Complementary Tree Domination in Grid Graphs

S. Muthammai¹ and P. Vidhya²

¹Government Arts College for Women (Autonomous)

Pudukkottai – 622 001, India

E-mail: muthammai.sivakami@gmail.com

²S.D.N.B. Vaishnav College for Women (Autonomous)

Chennai – 600 044, India

E-mail: vidhya_lec@yahoo.co.in

Abstract: Let G(V, E) be a nontrivial, simple, finite and undirected graph. A dominating set of the graph G is a subset D of V such that every vertex not in D is adjacent to some vertex in D. The minimum cardinality of a dominating set is the domination number $\gamma(G)$. A dominating set D is called a complementary tree dominating set if the subgraph V - D induced by V - D is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

In this paper, we determine the complementary tree domination numbers of some grid graphs (Cartesian product of two paths P_m and P_n).

Keywords: domination, complementary tree domination.

Mathematics Subject Classification: 05C69.

1. Introduction

The graphs considered here are nontrivial, simple, finite and undirected. Let G be a graph with vertex set V(G) and edge set E(G). The concept of domination was first studied by Ore [7] and Berge [1]. A set $D \subseteq V$ is said to be a dominating set of G, if every vertex in V- D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was introduced by S. Muthammai, M. Bhanumathi and P. Vidhya in [6]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the subgraph V - D induced by V - D is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

The Cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$, with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ (where \times denotes the Cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever [$u_1 = v_1$

and $(u_2, v_2) \in E(G_2)$] or $[u_2 = v_2 \text{ and } (u_1, v_1) \in E(G_1)]$. If each G_1 and G_2 is a path P_m and P_n (respectively), then we will call $P_m \times P_n$, a $m \times n$ Grid graph. For notational convenience, we denote $P_m \times P_n$ by $P_{m, n}$. The reader is referred to [4] for survey of results on domination. The inverse domination number for the grid graphs $P_m \times P_n$ $(1 \le m \le 5)$ was determined by T. Tamizh Chelvam and G.S. Grace Prema [8]

In this paper, we determine the complementary tree domination numbers of $P_{m, n}$ where m=2, 3, 4, 5 and 6. $P_{1, n}$ is nothing but the path P_n on n vertices. S. Muthammai, M. Bhanumathi and P. Vidhya [6] have established $\gamma_{ctd}(P_n) = n-2$, $n \ge 4$.

Notation:

Let 1, ..., m and 1, ..., n be the vertices of P_m and P_n respectively. Then the vertices of $P_{m,n}$ are denoted $x_{i,j}$, when i=1,...,m and j=1,...,n.

Theorem 1.1. [6]

A complementary tree dominating set D of G is minimal if and only if for each vertex $v \in D$, one of the following conditions is satisfied

- (i) there exists a vertex $u \in V(G)$ D such that $N(u) \cap D = \{v\}$
- (ii) v is an isolated vertex in <D>
- (iii) $N(v) \cap (V(G)-D) = \emptyset$
- (iv) The subgraph $\langle (V(G)-D) \cup \{v\} \rangle$ of G induced by $(V(G)-D) \cup \{v\}$ either contains a cycle or is disconnected.

2. Complementary Tree Domination Numbers of $P_{2, n}$, $n \ge 1$

In this section, we give the complementary tree domination numbers of $2\times n$ grid graphs $P_{2, n}$.

Theorem 2.1: For all
$$n \ge 1$$
, $\gamma_{ctd}(P_{2, n}) = \left| \frac{n+2}{2} \right|$

Proof:

A minimal complementary tree dominating set of P_{2, n} is given as follows.

Let n = 4q + r, where $1 \le r \le 4$. We split the set of columns of $P_{2, n}$ into blocks $B_i \cong P_{2, 4}$ for i = 1, ..., q. The vertices \bullet enclosed within the round symbol in each of the blocks in the figures represent the vertices to be included for a minimal complementary tree dominating set D. The vertices \bullet with symbol \times in the blocks indicate those vertices that

are not dominated by a complementary tree dominating set D constructed upto this stage and to be considered while concatenation.

