International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 2, No. 3, July – September 2011, pp. 130 - 138

Graceful Labeling of a Family of Special Tree with Hanging Stars having non-decreasing number of Branches in Random Order

T. N. Janakiraman¹and G. Sathiamoorthy²

¹Department of Mathematics, National Institute of Technology, Tiruchirappalli. E-mail: janaki@nitt.edu. ²School of Humanities & Sciences, SASTRA University, Thanjavur. E-mail: sami@maths.sastra.edu

Abstract: In this paper, it is shown graceful a labeling of special type of tree obtained from a family of n hanging stars one at a vertex of a basic path on n vertices arranged in non-decreasing order with random number of branches having one of the branch points in each of those stars merged with one basic point of that path.

Key words: graceful labeling, random trees, growing stars

Mathematics subject classification 2010: 05C78

1. Introduction

Let G = (V, E) be a simple, undirected and finite graph with p vertices and q edges. Graph labeling was first introduced in the late 1960's. Many studies in graph labeling refer to Rosa's research 1967. Rosa [7] called a function a β -valuation of a graph G with q edges if f is an injection from the vertices of G to the set {0, 1, 2,..., q} such that when each edge xy is assigned the label f*(xy) =|f(x) - f(y)|, the resulting edge labels are distinct, Golomb [3] studied the same type of labeling and called this as graceful, which is now, the popular term.

Gallian [1] gives the extensive survey of contributions to graceful labeling of variety of graphs. The notation and terminology used in this paper are taken from [1]. There are many works relating to graceful labeling of trees. Huang, Kotzig, and Rosa [4] give a new class of graceful trees, Sethuraman and Jesintha [8, 9] have given graceful labeling of two different families of trees. The above contributions and earlier papers [5, 6] motivated us to give a graceful labeling of some special type of tree with hanging stars having non-decreasing number of branches in random order is denoted by $T_{S(n)}$.

Received: 25 September, 2010; Revised: 14 March, 2011; Accepted: 11 April, 2011

Let $P_n(s_1-s_2-...-s_n)$ be basic path of $T_{S(n)}$ tree. The vertices of the path P_n are also termed as supporting vertices of $T_{S(n)}$ tree. In $T_{S(n)}$ at each s_i , a star S_i hangs with i branches having centre c_i with one of the branch vertices of S_i is merged with s_i . The special tree with hanging stars whose branches satisfy the condition $|E(S_1)| \le |E(S_2)| \le ... \le |E(S_n)|$ (non-decreasing number of branches in the hanging stars).

2. Main result

In the paper [5], it is given a graceful labeling of a tree with hanging stars in which the number of branches growing in arithmetic progression.

In the paper [6], it is given a graceful labeling of a tree with hanging stars in which the number of branches growing in geometric progression.

Definition: 2.1:

In this paper, we give a graceful labeling for special tree with hanging stars that whose branches satisfy the condition $|E(S_1)| \le |E(S_2)| \le ... \le |E(S_n)|$ (non-decreasing number of branches in the hanging stars).

Theorem 2.2

The tree $T_{S(n)}$ with n hanging stars having branches, which are non-decreasing in order is graceful.

Proof: Let $T_{S(n)}$ be a tree with n hanging stars S_1, S_2, \ldots, S_n be stars with $|V(S_i)| = i$ for $i = 1, 2, 3, \ldots, n$. Let the support points of the hanging stars S_1, S_2, \ldots, S_n be $s_1, s_2, s_3, \ldots, s_n$ respectively and free leaves of each of the stars S_i are denoted by $f_1^{(i)}, f_2^{(i)}, \ldots, f_{i-1}^{(i)}$ for $i = 1, 2, \ldots, n$.

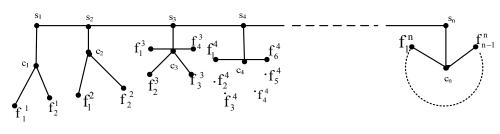
Let $c_1, c_2, ..., c_n$ be the central values of the stars $S_1, S_2, S_3, ..., S_n$ respectively.

It can be verified that $|V(T_{S(n)})| = |V(S_1)| + |V(S_2)| + ... + |V(S_n)|$ and $|E(T_{S(n)})| = |E(S_1)| + |E(S_2)| + ... + |E(S_n)| + (n-1).$

Let $|E(S_i)| = q_i$ for i = 1, 2, ..., n and $q = q_1 + q_2 + q_3 + ... + q_n + (n-1)$.

