International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 2, No. 1, January –March 2011, pp. 38-46

On Eccentric domination in Trees

M.Bhanumathi and S.Muthammai

Government Arts College for Women, Pudukkottai-622001, India. Email :bhanu_ksp@yahoo.com, muthammai_s@yahoo.com

Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric dominating set if for every $v \in V$ -D, there exists at least one eccentric point of v in D. The minimum of the cardinalities of the eccentric dominating sets of G is called the eccentric domination number $\gamma_{ed}(G)$ of G. In this paper, eccentric domination parameter of trees is studied. Characterization of trees with $\gamma_{ed}(T) = \gamma(T)+2$, $\gamma_{ed}(T) = \gamma(T)+1$ and $\gamma_{ed}(T) = \gamma(T)$ are also studied and bounds for $\gamma_{ed}(T)$, its exact value for some particular classes of trees are found.

Key words: Eccentric dominating set, Eccentric domination number.

1.Introduction

Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary [4], Buckley and Harary [1].

Definition 1.1 Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus, $e(v) = \max \{d(u, v) : u \in V\}$. The radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is the maximum eccentricity. For any connected graph G, $r(G) \leq \text{diam}(G) \leq 2r(G)$. v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a peripheral vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices.

For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex. Eccentric set of a vertex v is defined as $E(v) = \{u \in V(G) / d(u, v) = e(v)\}.$

Definition 1.2 Caterpillar is a tree in which the removal of pendent vertices results in a path. This path is known as the underlying path of the caterpillar.

Definition 1.3 A lobster is a tree in which removal of pendent vertices results in a caterpillar.

Received: 26 July, 2010; Revised: 08 September, 2010; Accepted: 24 September, 2010

Definition 1.4 [2, 8] A set $S \subseteq V$ is said to be a **dominating set** in G, if every vertex in V-S is adjacent to some vertex in S. A dominating set D is an **independent dominating** set, if no two vertices in D are adjacent that is D is an independent set. A dominating set D is a **connected dominating set**, if < D > is a connected subgraph of G. A set $D \subseteq V(G)$ is a global dominating set, if D is a dominating set in G and \overline{G} .

Definition: 1.5 [6] A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V - D$, there exists at least one eccentric point of v in D.

An eccentric dominating set D is a minimal eccentric dominating set if no proper subset $D'' \subseteq D$ is an eccentric dominating set.

Definition: 1.6 [6] The eccentric domination number $\gamma_{ed}(G)$ of a graph G equals the minimum cardinality of an eccentric dominating set.

Definition: 1.7 [6] Eccentric point set of G:

Let $S \subseteq V(G)$. Then S is known as an eccentric point set of G if for every $v \in V-S$, S has at least one vertex u such that $u \in E(v)$. An eccentric point set S of G is a **minimal eccentric point set** if no proper subset S' of S is an eccentric point set of G. S is known as a **minimum eccentric point set** if S is an eccentric point set with minimum cardinality. The minimum cardinality of an eccentric point set of G denoted as e(G) is known as eccentric number of G.

Let D be a minimum dominating set of a graph G and S be a minimum eccentric point set of G. Clearly, $D \cup S$ is an eccentric dominating set of G. Hence, $\gamma_{ed}(G) \leq \gamma(G)+e(G)$.

Theorem: 1.1 For a connected graph G, $\gamma(G) \ge \lceil (\gamma_c(G)+2)/3 \rceil$.

Theorem: 1.2 [8] For a connected graph G on n vertices $\gamma(G) \leq n/2$.

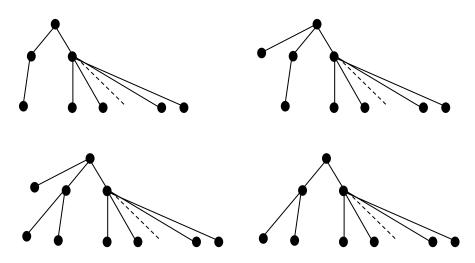
Theorem: 1.3 [6] $\lceil n/(1+\Delta(G) \rceil \le \gamma_{ed}(G) \le \lfloor (n+\gamma(G))/2 \rfloor$.

