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Abstract: Let G be a simple graph with vertex set V and edge set E. A subset S of V is said to be a dom-
chromatic set (or dc-set) if S is a dominating set and χ(<S>) = χ(G). The minimum cardinality of a 
dom-chromatic set in a graph G is called the dom-chromatic number (or dc-number) and is denoted by 
γch(G). In this paper, bounds for the dom-chromatic numbers are found for standard graphs and some 
classes of graphs. Further, some Nordhaus Gaddum type of results are obtained.  
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1.  Introduction  
 
 Throughout this paper a graph G = (V, E) always means a finite, simple undirected 

graph. A set S  V is a dominating set of G if each u V - S, is adjacent to some vertex v 

 S. The minimum cardinality of a dominating set in G is called the domination number 

and is denoted by γ(G). We have defined ( dc of bipartite and Phd thesis) a new  
dominating set called dom-chromatic set (shortly dc-set) which preserves the chromatic 
number of the graph. In other words, a dom-chromatic set S is a dominating set with the 

property χ(<S>) = χ(G). The minimum cardinality of a dom-chromatic set is called the 
d0m-chromatic number( or dc-number) of a graph. To find a dominating set having the 
same chromatic number as G, it is necessary to find a set of smallest cardinality having the 
same chromatic number as that of the graph. The chromatic preserving set (cp-set) 
introduced by the authors in [8] serves this purpose. Thus, a dom-chromatic set is a 
dominating cp-set. It is a dominating set with at least one vertex in each color class.  
 

One of the areas of interest for many researchers is an inequality chain of graph 
parameters. This idea then extended to domination also. In 1978, Cockayne, Hedetniemi 
and Miller [7, pp 73] obtained an inequality chain called as domination chain. One of the 
first results in this inequality chain was an example by Slater [7, pp 74]. After this 
development, a focus was made on the conditions under which any two domination 
parameters are equal. Allan and Laskar ([1], [7]: pp 78) did a study on the conditions 
under which domination number and independent domination numbers are equal and 
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Favoron ([4], [7]: pp 78]) discussed the equality conditions of the parameters, 
independence domination number, domination number and irredundance number in a 
graph. Brigham et.al [2] explored the graphs having equal domination and codomination 
numbers. In this paper, apart from obtaining upper bounds for dom-chromatic number 
for graphs, we have obtained inequality chain on the dom-chromatic number under stated 
conditions together with graphs having two equal domination parameters in the chain. 

 

The definitions that are needed for the understanding of this paper are given in the 
next section. 
 

2. Definitions and terminology  
 
      A graph is a (p, q)-graph if it has p vertices and q edges. The length of the smallest 
odd cycle is called girth and is denoted by go(G). A clique of a graph G is a maximal 
complete sub graph. The cardinality of a maximum clique is called the clique number and 

is denoted by ω(G). An open neighborhood of a vertex u is the set of all vertices adjacent 

to u, and is denoted N(u). A closed neighborhood of a vertex u is the set N(u)  {u} and 
is denoted by N[u]. The length of the smallest odd cycle is called girth and is denoted by 

go(G). A set S  V is called an independent set of vertices of no two vertices of S are 
adjacent. The maximum cardinality among such independent sets is called the 

independence number of G and is and denoted by βo(G). A matching in a graph is a set of 
independent edges and a perfect matching is a set of independent edges such that each 
vertex is an end vertex of some edge.    
 

The chromatic number χ(G) is the minimum k such that G is k-colorable. If χ(G) = 

k, then G is said to be k-chromatic. If χ(G) = k, but χ(G) < k for every proper sub graph 
H of G, then G is said to be a k-color-critical graph or k-critical graph. A graph G is said 

to be a vertex-color-critical graph if χ(G - u) < χ(G) for every u  V and called edge-

critical if χ(G - e) < χ(G) for every e  E. In general, any element t of the set V(G)  