A general random tree is drawn in the following Figure 1.

Graceful Labeling of a Family of Special Tree with Hanging Stars having non-decreasing number of Branches in Random Order



We denote the labeling of node v in the tree as l (v). Here, for the tree $T_{S(n)}$, we assign the labeling in three different cases due to condition of number of branches of S_i , i = 1, 2, ..., n.

- 1. $T_{S(n)}$ with each of the stars S_i having $|E(S_i)| = 1$ (i.e. without free leaves in the stars S_i for i = 1, 2,..., n.), which is equivalent to comb graph $P_n \square L_1$.
- 2. Without free leaves up to i^{th} star and $(i+1)^{th}$ star S_{j+1} onwards have free leaves.
- 3. The star S_1 itself contains free leaves. Case (1):

In this case, labeling is given as follows.

R (1):
$$l(s_1) = 0$$
, $l(c_1) = q$, $l(s_2) = q-1$, $l(c_2) = 1$. R (2): $l(c_{2j+1}) = q-(\sum_{i=1}^{j} q_{2i} + j)$, $1 \le j \le n$.

R (3):
$$l(c_{2j}) = \sum_{i=0}^{j-1} q_{2i+1} + j - 1$$
, $1 \le j \le n$.

R (4):
$$l(s_{2j}) = q - (\sum_{i=0}^{j-1} q_{2i+1} + j-1), 1 \le j \le n.$$

R (5):
$$l(s_{2j+1}) = \sum_{i=1}^{j} q_{2i} + j, 1 \le j \le n.$$

It can be seen that the above type graph also taken as comb graph, which has been independently labeled with graceful labeling by ganajothi [2].

Case (2):

Up to ith stars S_i , all S_1 , S_2 ,..., S_i are with $|E(S_i)| = 1$ and remaining stars satisfying the $\label{eq:condition} \text{ condition } 2 \leq \left| E(S_{i+1}) \right| \leq \left| E(S_{i+2}) \right| \leq \ldots \leq \left| E(S_n) \right|.$

R (1):
$$l(s_1) = 0$$
, $l(c_1) = q$, $l(s_2) = q-1$, $l(c_2) = 1$. (Let $n = 2j+1$ for odd, and $n = 2j$ for even)

International Journal of Engineering Science, Advanced Computing and Bio-Technology

R (2):
$$l(c_{2j+1}) = q^{-} \left(\sum_{i=1}^{j} q_{2i} + j \right), 1 \le j \le n$$
. R (3): $l(c_{2j}) = \sum_{i=0}^{j-1} q_{2i+1} + j - 1$, $1 \le j \le n$.

$$R (4): \ l(s_{2j}) = q - (\sum_{i=0}^{j-1} q_{2i+1} + j-1), \ 1 \le j \le n. \qquad R (5): \ l(s_{2j+1}) = \sum_{i=1}^{j} q_{2i} + j, \ 1 \le j \le n.$$

From $(i+1)^{th}$ star to n^{th} star the induced labeling of free leaves of the stars S_{2m} and S_{2m+1} stars are given as follows.

The labeling of free leaves of odd stars of S_{2m+1} based on its supporting vertex s_{2m+1} as follows.

R (6): labeling of free leaves of $S_{2m + 1}$ is {integers starting from $l(c_{2m}) + 1$ to the number of leaves in the particular star assigned in ascending order except the value $l(s_{2m + 1})$ }.

The labeling of leaves of even stars $S_{\rm 2m}$ based on its supporting vertex $s_{\rm 2m}$ as follows.

R (7): labeling of leaves of S_{2m} is {integers starting from $l(c_{2m-1}) - 1$ to the number of leaves in the particular branch assigned in descending order except the value $l(s_{2m})$. }

The assignment of vertex labeling for case (2) shown in Figure 2.

