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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC, L(G)) of G is   a   graph   with   vertex   set   V(G)E(G)   
and   two   vertices   in B(Kp, NINC, L(G)) are adjacent if and only if they correspond to two 
adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted 
by B2(G). In this paper, global domination number, total global domination number, global point set 
domination number and neighborhood number are obtained for B2(G). 
 
1. Introduction 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 
V(G) and E(G) denote its vertex set and edge set respectively. For a connected graph G, 
the eccentricity eG(v) of a vertex v in G is the distance to a vertex farthest from v. Thus, 

eG(v) = {dG(u, v) : uV(G)}, where dG(u, v) is the distance between the vertices u and v. 
The minimum and maximum eccentricities are the radius and diameter of G, denoted 
r(G) and diam(G) respectively. A set D of vertices in a graph G = (V, E) is a dominating 

set, if every vertex in VD is adjacent to some vertex in D. Further, D is a global 

dominating set, if it is a dominating set of both G and its complementG. The domination 

number (G) of G is the minimum cardinality of a dominating set of G. The global 

domination number g of G is defined similarly [6]. A dominating set D is called a 
connected dominating set, if the induced sub graph <D> is connected. The connected 

domination number c(G) of G is the minimum cardinality of a connected dominating set 
[13]. A total dominating set T of G is a dominating set such that the induced sub graph 

<T> has no isolated vertices. The total domination number t(G) of G is the minimum 
cardinality of a total dominating set. This concept was introduced in Cockayne et al [1]. A 
total dominating set T of G is a total global dominating set (t.g.d. set), if T is also a total 
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dominating set ofG. The total global dominating number tg(G) of G is the minimum 

cardinality of a t.g.d. set [8]. t(G) is defined for G with (G)  1 and tg(G) is only 

defined for G with (G)  1 and (G)  1, where (G) is the minimum degree of G.  
 
For a connected graph G =(V, E), a set D of vertices is a point set dominating set (psd-

set) of G, if for each set S  VD, there exists a vertex vD such that the sub graph 

<S{v}> induced by S{v} is connected. The point set domination number ps(G) is the 
minimum cardinality of a psd-set of G [12]. We say that a graph G is co-connected, if 

both G andG are connected. For a co-connected graph G = (v, E), a set D  V is said to 

be a global psd-set, if it is a psd-set of both G andG. The global point set domination 

number pg of G is defined as the minimum cardinality of a global psd-set [9]. A -set is a 

minimum dominating set. Similarly, a g-set, t-set. tg-set and pg-set are defined. 
 

For vV(G), the neighborhood N(v) of v is the set of all vertices adjacent to v in G. 

N[v] = N(v){v} is called the closed neighborhood of v. A subset S of V(G) is a 

neighborhood set (n-set) of G, if G = vS<N[v]>, where <N[v]> is the sub graph of G 
induced by N[v]. The neighborhood number n0(G) of G is the minimum cardinality of an 
n-set of G[11]. 

 

The Boolean function graph B(Kp, NINC, L(G)) of G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC, L(G)) are adjacent if and only if they 
correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an 
edge not incident to it in G. For brevity, this graph is denoted by B2(G). In other words, 

V(B2(G)) = V(G)V(L(G)); and E(B2(G)) = [E(T(G))(E(G)E(L(G)))]E(L(G)), 

whereG, L(G) and T(G) denote the complement, the line graph and the total graph of G 
respectively. The vertices of G and L(G) are referred as point and line vertices respectively. 

 
The mixed relations of incident, non-incident, adjacent and non-adjacent can be used 

to analyze nature of clustering of elements of communication networks. The concept of 
domination set can be visualized in each cluster as that cluster representatives and the 
domination set of whole network can be taken as representatives of entire network. If any 
clustering or a partition of vertices   network such that each cluster having at least one 
representative or at least one element of dominating set of the given network  

In this paper, we obtain the bounds for the global, total global and global point set 
domination numbers and neighborhood number for this Boolean function graph. The 
definitions and details not furnished in this paper may found in [2].  
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2. Prior Results 
In this section, we list some results with indicated references, which will be used in the 

subsequent main results. Let G be any (p, q) graph. 
 