Theorem: 1.4 [6] $\gamma_{ed}(P_n) = \lceil n/3 \rceil$, if n = 3k+1,

$$\gamma_{ed}(P_n) = |n/3| + 1$$
, if $n = 3k$ or $3k+2$.

Theorem: 1.5 [6] For a tree T, $\gamma(T) \leq \gamma_{ed}(T) \leq \gamma(T)+2$.

Theorem: 1.6 [6] Let T be a tree with radius 2 and diameter 4. $\gamma_{ed}(T) = n - \Delta(T)$ if and only if any one of the following is true: (i) T = P₅. (ii) T is a wounded spider having at least two non wounded legs. (iii) T is any one of the following four types of trees.



2. Eccentric domination in Trees

In [6] we have proved that for any tree T, $\gamma(T) \leq \gamma_{ed}(T) \leq \gamma(T)+2$. In this paper, we characterize trees for which $\gamma_{ed}(T) = \gamma(T)+2$, $\gamma(T)+1$ or $\gamma(T)$ and give bounds for $\gamma_{ed}(T)$ in terms of number of vertices, pendent vertices and support vertices of T.

First let us characterize trees for which $\gamma_{ed}(T) = \gamma(T)+2$.

Theorem: 2.1 For a tree T, $\gamma_{ed}(T) = \gamma(T)+2$ if and only if supports of all the peripheral vertices are in every γ -set.

Proof: This theorem follows from the fact that, an eccentric dominating set of T must contain at least two peripheral vertices at distance d = diam(T) to each other.

Next Theorem follows from the definition of eccentric dominating set.

Theorem: 2.2 For a tree T, if $\gamma_{ed}(T) = \gamma(T)$ there exists atleast two peripheral vertices at distance d = diam(T) to each other such that support of these vertices are of exactly degree two.

Proof: From the definition of eccentric dominating set, any γ_{ed} -set of T must contain at least two peripheral vertices at distance d = diam(T) to each other. If $\gamma_{ed}(T) = \gamma(T)$, there exists a γ -set D of T such that D contains two peripheral vertices x, y at distance d =

diam(T) to each other. Thus D is minimum implies that supports of x and y are not in D. This implies that supports of x and y are of exactly degree two.

The converse of the previous theorem is not true. For example, for $T = P_9$, path on nine vertices $\gamma_{ed}(T) = \gamma(T)+1$.

Theorem: 2.3 For a tree T, $\gamma_{ed}(T) = \gamma(T)$ if and only if there exists a γ -set D of T such that D contains atleast two peripheral vertices at distance d = diam(T) to each other.

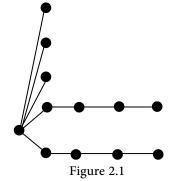
Proof: From the definition of eccentric dominating set, any γ_{ed} -set of T must contain atleast two peripheral vertices at distance d = diam(T) to each other. Therefore $\gamma_{ed}(T) = \gamma(T)$ if and only if there exists a γ -set D of T such that D contains two peripheral vertices x, y at distance d = diam(T) to each other.

Remark: If there exists a γ -set D of T such that D contains two peripheral vertices x, y at distance d = diam(T) to each other, then their supports u, v are not in D. Therefore, deg u = deg v = 2. Then S = $(D - \{x,y\}) \cup \{u, v\}$ is also a γ -set of T. But S must not be efficient.

Theorem: 2.4 If the degree of support of each peripheral vertex is greater than two in a tree T then $\gamma_{ed}(T) = \gamma(T)+2$.

Proof: If the degree of support of each peripheral vertex is greater than two, then that supports must be in every γ -set. Hence by theorem 2.1 $\gamma_{ed}(T) = \gamma(T)+2$.

The converse of the previous theorem is not true. For example, for T given in figure 2.1, $\gamma_{ed}(T) = \gamma(T)+2$, but the degree of support of each peripheral vertex is two.



Theorem: 2.5 For a tree T, if there exists an efficient dominating set containing all the supports of peripheral vertices, then $\gamma_{ed}(T) = \gamma(T)+2$.

42

Proof: Let D be an efficient dominating set of T. Efficient dominating set is always a γ -set and distance between any two elements of D is \geq 3. Hence by theorem 2.1, $\gamma_{ed}(T) = \gamma(T)+2$.