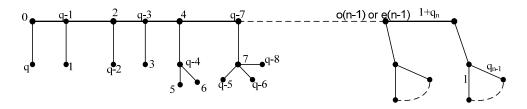


Figure 2

The vertex labeling of case (2):

Labeling of $T_{S(n)}$	Labeling of vertices
\$ ₁	0
c ₁	q
\$ ₂	q-1
c ₂	1
\$ ₃	2
C ₃	q-2
s_4	q-3
c_4	3
s _i (odd star of S _i)	i-1

Graceful Labeling of a Family of Special Tree with Hanging Stars having non-decreasing number of Branches in Random Order

c _i (odd star of S _i)	q-(i-1)
s _i (even star of S _i)	q-(i-1)
c _i (odd star of S _i)	i-1
s _{2m}	q -l(c_{2m})
c _{2m}	$(q_1+q_3+q_5+\ldots+q_{2m-1}+m-1) = o(m)$
Remaining free leaves	The relation R (7) assigns the values.
\$ _{2m+1}	$(q_2+q_4++q_{2m}+m) = e(m)$
c _{2m+1}	$q-l(s_{2m+1})$
Remaining free leaves	The relation R (6) assigns the values.
s _{2n}	$q - l(c_{2n})$
c _{2n}	$l(c_{2n-2}) + q_{2n-2} + 1$
Remaining free leaves	The relation R (7) assigns the values.
\$ _{2n+1}	$l(s_{2n-1}) + q_{2n-1} + 1$
<i>c</i> _{2n+1}	$q - l(s_{2n+1})$
Remaining free leaves	The relation R (6) assigns the values.
	Table 2.1

Table 2.1

The above labeling of vertices in T $_{\mbox{\scriptsize S}(n)}$ induces edge assignment as follows.

Labeling of T _{S(n)}	Labeling of edge values	
edge s ₁ c ₁	q	
edge s ₁ s ₂	q-1	
edge s ₂ c ₂	q-2	
edge s ₂ s ₃	q-3	
edge s ₃ c ₃	q-4	
edge s _i c _i (odd star S _i)	r S _i) q-2(i-1)	
edge s _i c _i (even star S _i)	q-2(i-1)	
edge s _{2m-1} s _{2m}	$q-(q_1+q_2+\ldots+q_{2m-1}+2m-2)$	
edge s _{2m} c _{2m}	$q-2(q_1+q_2++q_{2m-1}+m-1)$	
free leaves of S _{2m}	{q-($q_1+q_2++q_{2m-1}+2m-1$) to q -($q_1+q_2++q_{2m}+2m-2$)	
	except labeling value of the edge $s_{2m}c_{2m} = l(s_{2m}c_{2m})$ }	
edge s _{2m} s _{2m+1}	$q - (q_1 + q_2 + \ldots + q_{2m} + 2m - 1)$	
edge $s_{2m+1}c_{2m+1}$	$q-2(q_1+q_2++q_{2m}+m)$	
free leaves of S _{2m+1}	$\{q-(q_1+q_2+\ldots+q_{2m}+2m) \text{ to } q-(q_1+q_2+\ldots+q_{2m+1}+2m-1)\}$	
	except labeling value of the edge $s_{2m+1}c_{2m+1} = l(s_{2m+1}c_{2m+1})$	
edge s _{n-1} s _n	$1+ E(S_n) $	
edge s _n c _n	$ \mathbf{l}(\mathbf{s}_n)-\mathbf{l}(\mathbf{c}_n) $	
free leaves of S _n	$\{ E(S_n) \text{ to 1 except labeling value of the edge } \}$	
	$s_n c_n = l(s_n c_n) \}$	

Table 2.2

Case (3): $2 \le |E(S_1)| \le |E(S_2)| \le ... \le |E(S_n)|$ and $|E(S_i)| = q_i$, for i = 1, 2, ... n.

In this case, we give following labeling procedure to give graceful labeling of the $T_{S(n)}$.

R (1): $l(s_1) = 0$; $l(c_1) = q$; $l(c_2) = q_1$ and $l(s_2) = q-q_1$. Let n = 2j+1 for odd, and n = 2j for even,

R (2):
$$l(c_{2j+1}) = q^{-1} \left(\sum_{i=1}^{j} q_{2i} + j \right), j \ge 1.$$
 R (3): $l(c_{2j}) = \sum_{i=0}^{j-1} q_{2i+1} + j - 1, j \ge 1.$

$$R (4): \ l(s_{2j}) = q - (\sum_{i=0}^{j-1} q_{2i+1} + j-1), j \ge 1. \quad R(5): \ l(s_{2j+1}) = \sum_{i=1}^{j} q_{2i} + j, j \ge 1.$$

Labeling of free leaves in case (3):

Let the free leaves of growing m^{th} star of $T_{S(m)}$ at s_m be f_1^{m} , f_2^{m} ,..., f_{m-1}^{m} .