E(G) is critical if χ(G - t) < χ(G). A graph is called color-critical graph if which each 
vertex and edge are critical. It is to be noted that no k-critical graph can be infinite and the 
only k-critical graphs for k = 1, 2 and 3 are K1, K2 and odd cycles, respectively. For k ≥ 4, 

the k-critical graphs have not been characterized. A set S  V is said to be a chromatic 

preserving set or a cp-set  if χ(<S>) = χ(G) and the minimum cardinality of a cp-set in G 
is called the chromatic preserving number or cp-number of G and is denoted by cpn(G). A 
cp-set of cardinality cpn(G) called cpn-set.  
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A set S  V is a dominating set of G if for each u V - S, there exists a vertex v  S 
such that u is adjacent to v. The cardinality of a minimum dominating set in G is called 

the domination number and is denoted by γ(G). A dominating set S  V of G is a total 

dominating set if <S> has no isolated vertices. A set S  V of G is a global dominating set 

if S is a dominating set of both G and G .The minimum cardinality of a global 

dominating set in G is called the global domination number and is denoted by γg(G). A 
domatic partition of a graph G is a partition of V into dominating sets. The maximum 
cardinality of a partition V into dominating sets is called the domatic number and is 
denoted by d(G). 

 
 The intersection graph of F denoted by Ω(F), is a graph with vertex set F and two 

members of F namely Si and Sj adjacent whenever Si  Sj ≠ , i ≠ j. A graph G is said to be 
an intersection graph if there exists a family F of subsets of a set S for which G = Ω(F). 
The independence graph I(G) of a graph G is defined to be the intersection graph on the 
set of all vertex independent sets(not necessarily maximal) in G. In I(G), singleton, 
doubleton sets in G denote the independent sets of vertices of cardinality one and two 

respectively. The splitting graph S(G) of a graph G is obtained by taking a new vertex u 
for each u  V and joining u to each vertex of N(u). The end line graph G+ of a (p, q)-
graph G with vertex set {u1, u2,…, up} is defined as follows.  Add to G, p vertices vi and p 
edges uivi, i = 1, 2, …, p. The resultant graph is a (2p, p + q)-graph with V(G+) = {u1, 

u2,…,up, v1, v2,…, vp} and the edge set E(G+) = E(G)  {u1v1, u2v2,...,upvp}.  The subdivision 
graph s(G) of G is the graph obtained from G by placing a vertex  on each edge of G. The 
line graph L(G) of a graph G is the intersection graph Ω(E(G)). Thus, the vertices of L(G) 
are adjacent whenever the corresponding edges of G are incident. A graph G is called a 
split graph if the vertex set can be partitioned into two sets V1 and V2 such that V1 induces 
a null graph and V2 induces a complete graph. 
The notations defined above and which are not defined but used in the subsequent 
sections could be referred in Harary [5], Haynes [7], and Jensen [10]. Unless otherwise 
mentioned, in this paper, graph G is a (p, q)-graph. 
 

3. Prior Results 

Theorem 3.1 [7, pp 41]. If a graph G has no isolated vertices, then (G) ≤  





2

p
.  

Theorem 3.2 [7, pp 50].  For any graph G,  







 1)(G

p
  ≤ (G) ≤  p - Δ(G) where 

Δ(G) denotes the maximum degree of G. 
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Proposition 3.3. If G is a connected split graph and Δ(G) <  p - 1, then  G is a 
connected split graph. 
 
Properties 3.4 [10]. 

i.  In the independence graph I(G) of a graph G, no two singleton sets of G intersect. 
ii. I(G) is bipartite if and only if o(G) ≤ 2 and no two doubleton  sets of  G  intersect. 

 
Observation 3.5.  For any graph G, 

i. s(G) is a bipartite graph. 
ii. If G is a (p, q)- graph, then s(G) is a (p + q, 2q)- graph. 

 

Proposition 3.6. If G is a split graph, then  cpn(G) = ω(G) = χ(G).   
Proof: If G is complete, then the result follows trivially. Suppose G is not complete. As G 
is a split graph, its vertex set can be partitioned into two sets X and Y such that <X> is 
complete and <Y> is a null graph. Without loss of generality X can be assumed to be 
maximal, for otherwise there exists some vertex u in Y adjacent to all vertices of X and 

then X  {u} induces a complete graph. Since <X> is a maximal clique, each y  Y is not 

adjacent to at least one vertex x  X and hence, may be given the color of x. Hence, χ(G) 

= χ(<X>) = |X|. Therefore, cpn(G) =│X│= ω(G) and hence, cpn(G)= χ(G) =  ω(G). 
 
Properties 3.7. If G is a split graph, then G is a perfect graph. 

Proof: Every sub graph H of G is a split graph and hence, χ(H) =  ω(H). 
 

Properties 3.8 [11, pp 291]. A graph G is perfect if and only if its complement G is 
perfect. 
 