Theorem: 2.6 For a tree T with radius two which is not a path, (i) $\gamma_{ed}(T) = \gamma(T)$ if there exists atleast two peripheral vertices with degree of their supports = 2. (ii) $\gamma_{ed}(T) = \gamma(T)+1$ if there exists only one peripheral vertex with degree of its support = 2. (iii) $\gamma_{ed}(T) = \gamma(T)+2$ if degree of all the support vertices are greater than two.

Proof: Let T be a bi-central tree. In this case, diam(T) = 3 and T = $\overline{\mathbf{K}}_n + K_1 + K_1 + \overline{\mathbf{K}}_m$ for n, $m \ge 1$. When $n = m = 1, \gamma_{ed}(T) = \gamma(T) = 2$. When $n, m \ge 1, \gamma_{ed}(T) = \gamma(T) + 2 = 4$, otherwise $\gamma_{ed}(T) = \gamma(T) + 1 = 3$.

Next, let us consider <u>a unicentral tree T</u>. In this case, diam(T) = 4 and T $\neq P_5$. Let S be the set of all support vertices of T.

(i) if there exists two peripheral vertices with degree of their supports = 2, then degree of the central vertex is greater than two. Let x, y be two peripheral vertices and u, v be their supports such that deg u = deg v = 2. Then S is γ -set of T and $(S - \{u, v\}) \cup \{x, y\}$ is a γ_{ed} -set of T. Hence $\gamma_{ed}(T) = \gamma(T)$.

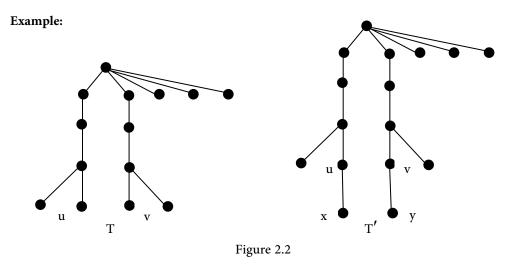
(ii) if there exists only one peripheral vertex with degree of its support = 2, let x be a peripheral vertex and u be its support such that deg u = 2. Let y be another peripheral vertex which is at distance 4 from x. Then S is γ -set of T and $(S-\{u\}) \cup \{x, y\}$ is a γ_{ed} -set of T. Hence $\gamma_{ed}(T) = \gamma(T)+1$.

(iii) If degree of all the support vertices are greater than two, then S is γ -set of T and SU{x, y} where x, y are any two peripheral vertices at distance 4 to each other is a γ_{ed} -set of T. Hence $\gamma_{ed}(T) = \gamma(T)+2$.

Bounds of $\gamma_{ed}(T)$ interms of number of vertices, pendent vertices and support vertices of T.

Let us assume that T be a tree on n vertices, with s support vertices and p pendent vertices. Let T' be a tree on n+2 vertices obtained from T as follows:

Let u, v be any two pendent vertices of T at distance d = diam(T) to each other. Attach a new vertex x to u by an edge and y to v by an edge. Denote the new tree obtained as T'. Then |V(T')| = n+2 = |V(T)|+2 and |E(T')| = n+1 = |E(T)|+2.



Clearly $\gamma_{ed}(T) = \gamma(T')$. deg u = deg v = 2 in T'implies that there is a minimum dominating set of T' containing u and v; that dominating set is a minimum eccentric dominating set for T. Number of pendent vertices in T' is also equal to p. For example, if T is a path on n vertices then $\gamma_{ed}(T) = \gamma(T') = \lceil (n+2)/3 \rceil$ for all $n \ge 3$.

It is well known that, for any graph G, $\gamma(G) \ge \lceil (\gamma_c(G)+2)/3 \rceil$ where $\gamma_c(G)$ denotes the connected domination number of G. Also for a tree T on n vertices having p pendent vertices $\gamma_c(T) = n-p$.

