\} |= |D| + 1 = \left\lceil \frac{n}{3} \right\rceil + 1$

Case (iii): Let $n \equiv 2 \pmod{3}$. Let n = 3k + 2, then $\gamma_s(P_{3k+2}) = k + 1$. Let D be a γ_s -set. Suppose D is not independent. Let $v_i, v_{i+1} \in D$.

Sub Case(i): Let
$$i = 31$$
. Consider the path $P_1 : u_1, u_2, ..., u_{31-2}$ and the path $P_2 : u_{31+3}, ..., u_{3k+2}$. Therefore, $\gamma_s(P_1) = \left\lceil \frac{31-2}{3} \right\rceil = 1$ and $\gamma_s(P_2) = \left\lceil \frac{3(k-1)}{3} \right\rceil = k-1$. Therefore, $\gamma_s(P_n) = \gamma_s(P_1) + 2 + \gamma_s(P_2)$

 $\gamma_s(P_n) = 1 + 2 + k - 1 = k + 2$, which is a contradiction. Therefore, D is independent for every γ_s -set of P_n . Since $\chi(P_n) = 2$, $\gamma_s < \gamma_s^c$. Let $u \in D$ and $v \in N(u)$. Then $D \cup \{v\}$ is a strong dominating set, $\chi(D \cup \{v\}) = 2$, $D \cup \{v\}$ is a chromatic strong dominating

set. Therefore,
$$\gamma_s^c \le |D \cup \{v\}| = |D| + 1 = \gamma_s + 1$$
. Since $\gamma_s < \gamma_s^c$,
 $\gamma_s^c = \gamma_s + 1 = \left\lceil \frac{n}{3} \right\rceil + 1$. Therefore, $\gamma_s^c(P_n) = \left\lceil \frac{n}{3} \right\rceil + 1$.
Proposition 2.10: For $n \ge 3$,

142

$$\gamma_{s}^{c}(C_{n}) = \begin{cases} n & \text{if } n \text{ is odd} \\ \left\lceil \frac{n}{3} \right\rceil & \text{if } n \equiv 1 \pmod{3} \text{ and } n \text{ is even} \\ \left\lceil \frac{n}{3} \right\rceil + 1 & \text{if } n \equiv 0 \text{ or } 2 \pmod{3} \text{ and } n \text{ is even} \end{cases}$$

Proof: Let C_n be a cycle on n vertices.

Case (i): Let n be odd. Let D be a any proper subset of $V(C_n)$. Then $\chi(<D>) = 2 < \chi(C_n)$. Therefore, D is a chromatic strong dominating set of C_n . Therefore, $D = V(C_n)$ is the only chromatic strong dominating set. Therefore, $\gamma_s^c(C_n) = |V(C_n)| = n$.

Case (ii): Let n be even and $n \equiv 0 \pmod{3}$. Let n = 3k, let $D_1 = \{u_2, u_5, u_8, ..., u_{3k-1}\}$, $D_2 = \{u_3, u_6, u_9, ..., u_{3k}\}$ and $D_3 = \{u_1, u_4, u_7, ..., u_{3k-2}\}$. Then D_1 , D_2 , D_3 are the only γ_s -sets which are also independent. Since $\chi(\langle D_i \rangle) = 1 \neq \chi(C_n) = 2$, i = 1,2,3 D_i is not a chromatic strong dominating set. Now, $D_1 \cup \{u_1\}$ is a chromatic strong dominating set. Therefore, $\gamma_s^c(C_n) \leq |D| + 1 = \gamma_s + 1$.

Since $\gamma_{s} < \gamma_{s}^{c}$, $\gamma_{s}^{c}(C_{n}) = \gamma_{s} + 1 = \left| \frac{n}{3} \right| + 1$.

