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Abstract: Let G(V, E) be a nontrivial, simple, finite and undirected graph.  A dominating set of the 
graph G is a subset D of V such that every vertex not in D is adjacent to some vertex in D.  The 
minimum cardinality of a dominating set is the domination number (G).  A dominating set D is 
called a complementary tree dominating set if the subgraph <V - D> induced by V - D is a tree.  The 
minimum cardinality of a complementary tree dominating set is called the complementary tree 
domination number of G and is denoted by ctd(G). 

In this paper, we determine the complementary tree domination numbers of some grid 
graphs (Cartesian product of two paths Pm and Pn). 
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1. Introduction 
 
 The graphs considered here are nontrivial, simple, finite and undirected.  Let G be a 
graph with vertex set V(G) and edge set E(G).  The concept of domination was first 

studied by Ore [7] and Berge [1].  A set D  V is said to be a dominating set of G, if 
every vertex in V- D is adjacent to some vertex in D.  The minimum cardinality of a 

dominating set is called the domination number of G and is denoted by (G). The concept 
of complementary tree domination was introduced by S. Muthammai, M. Bhanumathi 

and P. Vidhya in [6]. A dominating set D  V is called a complementary tree dominating 
(ctd) set, if the subgraph <V - D> induced by V – D is a tree.  The minimum cardinality of 
a complementary tree dominating set is called the complementary tree domination 

number of G and is denoted by ctd(G). 

 The Cartesian product of two graphs G1 and G2 is the graph, denoted by G1G2, with 

V(G1G2) = V(G1)V(G2) (where  denotes the Cartesian product of sets) and two 

vertices u = (u1, u2) and v = (v1, v2) in V(G1G2) are adjacent in G1G2  whenever [ u1 = v1 
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and (u2, v2) E(G2)] or [ u2 = v2 and   (u1, v1)E(G1)]. If each G1 and G2 is a path Pm and 

Pn (respectively), then we will call PmPn, a mn Grid graph.  For notational convenience, 

we denote PmPn by Pm, n. The reader is referred to [4] for survey of results on 

domination. The inverse domination number for the grid graphs Pm Pn (1  m  5) was 
determined by T. Tamizh Chelvam and G.S. Grace Prema [8] 
 In this paper, we determine the complementary tree domination numbers of Pm, n 
where m = 2, 3, 4, 5 and  6. P1, n  is nothing but the path Pn on n vertices. S. Muthammai, 

M. Bhanumathi and P. Vidhya [6] have established ctd(Pn) = n – 2, n  4.  
 
Notation: 

Let 1, …, m and 1, …, n be the vertices of Pm and Pn respectively.   Then the 
vertices of Pm, n are denoted xi,j, when i = 1, …, m and j = 1, …, n. 
 
Theorem 1.1. [6]  

A complementary tree dominating set D of G is minimal if and only if for each 

vertex vD, one of the following conditions is satisfied  

(i) there exists a vertex uV(G) - D such that N(u)D = {v} 
(ii) v is an isolated vertex in <D> 

(iii) N(v) (V(G)-D) =  

(iv) The subgraph <(V(G)-D){v}> of G induced by (V(G)-D){v} either contains a 
cycle or is disconnected. 

 

2. Complementary Tree Domination Numbers of P2, n , n  1 
 

 In this section, we give the complementary tree domination numbers of  2n grid 
graphs P2, n.  
 

Theorem 2.1:   For all n  1, ctd(P2, n) = n + 2

2
 
  

  

Proof:  
  A minimal complementary tree dominating set of P2, n is given as follows.  

Let n = 4q + r, where 1  r  4. We split the set of columns of P2, n into blocks Bi  P2, 4 

for i = 1, …, q. The vertices  enclosed within the round symbol in each of the blocks in 
the figures represent the vertices to be included for a minimal complementary tree 

dominating set D. The vertices  with symbol  in the blocks indicate those vertices that 



 
 

120  Complementary Tree Domination in Grid Graphs 

are not dominated by a complementary tree dominating set D constructed upto this stage 
and to be considered while concatenation.  