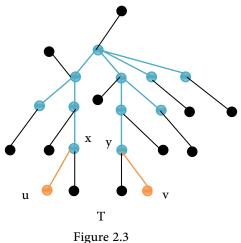
Thus, we have, $\gamma_c(T') = n+2-p$ and $\gamma(T') \ge \left\lceil (\gamma_c(T')+2)/3 = \left\lceil (n+4-p)/3 \right\rceil$. Also, since T' is connected with n+2 vertices, we have $\gamma(T') \le (n+2)/2$. But $\gamma_{ed}(T) = \gamma(T')$. Therefore, $(n/2)+1 \ge \gamma_{ed}(T) \ge \left\lceil (n+4-p)/3 \right\rceil$. Hence we have the following important Theorem.

Theorem: 2.7 For any tree T on n vertices having p pendent vertices, $(n/2)+1 \ge \gamma_{ed}(T) \ge \lceil (n+4-p)/3 \rceil$. If $T = P_n$, then $\gamma_{ed}(P_n) = \gamma(P_{n+2}) = \lceil (n+2)/3 \rceil$ for all $n \ge 3$.

Theorem: 2.8 For a tree T, $\gamma_{ed}(T) = (n/2)+1$ if and only if T can be obtained as follows: Let H be a tree on (n-2)/2 vertices with exactly two peripheral vertices x and y, and let G = H·K₁. With G, add two vertices u, v and edges joining x to u and y to v. Name the new graph as T. Clearly T is a tree with n vertices.

Proof: If T is a tree as given in the theorem, it is easy to verify that $\gamma_{ed}(T) = (n/2)+1$. On the other hand, assume that $\gamma_{ed}(T) = (n/2)+1$. Therefore, $\gamma_{ed}(T) = (n/2)+1 = (n-2)/2+2$. Since T is a tree, two peripheral vertices at distance d = diameter of T is necessary to

dominate T eccentrically. So among the remaining n-2 vertices, half of them are in a minimum eccentric dominating set implies that (n-2)/2 vertices are pendent vertices with distinct support vertices. So deleting all the (n-2)/2+2 pendent vertices from T, we get a tree on (n-2)/2 vertices. Hence the theorem follows.



Theorem: 2.9 If T is a tree with p pendent vertices and s support vertices, then $\gamma_{ed}(T) \leq$ [(n-p-s)/2]+s+2.

Proof: Let T be a tree with p pendent vertices and s support vertices. Delete all the pendent vertices of T from T. Then we get a tree T₁ on n-p vertices with s pendent vertices. Again deleting these s pendent vertices from T₁ we obtain a tree T₂ on n-p-s vertices. Now, a γ -set of T can be formed by taking atmost (n-p-s)/2 vertices from V(T₂) and s support vertices of T.

Therefore, $\gamma(T) \leq \lfloor (n-p-s)/2 \rfloor + s$; $\gamma_{ed}(T) \leq \lfloor (n-p-s)/2 \rfloor + s + 2$. This proves the Theorem.

Theorem: 2.10 For a tree T, $\lceil (n+4-p)/3 \rceil \le \gamma_{ed}(T) \le \lfloor (n-p-s)/2 \rfloor + s+2$. Proof: Follows from Theorem 2.7 and 2.9.

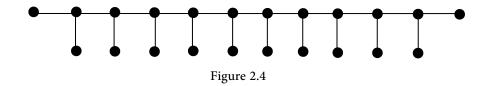
Both of these bounds are sharp, since for $T = P_n$, $\gamma_{ed}(T) = \left\lceil (n+4-p)/3 \right\rceil$ and for T in figure 2.4, $\gamma_{ed}(T) = \lfloor (n-p-s)/2 \rfloor + s+2 = \lfloor (22-12-10)/2 \rfloor + 10+2 = 12.$

Theorem: 2.11 If T is a caterpillar, $\lceil (n-p)/3 \rceil + 1 \le \gamma_{ed}(T) \le n-p+2$. **Proof:** Let T be a caterpillar on n vertices. then its underlying path is $P = P_m$, m = n-p, where p is the number of pendent vertices of T. Domination parameter of this path

is $\lceil (n-p)/3 \rceil$ and $\gamma_{ed}(P) = \lceil (n-p)/3 \rceil$ or $\lceil (n-p)/3 \rceil + 1$. But diameter of T = diameter of

P+2. Therefore, $\lceil (n-p)/3 \rceil +1 \leq \gamma_{ed}(T)$. Also, $(V-U) \cup \{x, y\}$, where U is the set of all pendent vertices and x, y are any two peripheral vertices at distance d is an eccentric dominating set. Hence, $\gamma_{ed}(T) \leq n-p+2$.