Let
$$P_i = \{x_{1, 4i-3}, x_{2, 4i-1}\}, i = 1, ..., q.$$
 (Figure 1)

Let D =
$$\bigcup_{i=1}^{q} P_i$$
. Therefore, $|D| = 2 \left\lfloor \frac{n}{4} \right\rfloor$.

Figure 1

Case i: $n \equiv 1 \pmod{4}$

Consider the set $D_1 = D \cup \{x_{1, n}\}$. (Figure 2(a)). This set is a minimal complementary tree dominating set of $P_{2, n}$.

$$|D_1| = 2 \left| \frac{n}{4} \right| + 1 = \left| \frac{n+2}{2} \right|$$

Figure 2

Case ii: $n \equiv 2 \pmod{4}$

Here the set $D_2 = D \cup \{x_{1, n-1}, x_{1, n}\}$ (Figure 2(b)) is a minimal complementary tree dominating set of $P_{2, n}$. Hence,

$$|D_2| = 2\left\lfloor \frac{n}{4} \right\rfloor + 2 = \left\lfloor \frac{n+2}{2} \right\rfloor$$

Case iii: $n \equiv 3 \pmod{4}$

In this case, the set $D_3 = D \cup \{x_{1, n-2}, x_{2, n}\}$. (Figure 2(c)) is a minimal complementary tree dominating set of $P_{2, n}$ and

$$|D_3| = 2\left\lfloor \frac{n}{4} \right\rfloor + 2 = \left\lfloor \frac{n+2}{2} \right\rfloor$$

Case iv: $n \equiv 0 \pmod{4}$

Let
$$n = 4q + 4$$
, $q = 0, 1, ...$

In this case, the set $D_4 = D \cup \{x_{1, n-3}, x_{2, n-1}, x_{2, n}\}$. (Figure 2(d)) is a minimal complementary tree dominating set of $P_{2, n}$.

$$|D_4| = 2 \left| \frac{n-1}{4} \right| + 3 = \left| \frac{n+2}{2} \right|$$

From all the cases, $\gamma_{ctd}(P_{2,\,n})=\left\lfloor\frac{n+2}{2}\right\rfloor$, for all $n\geq 1.$

3. Complementary Tree Domination Numbers of $P_{3, n}$, $n \ge 4$.

In this section, we give complementary tree domination numbers of $3\times n$ grid graphs $P_{3,n}$, $n\geq 4$. Here we split the columns of $P_{3,n}$ into blocks $P_{3,4}$.

Theorem 3.1: For $n \ge 4$, $\gamma_{ctd}(P_{3, n}) = n + i$ for $n \equiv i \pmod 4$, i = 0, 1, 2, 3 **Proof:**

We give a minimal complementary tree dominating (ctd) set D of $P_{3,\,n}$ as follows. Let $n\ge 4.$

Case i: For n = 4q, $\gamma_{ctd}(P_{3, n}) = n$.

We split the set of columns of $P_{3,n}$ into blocks $B_i \cong P_{3,4}$ for i=1,2,...,q. Let $P_i = \{ x_{1,4i-1}, x_{1,4i}, x_{2,4i-3}, x_{3,4i-1} \}$. P_i dominates all the four columns of B_i such that

$$\langle B_i - P_i \rangle$$
 is a tree for $i = 1, ..., q$. Let $D = \bigcup_{i=1}^{q} P_i$ (Figure 3).

Figure 3

(a) (b) (c)

Figure 4

Then D is a minimal dominating set. Moreover < V(P $_{3,\,n}$) — D> is a tree and hence D is a minimal complementary tree dominating set of P $_{3,\,n}$ and $\gamma_{ctd}(P_{3,\,n})=4$ $\left|\frac{n}{4}\right|=n$.

Case ii: For $n \equiv 1 \pmod{4}$, $\gamma_{ctd}(P_{3,n}) = n + 1$.