Let the free leaves of S_1 are labeled with values 1 to q_1 -1. Then for $m \ge 1$

The labeling of free leaves of odd stars of S_{2m+1} based on its supporting vertex s_{2m+1} as follows.

R (6): labeling of free leaves of $S_{2m + 1}$ is {integers starting from $l(c_{2m}) + 1$ to the number of leaves in the particular star assigned in ascending order except the value of $l(s_{2m + 1})$ }.

The labeling of leaves of even stars S_{2m} based on its supporting vertex s_{2m} as follows.

R (7): labeling of leaves of S_{2m} is {integers starting from $l(c_{2m-1}) - 1$ to the number of leaves in the particular branch assigned in descending order except the value of $l(s_{2m})$. }

We observe that for all cases the labeling of S_i 's in which s_{2m+1} , $m \ge 1$ are increasing order and s_{2m} , $m \ge 2$ are decreasing order in relation with q. $l(s_i) + l(c_i) = q$, for any i.

The labeling of vertices in case (3) is shown in Figure 3.

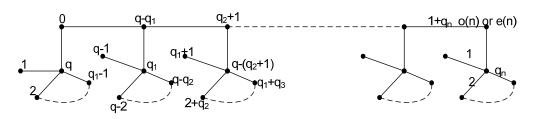


Figure 3

Graceful Labeling of a Family of Special Tree with Hanging Stars having non-decreasing number of Branches in Random Order

The above labeling of vertices and edges induces a bijective mapping $h_{\scriptscriptstyle E}$ and $h_{\scriptscriptstyle V}$ as follows.

 $h_{E}: E(T_{S(n)}) \longrightarrow \{1, 2, ..., q\}$

 $h_{V}: V(T_{S(n)}) \longrightarrow \{0,1,...,q\}$

which could be verified easily that it admits graceful labeling for the given tree $T_{S(n)}$.

The general vertex labeling of case (3):

Labeling of $T_{S(n)}$	Labeling of vertices		
	0		
c ₁	q		
Remaining free leaves of S ₁	$1 \text{ to } q_1$ -1		
\$_2	q-q ₁		
C	q 1		
Remaining free leaves of S ₂	$\{q-1 \text{ to } (q-q_2) \text{ except labeling value of the vertex } \}$		
	$(\mathbf{q} - \mathbf{q}_1) = \mathbf{l}(\mathbf{s}_2)\}$		
\$ ₃	1+q ₂		
C ₃	q-(1+q ₂)		
Remaining free leaves of S ₃	$\{(q_1 + 1) \text{ to } (q_1 + q_3) \text{ except labeling value of the} \}$		
	vertex $(1+q_2) = l(s_3)$		
\$ ₄	q-(q ₁ +q ₃ +1)		
C ₄	$q_1 + q_3 + 1$		
Remaining free leaves of S_4	{(q-q ₂ -2) to (q-(q ₂ +q ₄ +1) except labeling value of		
	the vertex $q(q_1+q_3+1) = l(s_4)$		
s _{2m}	q-l(c _{2m})		
c _{2m}	$(q_1+q_3+q_5+\ldots+q_{2m-1}+m-1) = o(m)$		
Remaining free leaves of S_{2m} The relation R (7) assigns the values			
\$2m+1	$(q_2+q_4++q_{2m}+m) = e(m)$		
c _{2m+1}	q-l(s _{2m+1})		
Remaining free leaves of S _{2m+1} The relation R (6) assigns the value			
s _{2n}	q- l(c _{2n})		
c _{2n}	$l(c_{2n-2}) + q_{2n-2} + 1$		
Remaining free leaves of S_{2n} The relation R (7) assigns the values.			

s _{2n+1}	$l(s_{2n-1}) + q_{2n-1} + 1$	
c _{2n+1}	$q - l(s_{2n+1})$	
Remaining free leaves of S _{2n+1}	The relation R (6) assigns the values.	
Table 3.1		

Table 3.1

The above labeling of vertices in T $_{\mbox{\scriptsize S}(n)}$ induces edge assignment as follows.