Both of these bounds are sharp, since for $T = P_7$, $\gamma_{ed}(T) = \left\lceil (7-2)/3 \right\rceil + 1 = 4$ and for T in figure 2.4, $\gamma_{ed}(T) = n-p+2 = 22-12+2 = 12$.



Theorem: 2.12 If T is a lobster with p pendent vertices and s support vertices then $\lceil (n-p-s_1)/3 \rceil + s_1 \le \gamma_{ed}(T) \le \lfloor (n-p-s_1)/3 \rfloor + s+2$, where s_1 denotes the number of support vertices of T which are not in the underlying path P.

Proof: Let T be a given lobster. Then its underlying path P contains $n-p-s_1$ vertices. To dominate the end vertices of T which are at distance two from P we need s_1 support vertices. So if S is the set of support vertices which are not in P and if D is a γ -set of P, then DUS dominate vertices of T except those which are at distance one from P and not adjacent to elements of D. Hence, $\gamma_{ed}(T) \ge |D \cup S|$.

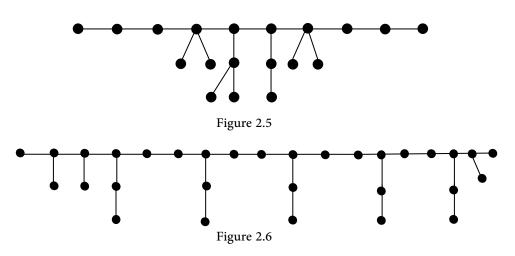
Therefore, $\lceil (n-p-s_1)/3 \rceil + s_1 \leq \gamma_{ed}(T)$.

Suppose no support vertices is on P. Then $\lceil (n-p-s)/3 \rceil$ vertices are necessary to dominate P. If D_1 is such a dominating set, then $D_1 \cup S_1$, where S_1 is the set of all support vertices of T, form a dominating set of T. Thus $\gamma_{ed}(T) \leq \lfloor (n-p-s)/3 \rfloor + s+2$.

Suppose some support vertices of T are in P. Then $\lfloor (n-p-s_1)/3 \rfloor + s$ vertices dominate the caterpillar obtained from T after deleting pendent vertices and is also a dominating set for T. Hence to dominate T eccentrically atmost $\lfloor (n-p-s_1)/3 \rfloor + s+2$ vertices are needed. Thus $\gamma_{ed}(T) \leq \lfloor (n-p-s_1)/3 \rfloor + s+2$.

Both of these bounds in Theorem 2.12 are sharp, since for T in figure 2.5, $\gamma_{ed}(T) = 6 = \left\lceil (n-p-s_1)/3 \right\rceil + s_1 = \left\lceil (19-9-4)/3 \right\rceil + 4$, and for T in figure 2.6, $\gamma_{ed}(T) = 14 = \lfloor (n-p-s_1)/3 \rfloor + s+2 = \lfloor (31-10-7)/3 \rfloor + s+2$.

On Eccentric domination in Trees



Acknowledgement: The authors are grateful to U.G.C, India for the financial support. (MRP-2799/09 (MRP/UGC-SERO) dated Feb. 2009).

References:

[1] Buckley. F, Harary. F, Distance in graphs, Addison-Wesley, Publishing company (1990).

[2] Bhanumathi M and Muthammai S, Eccentric domatic number of a Graph, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 1, No. 3, pp 118-128, 2010.

[3] Cockayne, E.J., Hedetniemi, S.T., Towards a theory of domination in graphs. Net works, 7: 247-261.1977

[4] Harary, F., Graph theory, Addition - Wesley Publishing Company Reading, Mass (1972).

[5] Janakiraman, T.N., (1991), On some Eccentricity properties of the graphs. Thesis, Madras University, Tamil Nadu, India.

[6] Janakiraman T.N., Bhanumathi M and Muthammai S, Eccentric domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume 1, No. 2, pp 55-70, 2010.

[7] Parthasarathy, K.R. and Nandakumar, R., Unique eccentric point graphs, Discrete Math. 46, pp. 69-74, 1983.

[8] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc. 1998.