Consider $D_1 = D \cup \{x_{3, n}\}$. D_1 is a minimal ctd set of $P_{3, n}$ and $|D_1| = n + 1$. (To obtain the minimal ctd set we need the vertices of D together with the vertex $x_{3, n}$). (Figure 4(a)). Hence, $\gamma_{ctd}(P_{3, n}) = n + 1$.

Case iii: For $n \equiv 2 \pmod{4}$, $\gamma_{ctd}(P_{3, n}) = n + 2$.

Consider $D_2 = D \cup \{ x_{1, n}, x_{3, n-1} \}$. (Figure 4(b)). This D_2 is a minimal ctd set of $P_{3, n}$ and $|D_2| = n + 2$ and hence $\gamma_{ctd}(P_{3, n}) = n + 2$.

Case iv: For $n \equiv 3 \pmod{4}$, $\gamma_{ctd}(P_{4,n}) = n + 3$.

Consider $D_3 = D \cup \{x_{1, n-1}, x_{3, n-2}, x_{3, n}\}$. (Figure 4(c)). This D_3 is a minimal ctd set of $P_{3,n}$ and $\left|D_3\right| = n+3$ and hence $\gamma_{ctd}(P_{3,n}) = n+3$.

From all the four cases, we conclude that for $n \ge 4$,

$$\gamma_{ctd}(P_{3, n}) = n + i$$
, for $n \equiv i \pmod{4}$, $i = 0, 1, 2, 3$.

Remark 3.2:

$$\gamma_{ctd}(P_{3, 1}) = 2$$

 $\gamma_{ctd}(P_{3, n}) = 3 \text{ if } n = 2, 3.$

4. Complementary Tree Domination Numbers of $P_{4,n}$, $n \ge 5$

In this section, we give complementary tree domination numbers of $4\times n$ grid graphs $P_{4,\,n}$, $n\geq 5$. Here we split the columns of $P_{4,\,n}$ into blocks $P_{4,\,5}$.

It is to be noted that
$$\gamma_{ctd}(P_{4, 6}) = \gamma_{ctd}(P_4) \times \gamma_{ctd}(P_6)$$

Theorem 4.1: For
$$n \ge 5$$
, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$.

Proof:

A minimal complementary tree dominating set of $P_{4,\,n}$ ($n\geq 5$) is presented as follows.

Case i: For
$$n = 5q$$
, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$

Here we split the set of columns of $P_{4, n}$ into blocks B_i , where $B_i \cong P_{4, 5}$ for i = 1, ..., q. Let $P_i = \{x_{1, 5i - 4}, x_{1, 5i}, x_{2, 5i - 2}, x_{2, 5i}, x_{3, 5i - 3}, x_{4, 5i - 4}, x_{4, 5i - 1}\}$ (i = 1, ..., q).

This set dominates all the five columns of each block B_i such that $\langle B_i - P_i \rangle$ is a tree for i = 1, ..., q. (Figure 5).

123

Let D = $\bigcup_{i=1}^{q} P_i$. Then $\langle V(P_{4, n}) - D \rangle$ is a tree and D is a minimal ctd set and hence

$$\gamma_{\text{ctd}}(P_{4, n}) = 7 \left| \frac{n}{5} \right| = \left| \frac{7n}{5} \right|$$

Case ii : For $n \equiv 1 \pmod{5}$, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$

Consider the set $D_1 = D \cup \{x_{4, n}\}$ is a minimal ctd set of $P_{4, n}$. (Figure 6(a)).

$$\left|D_1\right| = 7 \left\lfloor \frac{n}{5} \right\rfloor + 1 = \left\lfloor \frac{7n}{5} \right\rfloor$$
 and hence $\gamma_{ctd}(P_{4, n}) = \left\lfloor \frac{7n}{5} \right\rfloor$

Figure 5

Figure 6

Case iii: For
$$n \equiv 2 \pmod{5}$$
, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$

Consider the set $D_2 = D \cup \{ x_{2, n}, x_{4, n-1} \}$ (Figure 6(b)).