Case (iii): Let n be even and $n \equiv 2 \pmod{3}$. Let n = 3k + 2. Then $\gamma_s(C_n) = \left| \frac{n}{3} \right| =$

 $\begin{bmatrix} \frac{3k+2}{3} \\ = k+1. \text{ Let } D \text{ be a } \gamma_s \text{ - set. Suppose } D \text{ is not independent. Let } v_i, v_{i+1} \in D.$ Consider the path $P_1: v_{i+3}, v_{i+4}, ..., v_n, v_1, v_2, v_3, ..., v_{i-2}$ of length n-4. Therefore, $\gamma_s(P_1) = \begin{bmatrix} \frac{n-4}{3} \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{3k+2-4}{3} \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{3k-2}{3} \\ 3 \end{bmatrix} = k.$

Therefore, $\gamma_s(C_n) = \gamma_s(P_1) + 2 = k + 2$, which is a contradiction. Therefore, D is independent. Therefore, $\gamma_s^c(C_n) > \gamma_s(C_n)$. Since D is independent and $\chi(C_n) = 2$, $D \cup \{x\}$ is chromatic strong dominating set, where $x \in N(y)$ for some $y \in D$. Therefore, $\gamma_s^c(C_n) \le \gamma_s(C_n) + 1$. Hence $\gamma_s^c(C_n) = \gamma_s + 1 = \left\lceil \frac{n}{3} \right\rceil + 1$. **Case (iv):** Let n be even and $n \equiv 1 \pmod{3}$. Let n = 3k + 1. Then

Case (iv): Let n be even and $n \equiv 1 \pmod{3}$. Let n = 3k + 1. Then $D = \{u_2, u_5, \dots, u_{3k-1}, u_{3k}\}$ is a γ_s -set. Since D is not independent and 144 International Journal of Engineering Science, Advanced Computing and Bio-Technology

$$\chi(\langle D \rangle) = 2 = \chi(C_n)$$
, D is a γ_s^c -set. Therefore, $\gamma_s^c(C_n) = \gamma_s(C_n) = \left\lceil \frac{n}{3} \right\rceil$.

Observation 2.11:

1. Chromatic strong dominating set exists for all graphs since the vertex set V is a trivial chromatic strong dominating set.

2. For a vertex χ - critical graph, V is the only chromatic strong dominating set .

3. If D is a chromatic strong dominating set of G, then each vertex of V - D is not adjacent to at least one vertex of D.

4. $\gamma_{ch} \leq \gamma_s^c(G)$

Proof: 1 and 2 follow trivially. Suppose $x \in V - D$ is adjacent to each vertex of D. Since D contains a chromatic preserving set of G, let $S \subseteq D$ be a chromatic preserving set of D. Since x is adjacent to each vertex of S, $\chi(G) \ge \chi(\langle S \rangle) + 1 = \chi(G) + 1$, a contradiction. Hence (3). Every chromatic strong dominating set is a dom-chromatic set.

Therefore, $\gamma_{ch} \leq \gamma_s^c(G)$

Theorem 2.12 :

1. Let G be a graph without strong vertices. Then $\gamma_s^c(G) = n$ if and only if G is a vertex χ - critical graph.

2. If G is a disconnected graph, then $\gamma_s^c(G) = n$ if and only if either G is a null graph or has exactly one non trivial component which is vertex χ - critical and in which there are no strong vertices.

Proof of 1: Let $\gamma_{c}^{c}(G) = n$. Suppose that G is not a vertex χ - critical graph. Then There exists a vertex $v \in V$ such that $\chi(G-v) = \chi(G)$. Let $D = V - \{v\}$. Since G has no strong vertices, D is a strong dominating set and $\chi(\langle D \rangle) = \chi(G - v) = \chi(G).$ Therefore, D is a chromatic strong dominating set of G. Therefore, $\gamma_{s}^{c}(G) \leq |D| =$ n-1, a contradiction. Thus, G is vertex χ - critical. Conversely, assume that G is vertex χ -critical. For any proper subset D of V, $\chi(\langle D \rangle) \langle \chi(G) \rangle$. Therefore, no proper subset of V can be a chromatic strong dominating set of G. Hence $\gamma_s^c(G) = n$