Theorem 2.1[8]: A total dominating set T of G is a total global dominating set (t.g.d. set) 

if and only if for each vertex vV(G) there exists a vertex uT such that v is not adjacent 
to u.  
 

Theorem 2.2[8]: Let G be a graph with diam(G)  5. Then T  V(G) is a total 
dominating set of G if and only if T is a total global dominating set. 
 

Theorem 2.3[12]: Let G = (V, E) be a connected graph. A set D  V(G) is a point set 

dominating set of G if and only if  for every independent set W in VD, there exists u in 

D such that W  N(u)(VD) in G. 
 

Theorem 2.4[12]: For a co-connected graph G, a set D  V(G) is a global point set 
dominating set if and only if the following conditions are satisfied: 

(i). For every independent set W in VD, there exists u in D such that W  

N(u)(VD) in G; and 

(ii). For every set S  VD such that <S> is complete in G, there exists v in D such that 

SN(v) =  in G. 
 

Theorem 2.5[12]: For a co-connected graph of order p  5, 3  pg(G)  p-2. 
 

Proposition 2.6[11]: For a graph G without isolated vertices (G)  n0(G)  0(G), 

where 0(G) is the point covering number of G. 
 
Observation[7]: 
2.7: L(G) is an induced sub graph of B2(G) and the sub graph of B2(G) induced by point 
vertices is totally disconnected. 
 

2.8: The number of vertices in B2(G) is p + q and if di = degG(vi),  viV(G) and the  

number  of  edges  in  B2(G)  is  q(p - 3) + (1/2)1ipdi
2. 

 
Theorem 2.9[3]: B2(G) contains isolated vertices if and only if G is one of the following  

graphs:  nK1 and K1,mtK1, for n  1, m  1 and t  0. 
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Theorem 2.10[3]: B2(G) is disconnected (no component being K1) if and only if G  2K2. 
 

Theorem 2.11[3]: For any   graph   G   having at least one edge, (B2(G))  2. 
 

Theorem 2.12[3]: For any (p, q) graph G, 0(B2(G)) = q and 0(B2(G)) = p. 
 

3. Main Results 
In the following, the bounds for the global domination number g of B2(G) are 

obtained.B2(G) denotes the complement of B2(G). 
 

Theorem 3.1: For any graph G with at least one edge, g(B2(G))  3. 

Proof: Let e = (u, v)E(G), where u, vV(G) and e be the line vertex in B2(G) 

corresponding to e. Then D = {u, v, e}  V(B2(G)) is a dominating set of B2(G). 

InB2(G), the vertices u, v dominate all the point vertices and the line vertices inB2(G) 

corresponding to the edges in G incident with u or v in G. e dominates the remaining 

line vertices inB2(G), sinceL(G) is an induced sub graph ofB2(G). Hence, D is also a 

dominating set ofB2(G). Thus, g(B2(G))  3. 
 

Remark 3.1: g(B2(G)) = 2 if and only if G  2K2. Thus, it follows that g(B2(G)) = 3 if 

and only if G  2K2. 
 

The next theorem relates global domination number of B2(G) with the point covering 

number 0 of G. 
 

Theorem 3.2: g(B2(G)) 0(G) + 1, if there exists a point cover D of G with |D| = 0(G) 

such that  D is not independent, where 0(G) is the point covering number of G. 

Proof: Let D be a point cover of G with D= 0(G). Since D is not independent, there 

exists an edge, say e in D. If e is the line vertex corresponding to the edge e, then D{e} 
is a dominating set of both B1(G) and its complementB1(G). Hence, g(B1(G)) 

0(G)+1. 
 

The following theorem relates global domination number of B2(G) with domination 

number  of G. 
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Theorem 3.3: For any graph not totally disconnected, g(B2(G))  (G) + 2. 

Proof: Let D be a dominating set of G and e = (u, v) be an edge in G with uD, vV(G).  

If e  is  the  line  vertex  in  B2(G)  corresponding  to  the  edge e,  then D{v, e}  

V(B2(G)) is a global dominating set of B2(G). Hence, g(B1(G))  (G)+2. 
 
Next, a necessary and sufficient condition that a global dominating set of L(G) is a 

global dominating set of B2(G) is given. 
 