Let Pi = {x1, 4i-3, x2, 4i-1}, i = 1, …, q. (Figure 1)  

Let D  = 
q

P
i

i = 1
 . Therefore,  |D| = 2 n

4
 
  

.  

 
 
 
 
 

 

Case i: n  1(mod 4) 

Consider the set D1 = D  {x1, n}. (Figure 2(a)). This set is a minimal complementary 
tree dominating set of P2, n.  

|D1| =  2 n

4
 
  

 + 1 = n + 2

2
 
  

  

 
 
 

 
 
 

Case ii: n  2(mod 4) 

Here the set D2 = D  {x1, n - 1, x1, n}  (Figure 2(b)) is a minimal complementary tree 
dominating set of P2, n. Hence,  

|D2| =  2 n

4
 
  

 + 2 = n + 2

2
 
  

  

 

Case iii: n  3(mod 4) 

 In this case, the set D3 = D  {x1, n - 2, x2, n}. (Figure 2(c)) is a minimal complementary 
tree dominating set of P2, n and  

|D3| =  2 n

4
 
  

 + 2 = n + 2

2
 
  

  

 

Case iv: n  0(mod 4) 
 Let n = 4q + 4, q = 0, 1, …. 

In this case, the set D4 = D  {x1, n-3, x2, n -1, x2, n}. (Figure 2(d)) is a minimal 
complementary tree dominating set of P2, n.  

Figure 2

(a) (b) (c) (d) 

1 2 3 4         

Figure 1
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|D4| =  2 n - 1

4
 
  

 + 3 = n + 2

2
 
  

  

 

 From all the cases, ctd(P2, n) = n + 2

2
 
  

, for all n  1. 

 

3. Complementary Tree Domination Numbers of P3, n , n  4.                                                      
              In this section, we give complementary tree domination numbers of 3n grid 

graphs  P3, n , n  4. Here we split the columns of P3, n into blocks P3, 4.         
     

Theorem 3.1:  For n  4, ctd(P3, n) = n + i  for n  i (mod 4), i = 0, 1, 2, 3 
Proof:  

We give a minimal complementary tree dominating (ctd) set D of P3, n as follows.   

Let n  4. 

Case i: For n = 4q, ctd(P3, n) = n. 

 We split the set of columns of P3, n into blocks Bi  P3, 4 for i = 1, 2,…, q.   
Let Pi = { x1, 4i -1, x1, 4i, x2, 4i - 3, x3, 4i -1}.  Pi dominates all the four columns of Bi such that 

<BiPi> is a tree for i = 1, …, q.  Let D  = 
q

P
i

i = 1
 (Figure 3).  

 
 
 
 
 
 
 
 
 
                                           
 
 
 
 
 

Then D is a minimal dominating set.  Moreover <V(P3, n)  D> is a tree and hence D is a 

minimal complementary tree dominating set of P3, n and ctd(P3, n) = 4 
n

4
 
  

 = n.  

1 2 3 4         

Figure 3

Figure 4

(a) (b) (c) 
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Case ii: For n  1 (mod 4), ctd(P3,n) = n + 1. 

Consider D1 = D  {x3, n}. D1 is a minimal ctd set of P3, n and D1= n + 1. (To 
obtain the minimal ctd set we need the vertices of D together with the vertex x3, n). (Figure 

4(a)).  Hence, ctd(P3, n) = n + 1. 
 

Case iii: For n  2 (mod 4), ctd(P3, n) = n + 2. 

 Consider D2 = D  { x1, n, x3, n -1}.  (Figure 4(b)).This D2 is a minimal ctd set of P3, n 

and D2 = n + 2 and hence ctd(P3, n) = n + 2. 
 

Case iv: For n  3 (mod 4), ctd(P4, n) = n + 3. 

 Consider D3 = D  {x1, n -1, x3, n - 2, x3, n}. (Figure 4(c)). This D3 is a minimal ctd set of 

P3,n and D3 = n + 3 and hence ctd(P3, n) = n + 3. 

 From all the four cases, we conclude that for n  4,  

ctd(P3, n) = n + i, for n  i (mod 4), i = 0, 1, 2, 3. 
 