Proof of 2: Let G be a disconnected graph. Let $\gamma_s^c(G) = n$. If every component of G is tivial, then $G = \overline{K_n}$. Suppose there exists at least two components of G which are non trivial. Let G1 and G2 be two such components. Without loss of generality $\chi(G_1) \geq \chi(G_2)$. Let D_1 be a γ_s^c -set of G_1 and D_2 be a γ_s -set of G_2 . Then $D_1 \cup D_2$ is a γ_s^c -set of $G_1 \cup G_2$. $D_2 = \gamma_s(G_2) \leq |V(G_2)| - \Delta(G_2) \leq |V(G_2)| - 1$. Therefore,

 $\gamma_s^c(G_1 \cup G_2) < |V(G_1)| + |V(G_2)|$, a contradiction, since $\gamma_s^c(G) = n$. Therefore, there exists exactly one component which is non trivial. Therefore, either every component of G is trivial or there exists a exactly one component of G, say G_1 , which is non trivial. In the first case $G = \overline{K_n}$. In the second case, $n = \gamma_s^c(G) = \gamma_s^c(G_1) + n - k$, where $|V(G_1)| = k$. Therefore, $\gamma_s^c(G_1) = k = |V(G_1)|$. Therefore, G_1 is χ -critical and without strong vertices. The convers is obvious.

Remark 2.13: If G is a χ -critical graph, then $\gamma_s^c(G) = n$ and G has no strong vertices.

Observation 2.14: Any superset of a chromatic strong dominating set is a chromatic strong dominating set.

Proof: Let D be a chromatic strong dominating set G and $D \subseteq D_1$. Then D_1 is a chromatic strong dominating set, since any super set of a chromatic strong dominating set is a chromatic strong dominating set. Also $\chi(G) = \chi(\langle D \rangle) \leq \chi(\langle D_1 \rangle) \leq \chi(G)$. Therefore, D_1 is also a chromatic strong dominating set.

Proposition 2.15: A chromatic strong dominating set D is minimal if and only if for each $u \in D$, one of the following conditions hold.

1.
$$\chi(\langle D - \{u\} \rangle) \langle \chi(G) \rangle$$
 (that is $\langle D \rangle$ is χ -critical)

- 2. $D \{u\}$ is not a strong dominating set is
 - (a) v is a strong isolate of D
 - (b) There exists $v \in V D$ such that $N_s(v) \cap D = \{u\}$ where
 - $N_s(v) = \{x \in V(G) : xv \in E(G) \text{ and } deg(x) \ge deg(v)\}.$

Proposition 2.16: Let D be any chromatic strong dominating set of G. Then $|V-D| = \sum_{u \in D} deg(u)$ if and only if $G = \overline{K_n}$

Proof: If $G = \overline{K_n}$, then D = V and deg(u) = 0, for each $u \in D$. Then $|V - D| = 0 = \sum_{u \in D} deg(u)$. Suppose $|V - D| = \sum_{u \in D} deg(u) = k$. Let $k \ge 1$. Then G has an edge and hence $\chi(G) \ge 2$. Let $V - D = \{u_1, u_2, u_3, ..., u_k\}$. Since D is a strong dominating set, each u_i is adjacent to a vertex of D and hence, contributes at least one degree to every vertex of D.

Since $\chi(\langle D \rangle) \ge 2$, D contains at least one edge which contributes 2 degrees to D. Hence $\sum deg(u) \ge k + 2$, a contradiction. **Corrolary 2.17:** For any non trivial connected graph with a chromatic strong dominating set D, $\sum_{u \in D} \deg(u) \ge |V - D| + 2$ **Proof:** If G is χ -critical, then V = D and $\sum_{u \in D} \deg(u) = 2m \ge 2 = |V - D| + 2$. Suppose G is not χ -critical. Since G is not trivial, $\chi(G) \ge 2$. By similar argument in the **Proposition 2.16:** $\sum_{u \in D} \deg(u) \ge |V - D| + 2$. **Proposition 2.18:** For any graph G, $\left\lfloor \frac{n}{\Delta(G) + 1} \right\rfloor \le \gamma_s^c(G)$ and equality holds if and only if $G = \overline{K_n}$.