Theorem 3.9 [9]. If G is a bipartite graph with no isolated vertices, then γch(G) ≤
2

 p
+ 1 

and γch(G) = 
2

 p
+1  if and only if  G = 

2

 p
K2. 

 

4. Dom-chromatic sets in graphs 
   
Dom-chromatic sets of bipartite graphs were discussed and bounds were obtained in [9].  
In this paper, we obtain the bounds for dom-chromatic number of any graph.  
The dom-chromatic set mentioned in the introduction is formally defined below. 
 
 



 
 

92 Dom-Chromatic sets of graphs 

4.1. Dom-chromatic sets in graphs 
 
Definition 4.1.1.  Let G = (V, E) be a graph. A subset S of V is said to be a dom-chromatic 

set (or dc-set) if S is a dominating set and χ(<S>) = χ(G). The minimum cardinality of a 
dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) and 

is denoted by γch(G). 
 
Observation 4.1.2.  

For any graph G, cpn(G) ≤  γch(G).  
i. Dom-chromatic set exists for all graphs. 

ii. Vertex set V is a trivial dom-chromatic set. 
iii. For a vertex-color-critical graph, V is the only dom-chromatic set.      

iv. If S is a γch-set of G, then each vertex of V – S is not adjacent to at least one vertex 
of S. 

v. A dc-set of a graph is a global dominating set.   

vi. γ( G ) ≤ γg(G) ≤ γch(G). 
Proof:  
(i) to (v) follow trivially. 

(vi) Let S be a dc-set of a graph G. From (v), in G each vertex of V – S is adjacent to at 
least one vertex of S. Hence, S is a dominating set of ,G  and the result follows.    

(vii) Follows from (vi). 
    

Proposition 4.1.3. A dom-chromatic set S is minimal if and only if for each u  S, at least 
one of the following conditions hold. 

i. χ(<S - u>) < χ(G).  
ii. S - u is not a dominating set.      

      
Dom-chromatic number for some standard graphs are given in the following proposition. 

  
Proposition 4.1.4. 

i. γch(Kn) = n; 

ii. γch(nK1) = n;  

iii. γch(Km,n) = 2; 

             (n + 3)/ 3,    if n ≡ 0 (mod 3) 

iv. γch(Pn) =     (n + 2)/ 3,    if n ≡ 1(mod 3)   

                 (n + 4)/ 3,    if n ≡ 2 (mod 3) 

v. a. If n is odd, then γch(Cn) = n.    
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         b. If n is even, then  

                (n + 3)/ 3,  if n ≡ 0 (mod 3) 

          γch(Cn) =   (n + 2)/ 3,   if n ≡ 1(mod 3) 

                (n + 4)/ 3,  if n ≡ 2 (mod 3) 

vi. γch(Wn) =    3,    if n is odd 
         n,    if n is even.                  
    
Proposition 4.1.5. If G is a disconnected graph with k components G1, G2, . . . ,Gk , then 

γch(G) = γch(Gm) + 



k

mi
i 1

γ(Gi), where γch(Gm) = 
ki1

min {γch(Gi) | χ(Gi) = χ(G)}, for some    

m  {1, 2, …, k}.  
                                    
Proposition 4.1.6.  

i. If G is a connected graph, then γch(G) = p if and only if G is a vertex-color- critical  
or G is  color-critical graph. 

ii.  If G is a disconnected graph, then γch(G) = p if and only if either G is a null graph 
or has exactly one non trivial component, which is vertex-color-critical or color-
critical. 

 

Proposition 4.1.7. If G is any connected graph, then γch(G) = p – q if and only if G = K1.  

Proof: Necessary condition is trivial. Suppose γch(G) = p – q. Since γch(G) ≥ 1, p – q ≥ 1. 
As G is connected, q ≥ p – 1. Thus, p – q = 1 and hence, G = K1.                            
 

Proposition 4.1.8. Let D be any dc-set of G. ThenV – D≤
Du

u)deg( . 

Proof: As D is a dominating set, the result follows trivially.                                                                                     
 

Proposition 4.1.9. Let D be any dc-set of G. ThenV – D=
Du

u)deg( if and only if    

G = pK1, p ≥ 1.  

 Proof: If G = pK1, then D = V and deg(u) = 0 for each  u  D. Then the equality holds. 