Theorem 3.4: Let D be a global dominating set of L(G). Then D is also a global 
dominating set of B2(G) if and only if 
(i). D is a line cover for G; and 

(ii). For every viV(G), let Avi = {eiE(G) : ei is incident with vi}. Then AviD  Avi. 
Proof: Let D be a global dominating set of both L(G) and B2(G). Since D dominates all the 

point vertices ofB2(G), the set of edges in  G corresponding to the line vertices in B2(G) 

is a line cover for G. Let viV(B2(G)) be a point vertex. Since D dominates vi, there exists 

at least one vertex, say ei in D such that the corresponding edge ei is not incident with vi 

in G. This implies that, AviD  Avi. Conversely, assume conditions (i) and (ii). Since D 
is a global dominating set of L(G), it dominates all the line vertices of both B2(G) 

andB2(G). By (i) and (ii), D dominates all the point vertices of B2(G) andB2(G) 
respectively. Hence, D is a global dominating set of B2(G). 
 

Similarly, the following theorem can be proved. 
 
Theorem 3.5: Let D be a dominating set of L(G). Then D is a global dominating set of 
B2(G) if and only if  
(i). D is a line cover for G; 

(ii). For every viV(G), if Avi = {eiE(G) : ei is incident with vi}, then AviD  Avi; and 

(iii). NL(G)(e)D  NL(G)(e), for every eV(B2(G))–D. 
 

In the following, the total global point set domination number tg of B2(G) is obtained 
by using Theorem 2.1. 
 

Theorem 3.6: Let G be any graph with at least five vertices and 1(G)  2. Then 

tg(B2(G)) = 4, if G contains 2K2K1 as an induced sub graph. 

Proof: Assume G contains 2K2K1 as an induced sub graph. Let e1 and e2 be the edges of 

2K2 and u be a vertex incident with e1 and v be the vertex of K1. Let e1 and e2 be the line 
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vertices in B2(G) corresponding to e1 and e2 respectively. Then D={u, v, e1,e2} V(B2(G)) 
is a total dominating set of B2(G). Also any point vertex in V(B2(G))–D is not adjacent to 

both u and v. Since 2K2K1 is an induced sub graph of G, there exists no edge in G 

joining the vertices of 2K2 other than e1 and e2. Hence, for any line vertex e in V(B2(G))–

D,  there  exists  a  vertex  in  D  not  adjacent  to  e  in V(B2(G))–D. Since <D>  P4 in 

B2(G), D is a total global dominating set of B2(G). Hence, tg(B2(G)) = 4. 
 
Example 3.1: 

(i).   tg(B2(Pn))   = 4, if n  4.   (ii).  tg(B2(Cn))   = 4, if n  4. 

(iii). tg(B2(Kn))   = 4, if n  4. 
 

Next, the global point set domination number pg of B2(G) is determined by using 

Theorem 2.4. Here, the graphs G for which both B2(G) and its complementB2(G) are 
connected are considered.  
 

Theorem 3.7: For any graph G having at least two edges, 3  pg(B2(G))  p + q – 2. 
Proof: By Theorem 2.5., the theorem follows. 
 

Next, we characterize the graphs G for which pg(B2(G)) is 3. 

Theorem 3.8: Let G be any graph not totally disconnected. Then pg(B2(G)) = 3, if radius 
of L(G) is equal to 1. 

Proof: Since point set domination number of B2(G) is at least three, pg(B2(G))  3. Since 

r(L(G)) = 1, there exists an edge e = (u, v)E(G) such that all the edges of G are adjacent 

to e. Let e be the corresponding line vertex in B2(G). Then, D = {u, v, e} is a point set 

dominating (psd) set of B2(G). It remains to prove that D is a psd-set ofB2(G). Let          

S  V(B2(G))–D be such that <S> is complete. Since the sub graph of B2(G) induced by all 
the point vertices is disconnected, S will contain at most one point vertex. Hence, either 

SN2(v) =  or SN2(u) = , where N2(v) is the neighborhood of v in B2(G). Thus, D 

is a global psd-set of B2(G) and ps(B2(G))  3. Therefore, pg(B2(G)) = 3. 
 