Remark 3.2:  

ctd(P3, 1) = 2 

ctd(P3, n) = 3 if n = 2, 3. 
 

4. Complementary Tree Domination Numbers of P4, n , n  5 
  

In this section, we give complementary tree domination numbers of 4n grid 

graphs P4, n , n  5. Here we split the columns of P4, n into blocks P4, 5.  

It is to be noted that ctd(P4, 6) = ctd(P4)  ctd(P6) 
      

Theorem 4.1: For n  5, ctd(P4, n) = 7n

5
 
  

. 

Proof: 

 A minimal complementary tree dominating set of P4, n (n  5) is presented as follows. 

Case i: For n = 5q, ctd(P4, n) = 7n

5
 
  

 

 Here we split the set of columns of P4, n into blocks Bi, where Bi  P4, 5 for i = 1, …, q. 

Let Pi = {x1, 5i -4, x1, 5i, x2, 5i -2, x2, 5i, x3, 5i - 3, x4, 5i -4, x4, 5i -1} (i = 1, ..., q). 

This set dominates all the five columns of each block Bi such that <Bi  Pi> is a tree for i = 
1, …, q.  (Figure 5). 
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Let D  = 
q

P
i

i = 1
 .  Then <V(P4, n)  D> is a tree and D is a minimal ctd set and hence 

ctd(P4, n) = 7 n

5
 
  

 = 7n

5
 
  

  

Case ii : For n  1 (mod 5), ctd(P4, n) = 7n

5
 
  

  

 Consider the set D1 = D  {x4, n} is a minimal ctd set of P4, n. (Figure 6(a)).  

D1 = 7 n

5
 
  

 + 1  = 7n

5
 
  

 and hence ctd(P4, n) = 7n

5
 
  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case iii: For n  2 (mod 5), ctd(P4, n) = 7n

5
 
  

  

 Consider the set D2 = D  { x2, n, x4, n - 1} (Figure 6(b)). 

This set D2 is a minimal ctd set of P4,n and D2= 7 n

5
 
  

 + 2  = 7n

5
 
  

  and hence  

ctd(P4, n) = 7n

5
 
  

  

 

Case iv: For n  3 (mod 5), ctd(P4, n) = 7n

5
 
  

  

1 2 3 4 5           

Figure 5

(a) (b) (c) (d) 

Figure  6
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 The set D3 = D  { x2, n -1, x2, n, x4, n - 2, x4, n} is a minimal ctd set of P4, n. (Figure 6(c)).  

D3 = 7 n

5
 
  

 + 4  = 7n

5
 
  

   and hence ctd(P4, n) = 7n

5
 
  

  

 

Case v: For n  4 (mod 5), ctd(P4, n) = 7n

5
 
  

  

 Here, the set D4 = D  {x1, n, x2,n -2, x3, n - 1, x4, n - 3, x4, n} is a minimal ctd set of P4, n.   
(Figure 6(d)). 

D4 = 7 n

5
 
  

 + 5 = 7n

5
 
  

    and hencectd(P4, n) = 7n

5
 
  

  

 

From the above cases, we see that ctd(P4, n) = 7n

5
 
  

,  for n  5. 

 

Remark 4.2:  For 1  n  4,  ctd(P4, n) = 
n + 1, if n = 1, 2, 3

n + 2, if n = 4





 

 
Remark 4.3:   Theorem 4.1. implies the following recurrence relation  

ctd(P4, n) = ctd(P4, n - 5) + 7, n  10. 
 

5. Complementary Tree Domination Numbers of P5, n , n  6 
 

In this section, we give complementary tree domination numbers of 5n grid 

graphs P5, n , n  6. Here we split the columns of P5, n into blocks P5, 6 . 
 

Theorem 5.1: For n  6,  

ctd(P5, n)  = 

5n
           if n  0, 3 (mod 6)

3
5n + 1

     if n  1 (mod 6) 
3

5n - 1
 if n  2, 4, 5 (mod 6).

3

 

 

    


 

Proof: 

 We determine the minimal ctd set of P5, n (n  6) as follows. 

Case i: For n = 6q, ctd(P5, n)  = 5n

3
 
  

. 