Now suppose V – D= 
Du

u)deg( = k.  

            Claim: k = 0. 
            Suppose k ≥ 1. Two cases arise. 
 Case i: G is connected. 
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    Then χ(G) ≥ 2. Let V – D = {u1,u2 … uk}.  Since D is a dominating set, each ui is adjacent 

to a vertex of D and hence contributes at least one degree to D.  Since χ(<D>) ≥ 2, D 
contains at least one edge which contributes 2 degrees to D. Hence,

Du

u)deg( ≥ k + 2, a 

contradiction. 
 
Case ii: G is disconnected. 

  If G is totally disconnected, V = D and hence, |V – D| = k = 0, a contradiction. Hence, G 
has a non trivial component and then <D> contains at least one edge. Then, by a similar 
argument as in case i, contradiction arises.  

 In both cases, we arrive at a contradiction. Thus, k = 0. Then, V - D= 
Du

u)deg( = 0. 

Therefore, V = D and hence, for each u  V, deg(u) = 0. Thus, G is a totally disconnected 
graph and hence G = kK1.  

                                                       
 Corollary 4.1.10. For any non trivial connected graph with a dc-set D,  


Du

u)deg( ≥V - D + 2. 

 Proof: If G is vertex-color-critical, then V = D and 
Du

u)deg( = 2q ≥ 2 = V - D+ 2. 

Suppose G is not vertex-color-critical. As G is non trivial, χ(G) ≥ 2. By similar argument 

as in Case (i) of Proposition 4.1.9, 
Du

u)deg(   ≥ V - D+2.                               

   

 Proposition 4.1.11. For any graph G, 







 1)(G

p  ≤ γch(G) and equality holds if and only 

if G = pK1,  p ≥ 1. 
Proof: From Theorem 3.2, lower bound is trivial. If G = pK1, then the result follows. 

Suppose 







 1)(G

p  = γch(G) = k and D is a γch-set of G.  

Case i: G is connected.  
If k ≥ 2, then G is a non trivial connected graph. Then by Corollary 4.1.11,                     

V – D<
Du

u)deg( . Thus, p – k <
Du

u)deg(  ≤ kΔ(G) and hence, 
1)(  G

p  < k. 

Hence, k >
1)(  G

p ≥ 







 1)(G

p = k, a contradiction. Thus, k = 1 and hence, γch(G)=1. 

Therefore, G = K1.  
Case ii: G is disconnected. 
Suppose G is not totally disconnected. Then G has at east one non trivial component.  By 
similar argument as in Case i, contradiction arises. Therefore, G = pK1.                                                      
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Theorem 4.1.12. If G is a connected split graph and Δ(G) < p - 1,  then   

i. γch(G) = ω(G) = cpn(G). 

ii. γch( G ) = ω( G ) = cpn( G ).  
Proof:  
i) As G is a split graph, its vertex set can be partitioned into two sets X and Y such that 
<X> is complete and <Y> is a null graph. It may be assumed that X is maximal.  As 

discussed in proposition 3.6, each y  Y is not adjacent to at least one vertex of X and  

χ(G) = χ(<X>) and cpn(G) =│X│= ω(G). As G is connected, each y  Y is adjacent to 

at least one vertex of X. Therefore, X dominates Y and hence, a γch-set of G. 

ii)  From Proposition 3.3, G  is a connected split graph and hence, the result follows. 
 
Proposition 4.1.13. If G is a perfect graph, then 

i. γch(G) ≤ γ(G) + ω(G). 

ii. γch( G ) ≤ βo(G) + ω(G) - 1. 
Proof: 

i)  Let S be a maximal clique in G and D a γ-set in G. Since G is perfect, ω(G)= χ(G), and 

hence, χ(<S>) = χ(G). Therefore, χ(<S  D>) = χ(G). Thus, S  D is a dc-set of G and 
the result follows. 

cs)  Since G is perfect, χ(G) = ω(G). Let ω(G) = k. Let I be a maximum independent set 

in G. Then I is a maximum clique in G . Hence, βo(G) = | I | = ω( G ). Further in G  <I> 

is a complete graph on ω( G ) vertices and therefore, χ(<I>) = χ( G ). Let {V1, V2,...,Vk} 

be a χ-partition of V(G) and S be a maximum clique in G.  Then |S| = ω(G) = k.  
 Let S = {v1, v2,..., vk}. Hence, each vi is in distinct Vj’s. Without loss of generality, let   

vi  Vi, 1 ≤ i ≤ k. In G , each Vi induces a complete graph.  Hence, in G  each vi 

dominates Vi and hence, S is a dominating set of G . Let x  I. Then x  Vi for some i. 