In the following, we obtain upper bounds for pg(B2(G)). 
 

Theorem 3.9: Let G be any graph such that 1(G)  2. Then pg(B2(G))  5, if c(L(G)) = 

2, where c(L(G)) is the connected domination number of L(G). 
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Proof: Since c(L(G)) = 2, there exist two adjacent edges, say e1 = (u1, v1), e2 = (u1, v2) in 

E(G) such that each edge in G is adjacent to e1 or e2. If e1 and e2 is the corresponding 

line vertices in B2(G), then D = {u1, v1, v2, e1, e2} is a global psd-set of B2(G). Hence, 

pg(B2(G))  5. 
 

Theorem 3.10: pg(B2(G))  q - e(G) + 2, where e(G) is the maximum degree of L(G). 

Proof: Let eV(L(G)) be such that degL(G)(e) = e(G) = m and e = (u, v) be the 

corresponding edge in G, where u, vV(G). Let ei, (i = 1, 2,…, m) be the vertices in L(G) 

adjacent to e. Then D = {V(G)–{u, v}}  {e1, e2,…,em}  V(B2(G)) and D = V(B2(G))–

D = {u, v, e}  {V(L(G))NL(G)[e]} is a global psd-set of B2(G). Hence, pg(B2(G))  q - 

e(G) + 2. 
 
Remark 3.2:  

(i).  If r(L(G)) = 1, then pg(B2(G)) = 3 = q - e(G) + 2. 

(ii). If 1(G) = 2, then the set of all point vertices is a global psd-set of B2(G) and hence 

pg(B2(G))  p. 
 
Example 3.2:  

(i).   pg(B2(Pn)) = n-1, if n  4.    (ii).  pg(B2(Cn)) = n,      if n  3. 

(iii). pg(B2(Kn)) = (n2-5n+12)/2, if n  3. 
  

In the following, we obtain lower and upper bounds for the neighborhood number n0 

of B2(G). 
 

Theorem 3.11: If B2(G) has no isolated vertices, then 2  n0(B2(G))  p. 

Proof: By Theorem 2.6., if B2(G) has no isolated vertices, then (B2(G))  n0(B2(G))  

0(B2(G)). But by Theorem 2.11 and Theorem 2.12, (B2(G))  2 and 0(B2(G)) = p 

respectively and  hence the theorem follows. The lower bound is attained, if G  

2K22K1 and C4 and the upper bound is attained, if G  C3. 
 

Theorem 3.12: If the connected domination number c of L(G) is 2, then n0(B2(G))  5. 

Proof: Assume c(L(G)) = 2. Then there exists two adjacent vertices e1, e2 in L(G) such 

that all the other vertices of L(G) are adjacent to at least one of e1, e2. Let e1 = (u1, v1) and 
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e2 = (u1, v2) be the corresponding adjacent edges in  G, where  u1, v1, v2V(G).  Then {u1, 

v1, v2, e1, e2}  V(B2(G)) is an neighborhood set (n-set) for B2(G). Hence, n0(B2(G))  5. 
 

Theorem 3.13:  If the independent domination number i of L(G) is 2, then n0(B2(G)) 6. 

Proof: Assume i(L(G)) = 2. Then there exists two independent edges e1 = (u1, v1) and e2 = 
(u2, v2) in G, such that each edge in G is adjacent to at least one of e1 and e2, where u1, v1, 

u2, v2V(G). If e1 and e2 be the line vertices in B2(G) corresponding to e1 and e2, then 

{u1, v1, u2, v2, e1, e2} is an n-set for B2(G). Hence, n0(B2(G))  6. 
 

Theorem 3.14: If radius of L(G) is 1, then n0(B2(G))  3. 
Proof: Let r(L(G)) = 1. Then there exists an edge e = (u, v) such that all the edges in G are 

adjacent to e. Let e be the corresponding line vertex in B2(G). Then {u, v, e} is an n-set 

for B2(G).Thus, n0(B2(G))  3. This bound is attained, if G  C3. 
 
Example 3.3: 

(i). n0(B2(Pn))  =  n - 2, if n  4.   (ii). n0(B2(Cn)) = {n/2}, if n  4. 
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