This set D_2 is a minimal ctd set of $P_{4,n}$ and $\left|D_2\right| = 7\left\lfloor\frac{n}{5}\right\rfloor + 2 = \left\lfloor\frac{7n}{5}\right\rfloor$ and hence

$$\gamma_{\text{ctd}}(P_{4, n}) = \left\lfloor \frac{7n}{5} \right\rfloor$$

Case iv: For
$$n \equiv 3 \pmod{5}$$
, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$

The set $D_3 = D \cup \{ x_{2, n-1}, x_{2, n}, x_{4, n-2}, x_{4, n} \}$ is a minimal ctd set of $P_{4, n}$. (Figure 6(c)).

$$\left|D_3\right| = 7 \left\lfloor \frac{n}{5} \right\rfloor + 4 \ = \left\lfloor \frac{7n}{5} \right\rfloor \quad \text{and hence } \gamma_{ctd}(P_{4, \, n}) = \left\lfloor \frac{7n}{5} \right\rfloor$$

Case v: For
$$n \equiv 4 \pmod{5}$$
, $\gamma_{ctd}(P_{4, n}) = \left| \frac{7n}{5} \right|$

Here, the set $D_4 = D \cup \{x_{1, n}, x_{2, n-2}, x_{3, n-1}, x_{4, n-3}, x_{4, n}\}$ is a minimal ctd set of $P_{4, n}$. (Figure 6(d)).

$$\left|D_4\right| = 7\left|\frac{n}{5}\right| + 5 = \left|\frac{7n}{5}\right|$$
 and hence $\gamma_{ctd}(P_{4, n}) = \left|\frac{7n}{5}\right|$

From the above cases, we see that $\gamma_{ctd}(P_{4,\,n}) = \left| \, \frac{7n}{5} \, \right|, \ \text{for } n \geq 5.$

Remark 4.2: For
$$1 \le n \le 4$$
, $\gamma_{ctd}(P_{4, n}) = \begin{cases} n+1, \text{ if } n=1, 2, 3\\ n+2, \text{ if } n=4 \end{cases}$

Remark 4.3: Theorem 4.1. implies the following recurrence relation $\gamma_{ctd}(P_{4,\,n}) = \gamma_{ctd}(P_{4,\,n-5}) + 7,\, n \geq 10.$

5. Complementary Tree Domination Numbers of $P_{5,n}$, $n \ge 6$

In this section, we give complementary tree domination numbers of $5\times n$ grid graphs $P_{5,\,n}$, $n\geq 6$. Here we split the columns of $P_{5,\,n}$ into blocks $P_{5,\,6}$.

Theorem 5.1: For $n \ge 6$,

$$\gamma_{ctd}(P_{5, n}) = \begin{cases} \frac{5n}{3} & \text{if } n \equiv 0, 3 \text{ (mod 6)} \\ \frac{5n+1}{3} & \text{if } n \equiv 1 \text{ (mod 6)} \\ \left\lfloor \frac{5n-1}{3} \right\rfloor & \text{if } n \equiv 2, 4, 5 \text{ (mod 6)}. \end{cases}$$

Proof:

We determine the minimal ctd set of $P_{5,n}$ ($n \ge 6$) as follows.

Case i: For
$$n = 6q$$
, $\gamma_{ctd}(P_{5, n}) = \left| \frac{5n}{3} \right|$.

The set of columns of $P_{5,n}$ can be split into blocks B_i , where $B_i \cong P_{5,6}$ for i=1,2,...,q.

Consider the set $P_i = \{x_{1, 6i-5}, x_{1, 6i-2}, x_{1, 6i}, x_{2, 6i-3}, x_{3, 6i-5}, x_{3, 6i-1}, x_{4, 6i-3}, x_{4, 6i}, x_{5, 6i-5}, x_{5, 6i-2}\}$ This set P_i dominates all the six columns of the block B_i such that $\langle B_i - P_i \rangle$ is a tree (i = 1, 2, ..., q). (Figure 7).