Then x dominates Vi. Therefore, (S - vi) {x} is a dominating set of G . Then I  (S - vi) 

is a dc-set of G . Therefore, γch( G ) ≤I  (S - u)and hence, γch( G ) ≤ |I | + | S| - 1 =  

βo(G) + ω(G) - 1.                                                                 
 

Proposition 4.1.14.  If G is a graph with diam(G) = 2, (G) = 3 and  (G) =1, then  

ch(G) = 3. 

Proof: Let {u} be a -set of G. Since (G) = 3, there exists a pair of adjacent vertices x, y  

u. Then <{x, y, u}> = K3 and then ch(G) = 3.                                   
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Proposition 4.1.15. If G is a graph with diam(G) = 2, (G) = 3 and (G) = 2, then           

3 ≤ ch(G) ≤ 5. 

Proof: Lower bound is trivial. Let S = {a, b} be a -set of G. Since diam(G) = 2, go(G) = 3 
or 5. 
Case i: go(G) = 3. 

Let C be a 3-cycle xyzx. If a, b  C, then 2 vertices of C are adjacent to a and one vertex is 
adjacent to b or vice versa, otherwise K4 is induced, a contradiction. Let x and y be 
adjacent to a, and z be adjacent to b. Then axya is a 3-cycle. Hence, {a, x, y, b} is a dc-set 
of G. If a or b is in the 3-cycle, then the 3-cycle together with the remaining vertex of S is 
a dc-set of G. 
Case ii: go(G) = 5. 

Let C be a 5-cycle uvwxyu. If a, b  C, then as S is dominating, vertices of C are adjacent 
to a or b and not to both, otherwise a 3-cycle is induced. Also no two consecutive vertices 
of C can be both adjacent to a or b, otherwise a 3-cycle is induced. Then S can dominate 

at most 4 vertices of C, a contradiction. Hence, a or b  C. Let a  C and b  C. Let u = 
a. Then x and w are adjacent to b and hence, a 3-cycle is induced, a contradiction. 

Therefore, both a, b  C and hence, C is a ch-set of G.    
From Case (i) and (ii), the upper bound is proved.                                                                                                     
   

Proposition 4.1.16.  If G is a vertex-color-critical graph, then o(G) < ch(G). 
Proof :  Let u be any vertex of G. The result follows from the fact that V- u is a vertex 
cover of G.                                                                                                      
 

Proposition 4.1.17. If G is vertex-color-critical graph with diam(G) ≥ 2, then o(G) + 2 ≤ 

ch(G).  
Proof : Let u and v be two non adjacent vertices of G. Then V- {u, v} is a vertex cover of 
G.                                                                                                                   
 

Proposition 4.1.18. If G is triangle free with χ(G) ≥ 3, then γch(G) ≥ 5. 

Proof : Since χ(G) ≥3, any dc-set of G contains an odd cycle. Since G is triangle free, 

γch(G) ≥ 5.                                                                                                         
 

Proposition 4.1.19. If H is a spanning sub graph of G such that χ(H) = χ(G),  then  

γch(G) ≤ γch(H). 
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4.2. Dom-chromatic sets of some classes of graphs  
 

Theorem 4.2.1. If G is graph with o(G) = 2, then the bounds for independence graph 

I(G) is given by 
2

 p
 + 1 ≤  ch(I(G)) ≤ p and lower bound is attained if and only if G is a 

complete 
2

 p
- partite graph K2,2…,2 and upper bound is attained if and only if G =Kp - e. 

Proof:  Let k be the number of doubleton sets in G. 

Claim :  1 ≤ k ≤ 
2

 p
. 

By property 3.3(ii), G can have at most 





2

p
 doubleton sets.  Since o(G) = 2, G has at 

least one doubleton set, and hence, both inequalities hold.   
From property 3.4, each doubleton set intersects exactly 2 singleton sets, and no two 

doubleton set intersect and there are p singleton sets, I(G) = kK1,2  (p - 2k) K1. 
Therefore,  

                         ch(I(G)) = p – k + 1    -------------- (1) 

Thus, from claim, 
2

 p
 + 1 ≤ ch(I(G)) ≤ p.  