 The set of columns of P5, n can be split into blocks Bi, where Bi  P5, 6 for i = 1, 2,…, q. 
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Consider the set Pi = {x1, 6i - 5, x1, 6i -2, x1, 6i, x2, 6i - 3, x3, 6i -5, x3, 6i -1, x4, 6i - 3,  x4, 6i, x5, 6i - 5, x5, 6i -2} 

This set Pi dominates all the six columns of the block Bi such that <Bi  Pi> is a tree  
(i = 1, 2, …, q).  (Figure 7). 

Let D =
q

P
i

i = 1
 . Then <V(P5, n)  D> is a tree and D is a minimal ctd set of P5, n and 

hence ctd(P5, n) = 5 n

3
 
  

 = 5n

3
 
  

 = 5n

3
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case ii: For n  1 (mod 6), ctd(P5, n) = 5n + 1

3
. 

 Consider the set D1 = D  {x3, n, x4, n } (Figure 8(a)). This set is a minimal ctd set of 

P5, n and  D1 = 5 n

3
 
  

 + 2 = 5n + 1

3
.  Hence,  ctd(P5, n) = 5n + 1

3
. 

Case iii: For n  2 (mod 6), ctd(P5, n) = 5n - 1

3
 
  

. The set D2 = D  {x2, n, x3, n -1, x5, n} is a 

minimal ctd set of P5, n. (Figure 8(b)).   

D2  = 5 n

3
 
  

 + 3 = 5n - 1

3
 
  

. Therefore, ctd(P5, n) = 5n - 1

3
 
  

. 

1 2 3 4 5 6       

Figure 7

(a) (b) (c) (d) (e) 

Figure 8
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Case iv: For n  3 (mod 6), ctd(P5, n) = 5n - 1

3
 
  

.  In this case, the set D3 = D  {x1, n, x2, 

n - 2, x3, n - 1, x5, n  - 2, x5, n} is a minimal ctd set of P5, n. (Figure  8(c)).  

D3 = 5 n

3
 
  

 + 5 = 5n

3
 
  

 = 5n

3
. 

 

Case v: For n  4 (mod 6), ctd(P5, n) = 5n - 1

3
 
  

.  Here, the set D4 = D  {x1, n - 2, x1, n, x3, n - 

3, x3, n - 1, x4, n, x5, n - 2} is a minimal ctd set of P5, n.  (Figure 8(d)). D4 = 5 n

3
 
  

 + 6 =  5n - 1

3
 
  

 

and hence ctd(P5, n) = 5n - 1

3
 
  

. 

 

Case vi: For n  5 (mod 6), ctd(P5, n) = 5n - 1

3
 
  

. In this case, the set D5 = D  {x1, n - 3, 

x1, n - 1, x3, n - 4, x3, n - 2, x3, n, x4, n -1, x4, n, x5, n - 3} is a minimal ctd set of P5, n.  

D5  = 5 n

3
 
  

 + 8 =  5n - 1

3
 
  

 

 
 From the above cases, we conclude that,  

ctd(P5, n)  = 

5n
           if n  0, 3 (mod 6)

3
5n + 1

     if n  1 (mod 6) 
3

5n - 1
  if n  2, 4, 5 (mod 6).

3

 

 

    


 

Remark 5.2:   For n  5, ctd(P5, 1) = 3 

ctd(P5, n) = 2n - 1, if n = 2, 3, 

ctd(P5, n) = 2n - 2, if n = 4, 5. 
 

Remark 5.3:   A recurrence relation in 5n grid graphs is. 

ctd(P5, n) = ctd(P5, n - 6) + 10, for n  12. 

 

6. Complementary Tree Domination Numbers of P6, n , n  7 
In this section, we give complementary tree domination numbers of 6n grid 

graphs P6, n , n  7. Here we split the columns of P6, n into blocks P6, 7 .  
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Theorem 6.1: Let n  7.  Then ctd(P6, n) = 2n. 
Proof: 
 As before, we present a complementary tree dominating (ctd) set of P6, n as follows. 

Let n  7.  
Case i: n = 7q. 