Let $D = \bigcup_{i=1}^{q} P_i$. Then $\langle V(P_{5,n}) - D \rangle$ is a tree and D is a minimal ctd set of $P_{5,n}$ and

hence
$$\gamma_{ctd}(P_{5,\,n}) = 5 \left\lfloor \frac{n}{3} \right\rfloor = \left\lfloor \frac{5n}{3} \right\rfloor = \frac{5n}{3}$$
.

Figure 7

Figure 8

Case ii: For $n \equiv 1 \pmod{6}$, $\gamma_{ctd}(P_{5,\,n}) = \frac{5n+1}{3}$.

Consider the set $D_1 = D \cup \{x_{3, n}, x_{4, n}\}$ (Figure 8(a)). This set is a minimal ctd set of $P_{5, n}$ and $\left|D_1\right| = 5\left\lfloor\frac{n}{3}\right\rfloor + 2 = \frac{5n+1}{3}$. Hence, $\gamma_{ctd}(P_{5, n}) = \frac{5n+1}{3}$.

Case iii: For $n \equiv 2 \pmod 6$, $\gamma_{ctd}(P_{5,\,n}) = \left\lfloor \frac{5n-1}{3} \right\rfloor$. The set $D_2 = D \cup \{x_{2,\,n},\,x_{3,\,n-1},\,x_{5,\,n}\}$ is a minimal ctd set of $P_{5,\,n}$. (Figure 8(b)).

$$\left|D_2\right| \ = 5 \left\lfloor \frac{n}{3} \right\rfloor + 3 = \left\lfloor \frac{5n-1}{3} \right\rfloor. \ Therefore, \ \gamma_{ctd}(P_{5, \, n}) = \left\lfloor \frac{5n-1}{3} \right\rfloor.$$

Case iv: For $n \equiv 3 \pmod{6}$, $\gamma_{ctd}(P_{5, n}) = \left\lfloor \frac{5n-1}{3} \right\rfloor$. In this case, the set $D_3 = D \cup \{x_{1, n}, x_{2, n}, x_{2$ $_{n-2},\,x_{3,\,n-1},\,x_{5,\,n-2},\,x_{5,\,n}\}$ is a minimal ctd set of $P_{5,\,n}.$ (Figure $\,8(c)).$ $\left|D_3\right| = 5\left|\frac{n}{3}\right| + 5 = \left|\frac{5n}{3}\right| = \frac{5n}{3}.$

Case v: For $n \equiv 4 \pmod{6}$, $\gamma_{ctd}(P_{5,\,n}) = \left\lfloor \frac{5n-1}{3} \right\rfloor$. Here, the set $D_4 = D \cup \{x_{1,\,n-2},\,x_{1,\,n},\,x_{3,\,n-1},\,x_{2,\,n-1},$ 3, $x_{3, n-1}$, $x_{4, n}$, $x_{5, n-2}$ } is a minimal ctd set of $P_{5, n}$. (Figure 8(d)). $|D_4| = 5 \left| \frac{n}{3} \right| + 6 = \left| \frac{5n-1}{3} \right|$ and hence $\gamma_{\rm ctd}(P_{5, n}) = \left| \frac{5n - 1}{3} \right|$.

Case vi: For $n \equiv 5 \pmod{6}$, $\gamma_{ctd}(P_{5,n}) = \left\lfloor \frac{5n-1}{3} \right\rfloor$. In this case, the set $D_5 = D \cup \{x_{1, n-3}, x_{1, n-3}, x_{2, n-3}, x_{3, n-3}, x_{4, n-3}, x$ $x_{1, n-1}, x_{3, n-4}, x_{3, n-2}, x_{3, n}, x_{4, n-1}, x_{4, n}, x_{5, n-3}$ is a minimal ctd set of $P_{5, n}$. $\left| D_5 \right| = 5 \left| \frac{n}{3} \right| + 8 = \left| \frac{5n-1}{3} \right|$