Labeling of T _{S(n)}	Labeling of edge values			
edge s ₁ c ₁	q			
free leaves of S ₁	q-1 to q-(q ₁ -1)			
edge s ₁ s ₂	q-q ₁			
edge s ₂ c ₂	q-2q1			
free leaves of S ₂	${q-(q_1+1) \text{ to } q-(q_1+q_2) \text{ except labeling value of the edge } s_2c_2 =$			
	$(q-2q_1)$ }			
edge s ₂ s ₃	$q-(q_1+q_2+1)$			
edge s ₃ c ₃	q-2(q ₂ +1)			
free leaves of S ₃	$\{q-(q_1+q_2+2) \text{ to } q-(q_1+q_2+q_3+1) \text{ except labeling value of the edge} \}$			
	$s_3c_3 = q-2(1+q_2)$			
edge s ₃ s ₄	$q-(q_1+q_2+q_3+2)$			
edge s ₄ c ₄	$q-2(q_1+q_3+1)$			
free leaves of S ₄	$\{q-(q_1+q_2+q_3+3) \text{ to } q-(q_1+q_2+q_3+q_4+2) \text{ except labeling value of } \}$			
	the edge $s_4c_4 = q-2(q_1+q_3+1)$ }			
edge s _{2m-1} s _{2m}	$q-(q_1+q_2+\ldots+q_{2m-1}+2m-2)$			
edge s _{2m} c _{2m}	$q-2(q_1+q_2+\ldots+q_{2m-1}+m-1)$			
free leaves of S _{2m}	{q-(q_1 + q_2 ++ q_{2m-1} +2m-1) to q-(q_1 + q_2 ++ q_{2m} +2m-2) except the			
	labeling value of the edge $s_{2m}c_{2m} =$			
	$q-2(q_1+q_2+\ldots+q_{2m-1}+m-1)\}$			
edge s _{2m} s _{2m+1}	$q-(q_1+q_2+\ldots+q_{2m}+2m-1)$			
edge $s_{2m+1}c_{2m+1}$	$q-2(q_1+q_2++q_{2m}+m)$			
free leaves of S _{2m+1}	$\{q-(q_1+q_2+\ldots+q_{2m}+2m) \text{ to } q-(q_1+q_2+\ldots+q_{2m+1}+2m-1) \text{ except the} \}$			
	labeling value of the edge $s_{2m+1}c_{2m+1} = q$ -			
	$2(q_1+q_2++q_{2m}+m)$			
edge s _{n-1} s _n	$1+ E(S_n) $			
edge s _n c _n	$ l(s_n)-l(c_n) $			

Graceful Labeling of a Family of Special Tree with Hanging Stars having non-decreasing number of Branches in Random Order

free leaves of S _n	{ $ E(S_n) $ to 1 except the labeling value of the edge	$s_n c_n =$
	$ \mathbf{l}(\mathbf{s}_n)-\mathbf{l}(\mathbf{c}_n) \}$	

Table 3.2

Concluding remarks (as generalization)

Using the above scheme, we conclude that any random tree consisting growing stars with the condition $|E(S_1)| \le |E(S_2)| \le ... \le |E(S_n)|$ is always graceful.

Now, it leads to an interesting problem of finding a graceful labeling of trees with hanging stars whose branches are selected in random.

References:

- [1] Gallian, J A A Dynamic Survey of Graceful Labeling, The Electronic Journal of Combinatories, twelfth edition January 2009.
- [2] R. B. Gnanajothi, Topics in Graph Theory, Ph. D. Thesis, Madurai Kamaraj University, 1991
- [3] S. W. Golomb, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972) 23-37.
- [4] C. Huang, A. Kotzig, and A. Rosa, Further results on tree labeling, Util. Math., 21c (1982) 31-48.
- [5] T.N. Janakiraman and G. Sathiamoorthy, Graceful labeling of Generalized Tree of Hanging stars in Arithmetic progression, Inter. J. Engineering Sciences, Advanced Computing and Bio-Techonology, Vol 1, No. 3 (2010), pp. 146-151.
- [6] T.N. Janakiraman and G. Sathiamoorthy, Graceful labeling of Generalized Tree of Hanging stars in Geometric progression, Inter. J. Engineering Sciences, Advanced Computing and Bio-Techonology, Vol 1, No. 4,(2010), pp. 152-157.
- [7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat.Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
- [8] G. Sethuraman and J. Jesintha, A new class of graceful rooted trees, J. Disc. Math. Sci. Crypt., 11 (2008) 421-435
- [9] G. Sethuraman and J. Jesintha, Generating new graceful trees, Proc. Inter. Conf. Math. Comput. Sci., July (2008) 67-73