We split the set of columns of P6, n into blocks Bi, Bi  P6, 7 for i = 1, 2, …, q. 
Pi = {x1,7i - 4, x1, 7i, x2, 7i  - 6, x2, 7i - 2, x3, 7i - 4, x3, 7i - 1, x4, 7 i - 6, x4, 7i - 5, x4, 7i - 3, x4, 7i, x5, 7i - 2, x6, 7i - 6,  

x6, 7i - 4, x6, 7i } dominates all the seven columns of each block Bi, such that <Bi  Pi> is a 
tree, i = 1, …, q. (Figure 9).  

Let D  = 
q

P
i

i = 1
 .  Also <V(P6, n)D> is a tree and D is a minimal ctd set of P6, n and 

hence  ctd(P6, n) = 14 n

7
 
  

 = 2n. 

Case ii:  n  1 (mod 7). 

Let D1 = D  {x3, n, x6, n}.  (Figure 10(a)).  This set is a minimal ctd set and  

D1 = 14 n

7
 
  

 + 2 = 14n

7
 
  

 = 2n  [To obtain the minimal ctd set, we need the vertices of D 

together with vertices x3, n and x6, n]. Therefore, ctd(P6, n) = 2n. 
 
 
 
 
 
 
 
 
 
 
 
 

Case iii: n  2 (mod 7). 

 Let D2 = D  { x1,n, x3,n1, x4,n x6,n1}.  This set is a minimal ctd set of P6, n. (Figure 

10(b)). D2 = 14 n

7
 
  

 + 4  = 14n

7
 
  

 = 2n. Hence, ctd(P6, n) = 2n. 

 
 
 

1 2 3 4 5 6 7        

Figure 9 
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Case iv: n  3 (mod 7). 

Let D3 = D  { x1, n - 1, x3, n - 2, x3, n, x4, n - 1, x6, n - 2, x6, n}.   

(Figure 10(c)).  This set is a minimal ctd set of P6, n. D3 = 14 n

7
 
  

 + 6 = 14n

7
 
  

 = 2n 

Hence, ctd(P6, n) = 2n. 
 

Case v: n  4 (mod 7) 

Let D4 = D  {x1, n - 2, x1, n x3, n - 3, x3, n - 1, x4, n - 2, x4, n, x6, n - 3, x6, n - 1}.  (Figure 10(d)).  

This set is a minimal ctd set of P6, n. D4 = 14 n

7
 
  

 + 8 = 14n

7
 
  

 = 2n  

Hence, ctd(P6, n) = 2n. 

Case vi: n  5 (mod 7) 

Let D5 = D  {x1, n - 3, x1, n - 1, x3, n - 4, x3, n - 2, x3, n x4, n - 3, x4, n -1, x6, n - 4,  x6, n - 2, x6, n}.  
(Figure 10(e)).   
This set is a minimal ctd set of P6, n. 

D5 = 14 n

7
 
  

 + 10 = 14n

7
 
  

 = 2n. Therefore, ctd(P6, n) = 2n. 

(a) (b) (c) (d) 

(e) (f) 

Figure 10
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Case vii: n  6 (mod 7) 

Let D6 = D  {x1, n -4, x1, n - 2, x1, n, x3, n - 5, x3, n - 3, x3, n - 1, x4, n - 4, x4, n - 2, x4, n, x6, n - 5,  
x6, n - 3, x6, n - 1}.  (Figure 10(f)).  This set is a minimal ctd set of P6, n.  

D6 = 14 n

7
 
  

 + 12 = 14n

7
 
  

 = 2n. Hence, ctd(P6, n) = 2n. 

 Therefore ctd(P6, n) = 2n, for n  7. 
 
Remark 6.2: 

For 2  n  6, ctd(P6, n) = 
4 if n = 2

2n - 1 if n = 3, 4, 5

12 if n = 6.







 

Note 6.3:  
 The above method of splitting the columns of Pm, n into blocks Pm, m+1 doesn’t work for 

m  7. When we concatenate two blocks Pm, m+1, the subgraph induced by the complement 
of a minimal dominating set either will contain a cycle or will be disconnected.  
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