From the above cases, we conclude that,

$$\gamma_{ctd}(P_{5,\,n}) \; = \; \begin{cases} \frac{5n}{3} & \text{if } n \; \equiv \; 0, \, 3 \; (\text{mod } 6) \\ \\ \frac{5n+1}{3} & \text{if } n \; \equiv \; 1 \; (\text{mod } 6) \\ \\ \left\lfloor \frac{5n-1}{3} \right\rfloor & \text{if } n \; \equiv \; 2, \, 4, \, 5 \; (\text{mod } 6). \end{cases}$$

For $n \le 5$, $\gamma_{ctd}(P_{5,1}) = 3$ Remark 5.2: $\gamma_{ctd}(P_{5,n}) = 2n - 1$, if n = 2, 3, $\gamma_{ctd}(P_{5,n}) = 2n - 2$, if n = 4, 5.

Remark 5.3: A recurrence relation in 5×n grid graphs is.

$$\gamma_{\rm ctd}(P_{5, n}) = \gamma_{\rm ctd}(P_{5, n-6}) + 10$$
, for $n \ge 12$.

6. Complementary Tree Domination Numbers of $P_{6, n}$, $n \ge 7$

In this section, we give complementary tree domination numbers of 6×n grid graphs $P_{6,n}$, $n \ge 7$. Here we split the columns of $P_{6,n}$ into blocks $P_{6,7}$.

Theorem 6.1: Let $n \ge 7$. Then $\gamma_{ctd}(P_{6, n}) = 2n$. **Proof:**

As before, we present a complementary tree dominating (ctd) set of $P_{6,\,n}$ as follows. Let $n\geq 7$.

Case i: n = 7q.

We split the set of columns of $P_{6,\,n}$ into blocks $B_i,\,B_i\cong P_{6,\,7}$ for $i=1,\,2,\,...,\,q$. $P_i=\{x_{1,7i-4},\,x_{1,\,7i},\,x_{2,\,7i-6},\,x_{2,\,7i-2},\,x_{3,\,7i-4},\,x_{3,\,7i-1},\,x_{4,\,7\,i-6},\,x_{4,\,7i-5},\,x_{4,\,7i-3},\,x_{4,\,7i},\,x_{5,\,7i-2},\,x_{6,\,7i-6},\,x_{6,\,7i-4},\,x_{6,\,7i}\}\ dominates all the seven columns of each block <math>B_i,\,$ such that $<\!B_i-P_i\!>$ is a tree, $i=1,\,...,\,q$. (Figure 9).

Let D = $\bigcup_{i=1}^q P_i$. Also $<\!v(P_{6,\,n})\!-\!D\!>$ is a tree and D is a minimal ctd set of $P_{6,\,n}$ and

hence $\gamma_{ctd}(P_{6, n}) = 14 \left\lfloor \frac{n}{7} \right\rfloor = 2n$.

Case ii: $n \equiv 1 \pmod{7}$.

Let $D_1 = D \cup \{x_{3, n}, x_{6, n}\}$. (Figure 10(a)). This set is a minimal ctd set and $\left|D_1\right| = 14 \left\lfloor \frac{n}{7} \right\rfloor + 2 = \left\lfloor \frac{14n}{7} \right\rfloor = 2n$ [To obtain the minimal ctd set, we need the vertices of D

together with vertices $x_{3, n}$ and $x_{6, n}$]. Therefore, $\gamma_{ctd}(P_{6, n}) = 2n$.

Figure 9

Case iii: $n \equiv 2 \pmod{7}$.

Let $D_2 = D \cup \{ x_{1,n}, x_{3,n-1}, x_{4,n} x_{6,n-1} \}$. This set is a minimal ctd set of $P_{6, n}$. (Figure 10(b)). $\left| D_2 \right| = 14 \left\lfloor \frac{n}{7} \right\rfloor + 4 = \left\lfloor \frac{14n}{7} \right\rfloor = 2n$. Hence, $\gamma_{ctd}(P_{6, n}) = 2n$.

Figure 10

Case iv: $n \equiv 3 \pmod{7}$.

Let
$$D_3 = D \cup \{ x_{1, n-1}, x_{3, n-2}, x_{3, n}, x_{4, n-1}, x_{6, n-2}, x_{6, n} \}$$
.