Proof: Since $\left\lfloor \frac{n}{\Delta(G)+1} \right\rfloor \leq \gamma(G) \leq \gamma_s^c(G)$ we get the lower bound. If $G = \overline{K_n}$, then the result follows. Suppose $\left\lfloor \frac{n}{\Delta(G)+1} \right\rfloor = \gamma_s^c(G) = k$ and D is a γ_s^c - set of G. Suppose $G \neq \overline{K_n}$. Then $\gamma_s^c(G) \geq 2$. Then by corollary2.17, $|V - D| < \sum_{u \in D} deg(u)$. Thus, $n - k < \sum_{u \in D} deg(u) \leq k\Delta(G)$ and hence, $\frac{n}{\Delta(G)+1} < k$. Hence $k > \frac{n}{\Delta(G)+1} \geq \left\lfloor \frac{n}{\Delta(G)+1} \right\rfloor = k$ a contradiction. Thus, $G = \overline{K_n}$.

Theorem 2.19: Given a positive integer $k \ge 2$, then there exists a graph G such that $\gamma_s^c(G) = k$.

Proof: Let G be a complete bipartite graph, $K_{k-1,k}$.

Then $\gamma_s^c(G) = \min\{k-1,k\} + 1 = k - 1 + 1 = k$.

Theorem 2.20: Given a positive integer $k \ge 1$, there exists a graph G such that

(i). $\gamma_s^c(G) - \gamma(G) = k$. (ii). $\gamma_s^c(G) - \gamma_s(G) = k$.

Proof of 1: Let $G = K_{k+1}$. Then $\gamma_s(G) = 1$ and $\gamma_s^c(G) = k+1$. Therefore, $\gamma_s^c(G) - \gamma(G) = k+1-1 = k$.

Proof of 2: Let G = K_{k+1}, k + 2. Then $\gamma_s^c(G) = \min\{k+1, k+2\} + 1 = k + 1 + 1 = k + 2$ and $\gamma_s G$ = 2. Therefore, $\gamma_s^c(G) - \gamma_s(G) = k + 2 - 2 = k$. **Proof of 3:** Let $G = K_{k+1,k+2}$. Then $\gamma_{ch}(G) = 2$ and $\gamma_s^c(G) = \min\{k+1, k+2\} + 1$ = k + 2. Therefore, $\gamma_s^c(G) - \gamma_{ch}(G) = k + 2 - 2 = k$.

Proposition 2.21: If G is triangle free graph with $\chi(G) \ge 3$, then $\gamma_{s}^{c}(G) \ge 5$

Proof: Consider $\langle D \rangle$, where D is a γ_s^c -set of G. $\chi(\langle D \rangle) \ge 3$. Since G is triangle free, $\langle D \rangle$ is also triangle free. Therefore, $\langle D \rangle$ contains an odd cycle of length ≥ 5 . ($\langle D \rangle$ contains no odd cycles if and only if $\langle D \rangle$ is bipartite in which case $\chi(\langle D \rangle) \le 2$). Therefore, $|D| \ge 5$. Therefore, $\gamma_s^c(G) = |D| \ge 5$.

Proposition 2.22: If G is a vertex χ - critical graph without strong vertices, then $\alpha_0(G) < \gamma_s^c(G)$.

Proof: For any graph G, $\alpha_0(G) \le n-1$. Since G is χ -critical, $\gamma_s^c(G) = n$. Therefore, $\alpha_0(G) < \gamma_s^c(G)$.

3 Special Classes of Graphs

Proposition 3.1: [5] If G is a connected split graph and $\Delta(G) < n-1$, then G is a connected split graph with $\Delta(\overline{G}) < n-1$.