Suppose G is a complete 
2

 p
-partite graph K2,2….,2. Then G has 

2

 p
 doubleton sets and p 

singleton sets. Also each vertex of G is in a doubleton set of G. Hence, I(G) = 
2

 p
K1,2 and 

then ch(I(G)) = 
2

 p
+1. Thus, the lower bound is obtained.  

Conversely, suppose ch(I(G)) = 
2

 p
 + 1.  Hence, G is of even order and from (1), k = 

2

 p
. 

Thus, the number of doubleton sets in G is 
2

 p
. Further no two doubleton sets intersect, 

and each vertex of G is not adjacent to exactly one vertex of G.  Hence, G is a complete 

2

 p
-partite graph K2, 2 … 2. Now let G = Kp – e.  Then G has exactly one doubleton set.  

Then I(G) = K1,2  (p – 2)K1 and hence, ch(I(G)) = p. 

Conversely, suppose ch(I(G)) = p. From (1), k = 1. Hence, G has exactly one doubleton 
set.  Then exactly one pair of vertices are non adjacent and every other pair of vertices are 
adjacent.  Hence, G = Kp – e.                                                      
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In all results pertaining to the splitting graph S(G) of a graph G, u denotes the new vertex 

in S(G) corresponding to u  V and V denotes the set of all such new vertices u. 
 
Observation 4.2.2. For a graph G, 

i. χ(G) = (S(G)). 
ii. Any total dominating set of G dominates S(G). 

iii. A dominating set of G with isolated vertices cannot dominate S(G). 
iv. A total dc-set of G is a dc-set of S(G). 
v. A dc-set of G with isolated vertices is a not a dc-set of S(G). 

vi. If S is a dc-set of S(G), then S  V. 
Proof: Without loss of generality let G be connected. 
i.  Trivial. 

ii. Let S be total dominating set of G.  Suppose S does not dominate S(G) and let u be not 

dominated   by S.  Since S is total, each v  V is dominated by a vertex in S.  Hence, u is 

dominated by some v  S.  Then v dominates u, a contradiction. 
iii. Let S be a dominating set of G with isolated vertices and u be an isolated vertex in S. 

Since u is adjacent only to vertices of N(u), S cannot dominate u. 
iv. Follows from (i) and (ii). 
v.  Follows from (iii).                                                                                                 

vi. Follows from the fact that V induces a null graph in S(G).  
 

Theorem 4.2.3.  For any graph G, ch(G) ≤ ch(S(G) ≤ p. Further lower equality holds if 

and only if there is a ch-set of G with no isolates and upper equality holds if and only if G 
a is vertex-color-critical graph. 

Proof: Without loss of generality let G be connected and S be a ch-set of S(G).  Let S  = 

(S∩ V(G)) {u  V| u S}. Clearly, |S| ≤ |S| and S is a dc-set of G. Hence, the lower 
inequality is obtained. V is a dc-set of S(G) and hence, the upper inequality is obtained.  

Suppose S is ch-set of G with no isolated vertex.  By (iv) of Observation 4.2.2, S is a dc-set 

of S(G). Hence, ch(S(G)) ≤ ch(G) and the equality holds. Conversely, suppose ch(S(G)) = 

ch(G) and each ch-set of G has isolated vertices. Let S a ch-set of S(G). 

Claim 1: S  V  

Suppose S  V. Then S is a ch-set of G. Hence, from (v) of Observation 4.2.2, S cannot 
have isolated vertices, a contradiction. 

Let D = S ∩ V and D = S ∩ V. Clearly, D∩ D = . 
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Claim 2:  If x  D is an isolated vertex in S, then x  D and is an isolated vertex in S 
and vice versa. 

Suppose x is an isolated vertex is S. Then N(x)  V - S and henc,e x  S.  Consequently 

x  D is an isolated vertex in D.  
Let M be the set of isolated vertices of S in  D. 
Case i:  M = . 

Let u  D.   Then there exists x  N(u) ∩ S.  Clearly, u S. For, if u  S, then S – u 
is a dc-set of S(G), a contradiction. Now S = (S – u)  {u} is a ch-set of S(G) and u is 

not an isolated vertex in S. Repeat this for each u  D.  Then the resultant set So is a 

ch-set of S(G) whose vertices are from V and without isolated vertices. Hence, So is a ch-
set of G without isolated vertices, a contradiction. 