(Figure 10(c)). This set is a minimal ctd set of
$$P_{6, n}$$
. $\left|D_3\right| = 14 \left\lfloor \frac{n}{7} \right\rfloor + 6 = \left\lfloor \frac{14n}{7} \right\rfloor = 2n$

Hence, $\gamma_{ctd}(P_{6, n}) = 2n$.

Case v: $n \equiv 4 \pmod{7}$

Let
$$D_4 = D \cup \{x_{1, n-2}, x_{1, n}, x_{3, n-3}, x_{3, n-1}, x_{4, n-2}, x_{4, n}, x_{6, n-3}, x_{6, n-1}\}$$
. (Figure 10(d)).

This set is a minimal ctd set of
$$P_{6,\,n^*}\left|D_4\right|=14\left\lfloor\frac{n}{7}\right\rfloor+8=\left\lfloor\frac{14n}{7}\right\rfloor=2n$$

Hence, $\gamma_{ctd}(P_{6, n}) = 2n$.

Case vi: $n \equiv 5 \pmod{7}$

Let
$$D_5 = D \cup \{x_{1, n-3}, x_{1, n-1}, x_{3, n-4}, x_{3, n-2}, x_{3, n}, x_{4, n-3}, x_{4, n-1}, x_{6, n-4}, x_{6, n-2}, x_{6, n}\}$$
. (Figure 10(e)).

This set is a minimal ctd set of $P_{6, n}$.

$$\left|D_5\right|=14\left|\frac{n}{7}\right|+10=\left|\frac{14n}{7}\right|=2n.$$
 Therefore, $\gamma_{ctd}(P_{6,\,n})=2n.$

Case vii: $n \equiv 6 \pmod{7}$

Let
$$D_6 = D \cup \{x_{1, n-4}, x_{1, n-2}, x_{1, n}, x_{3, n-5}, x_{3, n-3}, x_{3, n-1}, x_{4, n-4}, x_{4, n-2}, x_{4, n}, x_{6, n-5}, x_{6, n-3}, x_{6, n-1}\}$$
. (Figure 10(f)). This set is a minimal ctd set of $P_{6, n}$.

$$\left|D_{6}\right|=14\left\lfloor\frac{n}{7}\right\rfloor+12=\left\lfloor\frac{14n}{7}\right\rfloor=2n. \ Hence, \ \gamma_{ctd}(P_{6,\,n})=2n.$$

Therefore $\gamma_{ctd}(P_{6, n}) = 2n$, for $n \ge 7$.

Remark 6.2:

$$\text{For } 2 \leq n \leq 6, \gamma_{ctd}(P_{6,\,n}) = \begin{cases} 4 & \text{if } n = 2 \\ 2n - 1 & \text{if } n = 3,\,4,\,5 \\ 12 & \text{if } n = 6. \end{cases}$$

Note 6.3:

The above method of splitting the columns of $P_{m, n}$ into blocks $P_{m, m+1}$ doesn't work for $m \ge 7$. When we concatenate two blocks $P_{m, m+1}$, the subgraph induced by the complement of a minimal dominating set either will contain a cycle or will be disconnected.

References:

- [1] C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.
- [2] M. El-Zahav and C.M. Pareek, Domination Number of Products of Graphs, Ars Combin., 31 (1991), 223–227.
- [3] S. Gravier, Total Domination Number of Grid Graphs, Discrete Appl. Math., 121 (2002), 119-128.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York (1998).
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc., New York (1998).
- [6] S. Muthammai, M. Bhanumathi, P. Vidhya, Complementary Tree Domination in Graphs, International Mathematical Forum, Vol. 6, 2011, 26, 1273–1283.
- [7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962.
- [8] T. Tamizh Chelvam and G. S. Grace Prema, Inverse Domination in Grid Graphs, Algebra, Graph Theory and their Applications, Editors: T. Tamizh Chelvam, S. Somasundram and R. Kala, Narosa Publishing House Pvt. Ltd., 2010