Definition 3.2: [6] A set D subset of V is said to be a chromatic preserving set or a cp-set if $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a chromatic preserving set in G is called chromatic preserving number or cp-number of G and is denoted by cpn(G).

Theorem 3.3: If G is a connected split graph and $\Delta(G) < n-1$, then 1. $\gamma_s^c(G) = \omega(G) = cpn(G)$. 2. $\gamma_s^c(\overline{G}) = \omega(\overline{G}) = cpn(\overline{G})$

Proof of 1: As G is a split graph, its vertex set can be partitioned into two sets X and Y such that $\langle X \rangle$ is complete and $\langle Y \rangle$ is a totally disconnected graph. Without lose of generality $\langle X \rangle$ can be assumed to be maximal clique, Since $\langle X \rangle$ is a maximal clique, each vertex of Y is not adjacent to at least one vertex of X and as $\langle Y \rangle$ is totally disconnected graph, $\chi(G) = \chi(\langle X \rangle)$. Therefore, $cpn(G) = |X| = \mathcal{O}(G)$. As G is connected each vertex of Y is adjacent to at least one vertex of X. For any $u \in Y$, $deg(u) \leq |X| - 1$ and for any let $v \in X$, $deg(v) \geq |X| - 1$. Therefore, $deg(u) \leq deg(v)$. Therefore, X strongly dominates Y and hence X is a γ_s^c -set of G.

Proof of 2: If G is a connected split graph, then from proposition 3.1 \overline{G} is also a

connected split graph and hence the result follows.

Theorem 3.4: If G is a perfect graph, then $\gamma_s^c(G) \leq \gamma_s(G) + \omega(G)$

Proof: Let S be a maximum clique in G and D a γ_s -set in G. Since G is perfect, $\mathcal{O}(G) = \chi(G)$, and hence $\chi(G) = \mathcal{O}(G) = |S| = \chi(\langle S \rangle)$.

Therefore, $\chi(\langle S \cup D \rangle) = \chi(G)$. Thus, $S \cup D$ is a chromatic strong dominating set of G, which implies that $\gamma_s^c(G) \leq |S \cup D| \leq |S| + |D| = \mathcal{O}(G) + \gamma_s(G)$.

Remark 3.5: If G is a graph with $\Delta(G) = n - 1$, then $\gamma_s^c(G)$ need not be equal to $\chi(G)$.

Example: Let W_6 be the wheel on six vertices. Then $\gamma_s^c(W_6) = 6$ and $\chi(W_6) = 4$, $\gamma_s^c(W_6) \neq \chi(W_6)$.

Proposition 3.6: If G is a perfect graph with a full degree vertex, then $\gamma_s^c(G) = \chi(G)$. **Proof:** Let u be a vertex in V(G) of degree n-1. Let S be a maximum clique in G. Clearly S contains u. For: otherwise, $S \cup \{v\}$ is a clique, a contradiction. Therefore, S is a chromatic strong dominating set of G.Therefore, $\gamma_s^c(G) \leq |S| = \chi(G)$ (G is a perfect graph). But $\chi(G) \leq \gamma_s^c(G)$. Therefore, $\gamma_s^c(G) = \chi(G)$.

Theorem 3.7: Let G be a graph without isolated vertices. If G has a vertex u which is not a strong isolate and $\chi(G) > \chi(G-v)$, for all $v \in V(G) - \{u\}$ and

 $\chi(G) = \chi(G-u)$, then $\gamma_s^c(G) = n-1$.

Proof: Let D be a $\gamma_s^c(G)$ -set of G. Then $\chi(\langle D \rangle) = \chi(G)$. Suppose |D| < n-1. Then D does not contain at least one vertex $v \neq u$. Therefore, $D \subseteq V(G) - v$. Therefore, $\chi(\langle D \rangle) \leq \chi(\langle V(G) - \{v\} \rangle) < \chi(G)$, a contradiction. Therefore, |D| = n-1. Therefore, $\gamma_s^c(G) = n-1$. Therefore, $|D| \geq n-1$. Consider $S = V(G) - \{u\}$. Then S strongly dominates u and $\chi(\langle S \rangle) = \chi(G)$. Therefore, S is a chromatic strong dominating set of G and so $\gamma_s^c(G) \leq |S| = n-1$. Therefore, $\gamma_s^c(G) = n-1$.