Case ii: M ≠  . 

Let  x  M.  Then x D.  By claim 2, x  D and x is an isolated vertex in S.  Let y  

N(x).  Now S = (S - x)  {y} is a ch-set of S(G) and x is not an isolated vertex in S.  As 

in case i, repeat the above for each x  M and resultant set is a ch-set of S(G) whose 
vertices are from V and without isolated vertices, a contradiction. 

Thus, there exists a ch-set of G with no isolates. 

Now let G be a vertex-color-critical graph. Then ch(G) = p and hence, ch(S(G)) = p. 

Suppose ch(S(G)) = p and G is not vertex-color-critical.  Then ch(G) ≤ p - 1.  Let S be a 
dc-set of a G of cardinality p - 1. Let V - S = {u}.  Clearly, S cannot be a dc-set of S(G). 

Since (<S>) = (S(G)), domination property is not satisfied.  Also S dominates V, there 

exists x  V not dominated by S. 

Claim 3:  x  u. 
Suppose x = u.  Now u is adjacent to some y  S.  Then y dominates x, a contradiction. 

Hence, x  u and x  S.  If x is adjacent to some y  S, then again x is dominated by S, 
a contradiction.  Hence, x is a pendant vertex in S. Since G is connected, x is adjacent to u.  

If p = 2, then G = K2, a vertex-color-critical graph, a contradiction. Thus, p  3 and hence, 

u is adjacent to some y  S. Let S = V – x. Then (<S>) = (G).  Clearly, S dominates 
V. 

Claim 4:  S dominates V. 
Let v  V.  Three cases arise. 
Case i:  v = u. 

u adjacent to y  S and y dominates v. 
Case ii:  v = x. 
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Since x adjacent to u, u dominates v. 
Case iii: v  u, x. 

Since v  x, v  S.  As G is connected and x is adjacent to u only, v adjacent to some z  

S (z and u need not be distinct). Thus, z dominates vand hence, S is a dc-set of S(G) of 
cardinality p - 1, a contradiction. Therefore, G is a vertex-color-critical graph. 
 

Proposition 4.2.4.  If G is a graph with p ≥ 2 vertices, then ch(G+) = p. 

Proof:  Since each vertex of G is adjacent to a pendant vertex in G+, V is a -set of G+. 

Since χ(G) = χ(G+),  V is a dc-set of G+. Hence, ch(G+) = p. 

Proposition 4.2.5. If G is a (p, q)- graph, then ch(s(G)) ≤ 
2

 qp  . 

Proof: Since s(G) is a bipartite (p + q, 2q)-graph, ch(s(G)) ≤ 
2

 qp  + 1. From Theorem 

3.9, equality holds if and only if s(G) = mK2, and for no graph G, s(G) can be mK2. Hence, 

ch(s(G)) ≤ 
2

 qp  . 

 

Theorem 4.2.6. If G has a perfect matching and χ(G) = Δ(G), then   

i. γch(L(G)) ≤ ∆ + 
2

 p

 
- 1. 

ii. γch(L(G)) ≤ ∆ + γ(L(G) - |N[M]|) where M is a ∆-clique in L(G). 
Proof : 
i) Let V = { x1, x2,…xp/2, y1, y2..yp/2 } and M be a perfect matching given by M = { x1y1,    

x2y2…,xp/2yp/2}.  Since χ(<G> ) = Δ(G),  

χ(G) = ∆ (G) = χ(L(G ))                                 ---------  (1) 

 Let uV such that deg(u) = ∆(G) and N(u) = {u1, u2,…, u∆}. Then uui   V(L(G))  for 
each i and the set S = {uu1, uu2,…, uu∆} induces a maximal clique isomorphic to K∆(G) in 

L(G). Now SM is a vertex subset of V(L(G)) and S induces K∆(G) in L(G) together imply 

that χ(<S  M>) ≥  χ(<S>). Therefore, from (1), χ(<S  M>) = χ(L(G)). Let e  E - (S 

 M). Then e = xixj, xiyj or yiyj, i≠ j and hence, in L(G), the vertex corresponding to e 

adjacent to at least two vertices of  S  M. Thus, S  M is a dominating set of 

L(G).Thus, S  M is a dc-set of G. Since M is a perfect matching, uui  M for some i and 

hence, |M S| = 1. Therefore, γch(L(G)) ≤ 
2

 p + ∆(G) - 1.  

          ii) Since line graph of a graph is perfect, L(G) is a perfect graph.   
 