Theorem 3.8: If G is a planar graph with diam(G) = 2, $\chi(G) = 3$ and $\gamma_s(G) = 2$, then $3 \le \gamma_s^c(G) \le 5$

Proof: Lower bound is trivial. Let $S = \{a, b\}$ be a γ_s -set of G. Since diam(G) = 2, $g_0(G) = 3$ or 5

case (i): $g_0(G) = 3$. Let C be a 3-cycle xyzx. If $a, b \notin C$, then two vertices of C are

148

adjacent to a and one vertex is adjacent to b or vice versa, for otherwise K_4 is induced, a contradiction. Let x and y be adjacent to a, and z be adjacent to b. Then axya is a 3-cycle. Hence $\{a, x, y, b\}$ is a chromatic strong dominating set of G. If a or b is in the 3-cycle, then the 3-cycle together with the remaining vertex of S is a chromatic strong dominating set of G.

Case (ii): $g_0(G) = 5$. Let C be a 5-cycle uvwxyu. If $a, b \notin C$, then as S is a strong dominating, vertices of C are adjacent to a or b and not to both. Otherwise a 3-cycle is induced. Also no two consecutive vertices of C can be both adjacent to a or b, otherwise a 3-cycle is induced. Then S can strong dominates at most 4-vertices of C, a contradiction. Hence, a or $b \in C$. Let $a \in C$ and $b \notin C$, let u = a. Then x and w are adjacent to b and hence a 3-cycle is induced, a contradiction. Therefore, both $a, b \in C$ and hence, C is a γ_s^c - set of G. From cases (i) and (ii), the upper bound is proved.

Theorem 3.9: For any integer $N \ge 0$. There exist a connected graph G and a graph G' such that, G' is obtained from G by adding exactly one vertex and $\gamma_s^c(G) - \gamma_s^c(G') = N$. **Proof:** Let $G = P_{3(N+2)}$, a path an 3(N+2) vertices. Then $\gamma_s^c(G) = \left\lfloor \frac{3(N+2)}{3} \right\rfloor + 1 = N + 3$.

Now, G' is a graph obtained from G by adding a new vertex v and joining v to all the vertices of G. Therefore, $\gamma_s^c(G') = 3$. Hence $\gamma_s^c(G) - \gamma_s^c(G') = N + 3 - 3$. Therfore $\gamma_s^c(G) - \gamma_s^c(G') = N$.

References:

[1] Haynes, T.W., Hedetniemi, S.T., Slater, P.J :Fundamentals of Domination in Graphs, Marcel Decker Inc.. New york, 1998.

[2] Sampathkumar.E, and Pushpalatha .L, Strong weak domination and domination balance in a graph, Discrete Math . 161 (1996)235-242.

[3] Harary .F:Graph Theory Addison Wesley , reading Mass(1972).

[4] Diet Gernert, Inequality between domination number and chromatic number of a graph, Discrete Math . 76 (1989) 151-153 (1996)235-242.

[5] Janakiraman, T. N., Poopalaranjani, M. On Some Coloring and Domination Parameters in Graphs Ph.D Thesis, Bharathidasan University, India 2006.

[6] Janakiraman, T. N., Poopalaranjani, M. On The Chromatic Preserving Sets, International Journal of Engineering Science, Advanced Computing and Bio - Technology, Vol.1 No.1, January - March 2010.pp. 29 - 42.

[7] Janakiraman, T. N., Poopalaranjani, M. Dom - Chromatic Sets in Bipartite Graphs, International Journal of Engineering Science, Advanced Computing and Bio - Technology, Vol.1 No.2, April - June 2010.pp. 80 - 95.