4.3 Dom-chromatic partition of graphs 
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Imitating the definitions of domatic partition and domatic partition number of a graph 
dom-chromatic partition and subsequently the partition number are defined below. 
 
Definition 4.3.1. A dom-chromatic- partition (or dc-partition )of graph G is a partition of 
V into dom-chromatic sets. The maximum cardinality of a partition of V into dom-
chromatic sets is the dom-chromatic-partition number (dc- partition number ) and is 
dented by dch(G). 
 
 
Observation 4.3.2. 

i. If a graph G has pendant vertices, then dch(G) ≤ 2. 
ii. For any graph G, dch(G) ≤ d(G). 

iii. If G is a bipartite graph with no isolates, then dt(G) ≤ dch(G). 
 

Proposition 4.3.3.  For any graph G,  dch(G) ≤ 







)(G

p

ch
. 

 

Proposition 4.3.4.  For any graph G, ch(G)dch(G) ≤  p. 

Proof:  Let dch(G) = k and {V1, V2,…, Vk} be a dc-partition of G. Then 


k

i 1

|Vi| = p and 

for each i, |Vi| ≥ ch(G). Therefore,  p ≥ kch(G) = dch(G)ch(G). 
 
Dc-partition numbers of some standard graphs are given below. 
 
Proposition 4.3.5.  

i. dch(Km,n) = min{m, n}. 
ii. dch(Wn) = 1. 

iii. dch(Pn) ≤ 2. 
iv. dch(Cn) ≤ 2. 

 
4.4.  Nordhaus Gaddum type of results 
 

It is customary to obtain Nordhaus-Gaddum type of results for any graph parameter and 
we have obtained few results.  
 

Proposition 4.4.1. For a graph G, γch(G) + γch( G ) = 2p if and only if f G and G  are 
one of the following types 
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i) G and G  are vertex-color-critical. 

ii) G and G  are Kp and pK1. 
iii) G is vertex-color-critical and G has exactly one non trivial component which is 
vertex-color-critical. 
 

Proposition 4.4.2. If G is a connected split graph & Δ(G)< p - 1, then γch(G) + γch(G )=p. 
Proof : By similar discussion as in Theorem 4.1.12, if  X  is  a  maximal clique of G, then 

X  is  a  γch-set of G and V - X is a γch-set of G and V - X is a γch-set of G  and the 
equality follows.   
 

Theorem 4.4.3. If G is a tree of diameter 3, then γch(G) +  γch (G ) = p. 
Proof :   

i)  Since G is a tree of diameter 3, G has a dominating edge. Therefore, γch(G) = 2. Let  uv 
be the dominating edge of G and V1, V2 be the set of pendant vertices adjacent to u and v 

respectively.  Then in G , <V1 V2> induces a complete graph Kp-2 and, u and v are non 
adjacent. Further u is adjacent to each vertex of  V1  and  v is adjacent to each vertex of V2 

in G . Thus, V1  V2 is a γch-set of G . Therefore, γch (G ) = p – 2 and (i) follows. 
 
Proposition 4.4.4. If G is a perfect graph, then 

γch(G) + γch(G ) ≤  γ(G) + βo(G) – 2ω(G) – 1. 

Proof: From Proposition 4.1.12, γch(G) ≤ γ(G) + ω(G) and γch( G ) ≤ βo(G) + ω(G) – 1 
and hence, the upper bound is obtained. 
 
Theorem 4.4.5. If G is an incomplete bipartite graph with no isolated vertices, then  

γch(G) + γch(G ) ≤ 3
2

 p
+ 1.  

Proof : Let {V1, V2} be a vertex partition of V. Clearly, |V1|,  |V2| > 1.  From Theorem 3.9, 

γch(G) ≤ 
2

 p
+ 1. Two cases arise. 

Case i : G is vertex-color-critical.  

Then γch( G ) = p and then γch(G) + γch(G ) ≤ 3
2

 p
+ 1. 

Case ii : G is not vertex-color-critical. 

If G is totally disconnected, then G = Kp. Since G is bipartite, G = K2, a contradiction as G 

is incomplete. Hence, γch(G ) ≤  p -1 and the result follows. 
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